Newer
Older
Ralf S. Engelschall
committed
_______________
Changes between 0.9.8g and 0.9.9 [xx XXX xxxx]
*) Netware support:
- fixed wrong usage of ioctlsocket() when build for LIBC BSD sockets
- fixed do_tests.pl to run the test suite with CLIB builds too (CLIB_OPT)
- added some more tests to do_tests.pl
- fixed RunningProcess usage so that it works with newer LIBC NDKs too
- removed usage of BN_LLONG for CLIB builds to avoid runtime dependency
- added new Configure targets netware-clib-bsdsock, netware-clib-gcc,
netware-clib-bsdsock-gcc, netware-libc-bsdsock-gcc
- various changes to netware.pl to enable gcc-cross builds on Win32
platform
- changed crypto/bio/b_sock.c to work with macro functions (CLIB BSD)
- various changes to fix missing prototype warnings
- fixed x86nasm.pl to create correct asm files for NASM COFF output
- added AES, WHIRLPOOL and CPUID assembler code to build files
- added missing AES assembler make rules to mk1mf.pl
- fixed order of includes in apps/ocsp.c so that e_os.h settings apply
[Guenter Knauf <eflash@gmx.net>]
*) Implement remaining functionality needed to support GOST ciphersuites.
Interop testing has been performed using CryptoPro implementations.
[Victor B. Wagner <vitus@cryptocom.ru>]
*) s390x assembler pack.
[Andy Polyakov]
*) ARMv4 assembler pack. ARMv4 refers to v4 and later ISA, not CPU
"family."
[Andy Polyakov]
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
*) Implement Opaque PRF Input TLS extension as specified in
draft-rescorla-tls-opaque-prf-input-00.txt. Since this is not an
official specification yet and no extension type assignment by
IANA exists, this extension (for now) will have to be explicitly
enabled when building OpenSSL by providing the extension number
to use. For example, specify an option
-DTLSEXT_TYPE_opaque_prf_input=0x9527
to the "config" or "Configure" script to enable the extension,
assuming extension number 0x9527 (which is a completely arbitrary
and unofficial assignment based on the MD5 hash of the Internet
Draft). Note that by doing so, you potentially lose
interoperability with other TLS implementations since these might
be using the same extension number for other purposes.
SSL_set_tlsext_opaque_prf_input(ssl, src, len) is used to set the
opaque PRF input value to use in the handshake. This will create
an interal copy of the length-'len' string at 'src', and will
return non-zero for success.
To get more control and flexibility, provide a callback function
by using
SSL_CTX_set_tlsext_opaque_prf_input_callback(ctx, cb)
SSL_CTX_set_tlsext_opaque_prf_input_callback_arg(ctx, arg)
where
int (*cb)(SSL *, void *peerinput, size_t len, void *arg);
void *arg;
Callback function 'cb' will be called in handshakes, and is
expected to use SSL_set_tlsext_opaque_prf_input() as appropriate.
Argument 'arg' is for application purposes (the value as given to
SSL_CTX_set_tlsext_opaque_prf_input_callback_arg() will directly
be provided to the callback function). The callback function
has to return non-zero to report success: usually 1 to use opaque
PRF input just if possible, or 2 to enforce use of the opaque PRF
input. In the latter case, the library will abort the handshake
if opaque PRF input is not successfully negotiated.
Arguments 'peerinput' and 'len' given to the callback function
will always be NULL and 0 in the case of a client. A server will
see the client's opaque PRF input through these variables if
available (NULL and 0 otherwise). Note that if the server
provides an opaque PRF input, the length must be the same as the
length of the client's opaque PRF input.
Note that the callback function will only be called when creating
a new session (session resumption can resume whatever was
previously negotiated), and will not be called in SSL 2.0
handshakes; thus, SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2) or
SSL_set_options(ssl, SSL_OP_NO_SSLv2) is especially recommended
for applications that need to enforce opaque PRF input.
[Bodo Moeller]
*) Update ssl code to support digests other than SHA1+MD5 for handshake
MAC.
[Victor B. Wagner <vitus@cryptocom.ru>]
Dr. Stephen Henson
committed
*) Add RFC4507 support to OpenSSL. This includes the corrections in
RFC4507bis. The encrypted ticket format is an encrypted encoded
SSL_SESSION structure, that way new session features are automatically
supported.
If a client application caches session in an SSL_SESSION structure
support is transparent because tickets are now stored in the encoded
SSL_SESSION.
The SSL_CTX structure automatically generates keys for ticket
protection in servers so again support should be possible
Dr. Stephen Henson
committed
with no application modification.
If a client or server wishes to disable RFC4507 support then the option
SSL_OP_NO_TICKET can be set.
Add a TLS extension debugging callback to allow the contents of any client
or server extensions to be examined.
This work was sponsored by Google.
Dr. Stephen Henson
committed
[Steve Henson]
*) Final changes to avoid use of pointer pointer casts in OpenSSL.
OpenSSL should now compile cleanly on gcc 4.2
[Peter Hartley <pdh@utter.chaos.org.uk>, Steve Henson]
Dr. Stephen Henson
committed
*) Update SSL library to use new EVP_PKEY MAC API. Include generic MAC
support including streaming MAC support: this is required for GOST
ciphersuite support.
[Victor B. Wagner <vitus@cryptocom.ru>, Steve Henson]
Dr. Stephen Henson
committed
*) Add option -stream to use PKCS#7 streaming in smime utility. New
function i2d_PKCS7_bio_stream() and PEM_write_PKCS7_bio_stream()
to output in BER and PEM format.
[Steve Henson]
*) Experimental support for use of HMAC via EVP_PKEY interface. This
allows HMAC to be handled via the EVP_DigestSign*() interface. The
EVP_PKEY "key" in this case is the HMAC key, potentially allowing
Dr. Stephen Henson
committed
ENGINE support for HMAC keys which are unextractable. New -mac and
-macopt options to dgst utility.
*) New option -sigopt to dgst utility. Update dgst to use
EVP_Digest{Sign,Verify}*. These two changes make it possible to use
alternative signing paramaters such as X9.31 or PSS in the dgst
utility.
[Steve Henson]
*) Change ssl_cipher_apply_rule(), the internal function that does
the work each time a ciphersuite string requests enabling
("foo+bar"), moving ("+foo+bar"), disabling ("-foo+bar", or
removing ("!foo+bar") a class of ciphersuites: Now it maintains
the order of disabled ciphersuites such that those ciphersuites
that most recently went from enabled to disabled not only stay
in order with respect to each other, but also have higher priority
than other disabled ciphersuites the next time ciphersuites are
enabled again.
This means that you can now say, e.g., "PSK:-PSK:HIGH" to enable
the same ciphersuites as with "HIGH" alone, but in a specific
order where the PSK ciphersuites come first (since they are the
most recently disabled ciphersuites when "HIGH" is parsed).
Also, change ssl_create_cipher_list() (using this new
funcionality) such that between otherwise identical
cihpersuites, ephemeral ECDH is preferred over ephemeral DH in
the default order.
[Bodo Moeller]
*) Change ssl_create_cipher_list() so that it automatically
arranges the ciphersuites in reasonable order before starting
to process the rule string. Thus, the definition for "DEFAULT"
(SSL_DEFAULT_CIPHER_LIST) now is just "ALL:!aNULL:!eNULL", but
remains equivalent to "AES:ALL:!aNULL:!eNULL:+aECDH:+kRSA:+RC4:@STRENGTH".
This makes it much easier to arrive at a reasonable default order
in applications for which anonymous ciphers are OK (meaning
that you can't actually use DEFAULT).
[Bodo Moeller; suggested by Victor Duchovni]
*) Split the SSL/TLS algorithm mask (as used for ciphersuite string
processing) into multiple integers instead of setting
"SSL_MKEY_MASK" bits, "SSL_AUTH_MASK" bits, "SSL_ENC_MASK",
"SSL_MAC_MASK", and "SSL_SSL_MASK" bits all in a single integer.
(These masks as well as the individual bit definitions are hidden
away into the non-exported interface ssl/ssl_locl.h, so this
change to the definition of the SSL_CIPHER structure shouldn't
affect applications.) This give us more bits for each of these
categories, so there is no longer a need to coagulate AES128 and
AES256 into a single algorithm bit, and to coagulate Camellia128
and Camellia256 into a single algorithm bit, which has led to all
kinds of kludges.
Thus, among other things, the kludge introduced in 0.9.7m and
0.9.8e for masking out AES256 independently of AES128 or masking
out Camellia256 independently of AES256 is not needed here in 0.9.9.
With the change, we also introduce new ciphersuite aliases that
so far were missing: "AES128", "AES256", "CAMELLIA128", and
"CAMELLIA256".
Loading full blame...