Skip to content
  1. Mar 20, 2019
  2. Mar 19, 2019
  3. Mar 18, 2019
  4. Mar 15, 2019
  5. Mar 13, 2019
  6. Mar 11, 2019
  7. Mar 10, 2019
  8. Mar 07, 2019
  9. Mar 06, 2019
    • Matt Caswell's avatar
      Update ChaCha20-Poly1305 documentation · f7a6d112
      Matt Caswell authored
      
      
      Correctly describe the maximum IV length.
      
      Reviewed-by: default avatarPaul Dale <paul.dale@oracle.com>
      Reviewed-by: default avatarRichard Levitte <levitte@openssl.org>
      (Merged from https://github.com/openssl/openssl/pull/8406)
      
      (cherry picked from commit 27d5631236325c3fd8a3bd06af282ac496aac64b)
      f7a6d112
    • Matt Caswell's avatar
      Test an overlong ChaCha20-Poly1305 nonce · 9b10d1bf
      Matt Caswell authored
      
      
      Reviewed-by: default avatarPaul Dale <paul.dale@oracle.com>
      Reviewed-by: default avatarRichard Levitte <levitte@openssl.org>
      (Merged from https://github.com/openssl/openssl/pull/8406)
      
      (cherry picked from commit a4f0b50eafb256bb802f2724fc7f7580fb0fbabc)
      9b10d1bf
    • Matt Caswell's avatar
      Prevent over long nonces in ChaCha20-Poly1305 · f426625b
      Matt Caswell authored
      
      
      ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for
      every encryption operation. RFC 7539 specifies that the nonce value (IV)
      should be 96 bits (12 bytes). OpenSSL allows a variable nonce length and
      front pads the nonce with 0 bytes if it is less than 12 bytes. However it
      also incorrectly allows a nonce to be set of up to 16 bytes. In this case
      only the last 12 bytes are significant and any additional leading bytes are
      ignored.
      
      It is a requirement of using this cipher that nonce values are unique.
      Messages encrypted using a reused nonce value are susceptible to serious
      confidentiality and integrity attacks. If an application changes the
      default nonce length to be longer than 12 bytes and then makes a change to
      the leading bytes of the nonce expecting the new value to be a new unique
      nonce then such an application could inadvertently encrypt messages with a
      reused nonce.
      
      Additionally the ignored bytes in a long nonce are not covered by the
      integrity guarantee of this cipher. Any application that relies on the
      integrity of these ignored leading bytes of a long nonce may be further
      affected.
      
      Any OpenSSL internal use of this cipher, including in SSL/TLS, is safe
      because no such use sets such a long nonce value. However user
      applications that use this cipher directly and set a non-default nonce
      length to be longer than 12 bytes may be vulnerable.
      
      CVE-2019-1543
      
      Fixes #8345
      
      Reviewed-by: default avatarPaul Dale <paul.dale@oracle.com>
      Reviewed-by: default avatarRichard Levitte <levitte@openssl.org>
      (Merged from https://github.com/openssl/openssl/pull/8406)
      
      (cherry picked from commit 2a3d0ee9d59156c48973592331404471aca886d6)
      f426625b
  10. Mar 05, 2019
  11. Mar 04, 2019
  12. Mar 01, 2019
  13. Feb 28, 2019
  14. Feb 27, 2019