Skip to content
url.c 193 KiB
Newer Older
  }
  *protocol_done = FALSE; /* default to not done */
Daniel Stenberg's avatar
Daniel Stenberg committed

  /* set proxy_connect_closed to false unconditionally already here since it
     is used strictly to provide extra information to a parent function in the
     case of proxy CONNECT failures and we must make sure we don't have it
     lingering set from a previous invoke */
  conn->bits.proxy_connect_closed = FALSE;

  /*
   * Set user-agent. Used for HTTP, but since we can attempt to tunnel
   * basically anything through a http proxy we can't limit this based on
   * protocol.
   */
  if(data->set.str[STRING_USERAGENT]) {
    Curl_safefree(conn->allocptr.uagent);
    conn->allocptr.uagent =
      aprintf("User-Agent: %s\r\n", data->set.str[STRING_USERAGENT]);
    if(!conn->allocptr.uagent)
      return CURLE_OUT_OF_MEMORY;
#ifdef CURL_DO_LINEEND_CONV
  data->state.crlf_conversions = 0; /* reset CRLF conversion counter */
#endif /* CURL_DO_LINEEND_CONV */
  /* set start time here for timeout purposes in the connect procedure, it
     is later set again for the progress meter purpose */
  conn->now = Curl_tvnow();

  if(CURL_SOCKET_BAD == conn->sock[FIRSTSOCKET]) {
    conn->bits.tcpconnect[FIRSTSOCKET] = FALSE;
    result = Curl_connecthost(conn, conn->dns_entry);
    if(result)
      return result;
  }
  else {
    Curl_pgrsTime(data, TIMER_CONNECT);    /* we're connected already */
    Curl_pgrsTime(data, TIMER_APPCONNECT); /* we're connected already */
    conn->bits.tcpconnect[FIRSTSOCKET] = TRUE;
    *protocol_done = TRUE;
    Curl_updateconninfo(conn, conn->sock[FIRSTSOCKET]);
    Curl_verboseconnect(conn);
Daniel Stenberg's avatar
Daniel Stenberg committed
  }

  conn->now = Curl_tvnow(); /* time this *after* the connect is done, we
                               set this here perhaps a second time */
Daniel Stenberg's avatar
Daniel Stenberg committed

  /*
   * This check is quite a hack. We're calling _fsetmode to fix the problem
   * with fwrite converting newline characters (you get mangled text files,
   * and corrupted binary files when you download to stdout and redirect it to
   * a file).
   */
    _fsetmode(stdout, "b");
  }
#endif

CURLcode Curl_connect(struct SessionHandle *data,
  CURLcode result;
  *asyncp = FALSE; /* assume synchronous resolves by default */
  /* call the stuff that needs to be called */
  result = create_conn(data, in_connect, asyncp);
    if((*in_connect)->send_pipe->size || (*in_connect)->recv_pipe->size)
      /* DNS resolution is done: that's either because this is a reused
         connection, in which case DNS was unnecessary, or because DNS
         really did finish already (synch resolver/fast async resolve) */
      result = Curl_setup_conn(*in_connect, protocol_done);
  if(result == CURLE_NO_CONNECTION_AVAILABLE) {
  if(result && *in_connect) {
    /* We're not allowed to return failure with memory left allocated
       in the connectdata struct, free those here */
    Curl_disconnect(*in_connect, FALSE); /* close the connection */
    *in_connect = NULL;           /* return a NULL */
CURLcode Curl_done(struct connectdata **connp,
                   CURLcode status,  /* an error if this is called after an
                                        error was detected */
                   bool premature)
{
  CURLcode result;
  struct connectdata *conn;
  struct SessionHandle *data;

  DEBUGASSERT(*connp);

  conn = *connp;
  data = conn->data;
  DEBUGF(infof(data, "Curl_done\n"));

    /* Stop if Curl_done() has already been called */
    return CURLE_OK;

  Curl_getoff_all_pipelines(data, conn);

  free(data->req.newurl);
  data->req.newurl = NULL;
  free(data->req.location);
  data->req.location = NULL;
  switch(status) {
  case CURLE_ABORTED_BY_CALLBACK:
  case CURLE_READ_ERROR:
  case CURLE_WRITE_ERROR:
    /* When we're aborted due to a callback return code it basically have to
       be counted as premature as there is trouble ahead if we don't. We have
       many callbacks and protocols work differently, we could potentially do
       this more fine-grained in the future. */
    premature = TRUE;
  /* this calls the protocol-specific function pointer previously set */
  if(conn->handler->done)
    result = conn->handler->done(conn, status, premature);
  if(CURLE_ABORTED_BY_CALLBACK != result) {
    /* avoid this if we already aborted by callback to avoid this calling
       another callback */
    CURLcode rc = Curl_pgrsDone(conn);
    if(!result && rc)
      result = CURLE_ABORTED_BY_CALLBACK;
  }
  if((!premature &&
      conn->send_pipe->size + conn->recv_pipe->size != 0 &&
      !data->set.reuse_forbid &&
      !conn->bits.close)) {
    /* Stop if pipeline is not empty and we do not have to close
       connection. */
    DEBUGF(infof(data, "Connection still in use, no more Curl_done now!\n"));
    return CURLE_OK;
  }

  data->state.done = TRUE; /* called just now! */
  Curl_resolver_cancel(conn);

  if(conn->dns_entry) {
    Curl_resolv_unlock(data, conn->dns_entry); /* done with this */
    conn->dns_entry = NULL;
  }

  /* if the transfer was completed in a paused state there can be buffered
     data left to write and then kill */
  free(data->state.tempwrite);
  data->state.tempwrite = NULL;
  /* if data->set.reuse_forbid is TRUE, it means the libcurl client has
     forced us to close this connection. This is ignored for requests taking
     place in a NTLM authentication handshake
     if conn->bits.close is TRUE, it means that the connection should be
     closed in spite of all our efforts to be nice, due to protocol
     restrictions in our or the server's end

     if premature is TRUE, it means this connection was said to be DONE before
     the entire request operation is complete and thus we can't know in what
     state it is for re-using, so we're forced to close it. In a perfect world
     we can add code that keep track of if we really must close it here or not,
     but currently we have no such detail knowledge.
  */
  if((data->set.reuse_forbid
#if defined(USE_NTLM)
      && !(conn->ntlm.state == NTLMSTATE_TYPE2 ||
           conn->proxyntlm.state == NTLMSTATE_TYPE2)
#endif
     ) || conn->bits.close || premature) {
    CURLcode res2 = Curl_disconnect(conn, premature); /* close connection */

    /* If we had an error already, make sure we return that one. But
       if we got a new error, return that. */
    if(!result && res2)
      result = res2;
  }
    /* the connection is no longer in use */
    if(ConnectionDone(data, conn)) {
      /* remember the most recently used connection */
      data->state.lastconnect = conn;

      infof(data, "Connection #%ld to host %s left intact\n",
            conn->connection_id,
            conn->bits.httpproxy?conn->proxy.dispname:conn->host.dispname);
    }
    else
      data->state.lastconnect = NULL;
  *connp = NULL; /* to make the caller of this function better detect that
                    this was either closed or handed over to the connection
                    cache here, and therefore cannot be used from this point on
                 */
  Curl_free_request_state(data);
 * Curl_init_do() inits the readwrite session. This is inited each time (in
 * the DO function before the protocol-specific DO functions are invoked) for
 * a transfer, sometimes multiple times on the same SessionHandle. Make sure
 * nothing in here depends on stuff that are setup dynamically for the
 * transfer.
 *
 * Allow this function to get called with 'conn' set to NULL.
CURLcode Curl_init_do(struct SessionHandle *data, struct connectdata *conn)
  if(conn)
    conn->bits.do_more = FALSE; /* by default there's no curl_do_more() to
                                 * use */

  data->state.done = FALSE; /* Curl_done() is not called yet */
  data->state.expect100header = FALSE;
  if(data->set.opt_no_body)
    /* in HTTP lingo, no body means using the HEAD request... */
    data->set.httpreq = HTTPREQ_HEAD;
  else if(HTTPREQ_HEAD == data->set.httpreq)
    /* ... but if unset there really is no perfect method that is the
       "opposite" of HEAD but in reality most people probably think GET
       then. The important thing is that we can't let it remain HEAD if the
       opt_no_body is set FALSE since then we'll behave wrong when getting
       HTTP. */
    data->set.httpreq = HTTPREQ_GET;

  k->start = Curl_tvnow(); /* start time */
  k->now = k->start;   /* current time is now */
  k->header = TRUE; /* assume header */

  k->bytecount = 0;

  k->buf = data->state.buffer;
  k->uploadbuf = data->state.uploadbuffer;
  k->hbufp = data->state.headerbuff;
  k->ignorebody=FALSE;

  Curl_speedinit(data);

  Curl_pgrsSetUploadCounter(data, 0);
  Curl_pgrsSetDownloadCounter(data, 0);

  return CURLE_OK;
}

/*
 * do_complete is called when the DO actions are complete.
 *
 * We init chunking and trailer bits to their default values here immediately
 * before receiving any header data for the current request in the pipeline.
 */
static void do_complete(struct connectdata *conn)
{
  conn->data->req.maxfd = (conn->sockfd>conn->writesockfd?
                           conn->sockfd:conn->writesockfd)+1;
  Curl_pgrsTime(conn->data, TIMER_PRETRANSFER);
CURLcode Curl_do(struct connectdata **connp, bool *done)
  CURLcode result=CURLE_OK;
  struct connectdata *conn = *connp;
  struct SessionHandle *data = conn->data;
    /* generic protocol-specific function pointer set in curl_connect() */
    result = conn->handler->do_it(conn, done);
    /* This was formerly done in transfer.c, but we better do it here */
    if((CURLE_SEND_ERROR == result) && conn->bits.reuse) {
      /*
       * If the connection is using an easy handle, call reconnect
       * to re-establish the connection.  Otherwise, let the multi logic
       * figure out how to re-establish the connection.
       */
      if(!data->multi) {
        result = Curl_reconnect_request(connp);

          /* ... finally back to actually retry the DO phase */
          conn = *connp; /* re-assign conn since Curl_reconnect_request
                            creates a new connection */
          result = conn->handler->do_it(conn, done);
    if(!result && *done)
      /* do_complete must be called after the protocol-specific DO function */
/*
 * Curl_do_more() is called during the DO_MORE multi state. It is basically a
 * second stage DO state which (wrongly) was introduced to support FTP's
 * second connection.
 *
 * TODO: A future libcurl should be able to work away this state.
 *
 * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to
 * DOING state there's more work to do!
CURLcode Curl_do_more(struct connectdata *conn, int *complete)
    result = conn->handler->do_more(conn, complete);
  if(!result && (*complete == 1))
    /* do_complete must be called after the protocol-specific DO function */
    do_complete(conn);


/*
* get_protocol_family()
*
* This is used to return the protocol family for a given protocol.
*
* Parameters:
*
* protocol  [in]  - A single bit protocol identifier such as HTTP or HTTPS.
*
* Returns the family as a single bit protocol identifier.
*/

unsigned int get_protocol_family(unsigned int protocol)
{
  unsigned int family;

  switch(protocol) {
  case CURLPROTO_HTTP:
  case CURLPROTO_HTTPS:
    family = CURLPROTO_HTTP;
    break;

  case CURLPROTO_FTP:
  case CURLPROTO_FTPS:
    family = CURLPROTO_IMAP;
    break;

  case CURLPROTO_SCP:
    family = CURLPROTO_SCP;
    break;

  case CURLPROTO_SFTP:
    family = CURLPROTO_SFTP;
    break;

  case CURLPROTO_TELNET:
    family = CURLPROTO_TELNET;
    break;

  case CURLPROTO_LDAP:
  case CURLPROTO_LDAPS:
    family = CURLPROTO_IMAP;
    break;

  case CURLPROTO_DICT:
    family = CURLPROTO_DICT;
    break;

  case CURLPROTO_FILE:
    family = CURLPROTO_FILE;
    break;

  case CURLPROTO_TFTP:
    family = CURLPROTO_TFTP;
    break;

  case CURLPROTO_IMAP:
  case CURLPROTO_IMAPS:
    family = CURLPROTO_IMAP;
    break;

  case CURLPROTO_POP3:
  case CURLPROTO_POP3S:
    family = CURLPROTO_POP3;
    break;

  case CURLPROTO_SMTP:
  case CURLPROTO_SMTPS:
      family = CURLPROTO_SMTP;
      break;

  case CURLPROTO_RTSP:
    family = CURLPROTO_RTSP;
    break;

  case CURLPROTO_RTMP:
  case CURLPROTO_RTMPS:
    family = CURLPROTO_RTMP;
    break;

  case CURLPROTO_RTMPT:
  case CURLPROTO_RTMPTS:
    family = CURLPROTO_RTMPT;
    break;

  case CURLPROTO_RTMPE:
    family = CURLPROTO_RTMPE;
    break;

  case CURLPROTO_RTMPTE:
    family = CURLPROTO_RTMPTE;
    break;

  case CURLPROTO_GOPHER:
    family = CURLPROTO_GOPHER;
    break;

  case CURLPROTO_SMB:
  case CURLPROTO_SMBS:
    family = CURLPROTO_SMB;
    break;

  default:
      family = 0;
      break;
  }

  return family;