Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
is able to supply very large amounts of input data after a previous call to
EVP_EncryptUpdate() with a partial block then a length check can overflow
resulting in a heap corruption. Following an analysis of all OpenSSL
internal usage of the EVP_EncryptUpdate() function all usage is one of two
forms. The first form is where the EVP_EncryptUpdate() call is known to be
the first called function after an EVP_EncryptInit(), and therefore that
specific call must be safe. The second form is where the length passed to
EVP_EncryptUpdate() can be seen from the code to be some small value and
therefore there is no possibility of an overflow. Since all instances are
one of these two forms, it is believed that there can be no overflows in
internal code due to this problem. It should be noted that
EVP_DecryptUpdate() can call EVP_EncryptUpdate() in certain code paths.
Also EVP_CipherUpdate() is a synonym for EVP_EncryptUpdate(). All instances
of these calls have also been analysed too and it is believed there are no
instances in internal usage where an overflow could occur.
This issue was reported by Guido Vranken.
(CVE-2016-2106)
[Matt Caswell]
*) Prevent ASN.1 BIO excessive memory allocation
When ASN.1 data is read from a BIO using functions such as d2i_CMS_bio()
a short invalid encoding can cause allocation of large amounts of memory
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
potentially consuming excessive resources or exhausting memory.
Any application parsing untrusted data through d2i BIO functions is
affected. The memory based functions such as d2i_X509() are *not* affected.
Since the memory based functions are used by the TLS library, TLS
applications are not affected.
This issue was reported by Brian Carpenter.
(CVE-2016-2109)
[Stephen Henson]
*) EBCDIC overread
ASN1 Strings that are over 1024 bytes can cause an overread in applications
using the X509_NAME_oneline() function on EBCDIC systems. This could result
in arbitrary stack data being returned in the buffer.
This issue was reported by Guido Vranken.
(CVE-2016-2176)
[Matt Caswell]
*) Modify behavior of ALPN to invoke callback after SNI/servername
callback, such that updates to the SSL_CTX affect ALPN.
[Todd Short]
*) Remove LOW from the DEFAULT cipher list. This removes singles DES from the
default.
[Kurt Roeckx]
*) Only remove the SSLv2 methods with the no-ssl2-method option. When the
methods are enabled and ssl2 is disabled the methods return NULL.
[Kurt Roeckx]
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
Changes between 1.0.2f and 1.0.2g [1 Mar 2016]
* Disable weak ciphers in SSLv3 and up in default builds of OpenSSL.
Builds that are not configured with "enable-weak-ssl-ciphers" will not
provide any "EXPORT" or "LOW" strength ciphers.
[Viktor Dukhovni]
* Disable SSLv2 default build, default negotiation and weak ciphers. SSLv2
is by default disabled at build-time. Builds that are not configured with
"enable-ssl2" will not support SSLv2. Even if "enable-ssl2" is used,
users who want to negotiate SSLv2 via the version-flexible SSLv23_method()
will need to explicitly call either of:
SSL_CTX_clear_options(ctx, SSL_OP_NO_SSLv2);
or
SSL_clear_options(ssl, SSL_OP_NO_SSLv2);
as appropriate. Even if either of those is used, or the application
explicitly uses the version-specific SSLv2_method() or its client and
server variants, SSLv2 ciphers vulnerable to exhaustive search key
recovery have been removed. Specifically, the SSLv2 40-bit EXPORT
ciphers, and SSLv2 56-bit DES are no longer available.
(CVE-2016-0800)
[Viktor Dukhovni]
*) Fix a double-free in DSA code
A double free bug was discovered when OpenSSL parses malformed DSA private
keys and could lead to a DoS attack or memory corruption for applications
that receive DSA private keys from untrusted sources. This scenario is
considered rare.
This issue was reported to OpenSSL by Adam Langley(Google/BoringSSL) using
libFuzzer.
(CVE-2016-0705)
[Stephen Henson]
*) Disable SRP fake user seed to address a server memory leak.
Add a new method SRP_VBASE_get1_by_user that handles the seed properly.
SRP_VBASE_get_by_user had inconsistent memory management behaviour.
In order to fix an unavoidable memory leak, SRP_VBASE_get_by_user
was changed to ignore the "fake user" SRP seed, even if the seed
is configured.
Users should use SRP_VBASE_get1_by_user instead. Note that in
SRP_VBASE_get1_by_user, caller must free the returned value. Note
also that even though configuring the SRP seed attempts to hide
invalid usernames by continuing the handshake with fake
credentials, this behaviour is not constant time and no strong
guarantees are made that the handshake is indistinguishable from
that of a valid user.
(CVE-2016-0798)
[Emilia Käsper]
*) Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption
In the BN_hex2bn function the number of hex digits is calculated using an
int value |i|. Later |bn_expand| is called with a value of |i * 4|. For
large values of |i| this can result in |bn_expand| not allocating any
memory because |i * 4| is negative. This can leave the internal BIGNUM data
field as NULL leading to a subsequent NULL ptr deref. For very large values
of |i|, the calculation |i * 4| could be a positive value smaller than |i|.
In this case memory is allocated to the internal BIGNUM data field, but it
is insufficiently sized leading to heap corruption. A similar issue exists
in BN_dec2bn. This could have security consequences if BN_hex2bn/BN_dec2bn
is ever called by user applications with very large untrusted hex/dec data.
This is anticipated to be a rare occurrence.
All OpenSSL internal usage of these functions use data that is not expected
to be untrusted, e.g. config file data or application command line
arguments. If user developed applications generate config file data based
on untrusted data then it is possible that this could also lead to security
consequences. This is also anticipated to be rare.
This issue was reported to OpenSSL by Guido Vranken.
(CVE-2016-0797)
[Matt Caswell]
*) Fix memory issues in BIO_*printf functions
The internal |fmtstr| function used in processing a "%s" format string in
the BIO_*printf functions could overflow while calculating the length of a
string and cause an OOB read when printing very long strings.
Additionally the internal |doapr_outch| function can attempt to write to an
OOB memory location (at an offset from the NULL pointer) in the event of a
memory allocation failure. In 1.0.2 and below this could be caused where
the size of a buffer to be allocated is greater than INT_MAX. E.g. this
could be in processing a very long "%s" format string. Memory leaks can
also occur.
The first issue may mask the second issue dependent on compiler behaviour.
These problems could enable attacks where large amounts of untrusted data
is passed to the BIO_*printf functions. If applications use these functions
in this way then they could be vulnerable. OpenSSL itself uses these
functions when printing out human-readable dumps of ASN.1 data. Therefore
applications that print this data could be vulnerable if the data is from
untrusted sources. OpenSSL command line applications could also be
vulnerable where they print out ASN.1 data, or if untrusted data is passed
as command line arguments.
Libssl is not considered directly vulnerable. Additionally certificates etc
received via remote connections via libssl are also unlikely to be able to
trigger these issues because of message size limits enforced within libssl.
This issue was reported to OpenSSL Guido Vranken.
(CVE-2016-0799)
[Matt Caswell]
*) Side channel attack on modular exponentiation
A side-channel attack was found which makes use of cache-bank conflicts on
the Intel Sandy-Bridge microarchitecture which could lead to the recovery
of RSA keys. The ability to exploit this issue is limited as it relies on
an attacker who has control of code in a thread running on the same
hyper-threaded core as the victim thread which is performing decryptions.
This issue was reported to OpenSSL by Yuval Yarom, The University of
Adelaide and NICTA, Daniel Genkin, Technion and Tel Aviv University, and
Nadia Heninger, University of Pennsylvania with more information at
http://cachebleed.info.
(CVE-2016-0702)
[Andy Polyakov]
*) Change the req app to generate a 2048-bit RSA/DSA key by default,
if no keysize is specified with default_bits. This fixes an
omission in an earlier change that changed all RSA/DSA key generation
apps to use 2048 bits by default.
[Emilia Käsper]
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
Changes between 1.0.2e and 1.0.2f [28 Jan 2016]
*) DH small subgroups
Historically OpenSSL only ever generated DH parameters based on "safe"
primes. More recently (in version 1.0.2) support was provided for
generating X9.42 style parameter files such as those required for RFC 5114
support. The primes used in such files may not be "safe". Where an
application is using DH configured with parameters based on primes that are
not "safe" then an attacker could use this fact to find a peer's private
DH exponent. This attack requires that the attacker complete multiple
handshakes in which the peer uses the same private DH exponent. For example
this could be used to discover a TLS server's private DH exponent if it's
reusing the private DH exponent or it's using a static DH ciphersuite.
OpenSSL provides the option SSL_OP_SINGLE_DH_USE for ephemeral DH (DHE) in
TLS. It is not on by default. If the option is not set then the server
reuses the same private DH exponent for the life of the server process and
would be vulnerable to this attack. It is believed that many popular
applications do set this option and would therefore not be at risk.
The fix for this issue adds an additional check where a "q" parameter is
available (as is the case in X9.42 based parameters). This detects the
only known attack, and is the only possible defense for static DH
ciphersuites. This could have some performance impact.
Additionally the SSL_OP_SINGLE_DH_USE option has been switched on by
default and cannot be disabled. This could have some performance impact.
This issue was reported to OpenSSL by Antonio Sanso (Adobe).
(CVE-2016-0701)
[Matt Caswell]
*) SSLv2 doesn't block disabled ciphers
A malicious client can negotiate SSLv2 ciphers that have been disabled on
the server and complete SSLv2 handshakes even if all SSLv2 ciphers have
been disabled, provided that the SSLv2 protocol was not also disabled via
SSL_OP_NO_SSLv2.
This issue was reported to OpenSSL on 26th December 2015 by Nimrod Aviram
and Sebastian Schinzel.
(CVE-2015-3197)
[Viktor Dukhovni]
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
Changes between 1.0.2d and 1.0.2e [3 Dec 2015]
*) BN_mod_exp may produce incorrect results on x86_64
There is a carry propagating bug in the x86_64 Montgomery squaring
procedure. No EC algorithms are affected. Analysis suggests that attacks
against RSA and DSA as a result of this defect would be very difficult to
perform and are not believed likely. Attacks against DH are considered just
feasible (although very difficult) because most of the work necessary to
deduce information about a private key may be performed offline. The amount
of resources required for such an attack would be very significant and
likely only accessible to a limited number of attackers. An attacker would
additionally need online access to an unpatched system using the target
private key in a scenario with persistent DH parameters and a private
key that is shared between multiple clients. For example this can occur by
default in OpenSSL DHE based SSL/TLS ciphersuites.
This issue was reported to OpenSSL by Hanno Böck.
(CVE-2015-3193)
[Andy Polyakov]
*) Certificate verify crash with missing PSS parameter
The signature verification routines will crash with a NULL pointer
dereference if presented with an ASN.1 signature using the RSA PSS
algorithm and absent mask generation function parameter. Since these
routines are used to verify certificate signature algorithms this can be
used to crash any certificate verification operation and exploited in a
DoS attack. Any application which performs certificate verification is
vulnerable including OpenSSL clients and servers which enable client
authentication.
This issue was reported to OpenSSL by Loïc Jonas Etienne (Qnective AG).
(CVE-2015-3194)
[Stephen Henson]
*) X509_ATTRIBUTE memory leak
When presented with a malformed X509_ATTRIBUTE structure OpenSSL will leak
memory. This structure is used by the PKCS#7 and CMS routines so any
application which reads PKCS#7 or CMS data from untrusted sources is
affected. SSL/TLS is not affected.
This issue was reported to OpenSSL by Adam Langley (Google/BoringSSL) using
libFuzzer.
(CVE-2015-3195)
[Stephen Henson]
*) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs.
This changes the decoding behaviour for some invalid messages,
though the change is mostly in the more lenient direction, and
legacy behaviour is preserved as much as possible.
[Emilia Käsper]
*) In DSA_generate_parameters_ex, if the provided seed is too short,
return an error
[Rich Salz and Ismo Puustinen <ismo.puustinen@intel.com>]
Changes between 1.0.2c and 1.0.2d [9 Jul 2015]
*) Alternate chains certificate forgery
During certificate verification, OpenSSL will attempt to find an
alternative certificate chain if the first attempt to build such a chain
fails. An error in the implementation of this logic can mean that an
attacker could cause certain checks on untrusted certificates to be
bypassed, such as the CA flag, enabling them to use a valid leaf
certificate to act as a CA and "issue" an invalid certificate.
This issue was reported to OpenSSL by Adam Langley/David Benjamin
(Google/BoringSSL).
[Matt Caswell]
Changes between 1.0.2b and 1.0.2c [12 Jun 2015]
*) Fix HMAC ABI incompatibility. The previous version introduced an ABI
incompatibility in the handling of HMAC. The previous ABI has now been
restored.
[Matt Caswell]
Changes between 1.0.2a and 1.0.2b [11 Jun 2015]
Emilia Kasper
committed
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
*) Malformed ECParameters causes infinite loop
When processing an ECParameters structure OpenSSL enters an infinite loop
if the curve specified is over a specially malformed binary polynomial
field.
This can be used to perform denial of service against any
system which processes public keys, certificate requests or
certificates. This includes TLS clients and TLS servers with
client authentication enabled.
This issue was reported to OpenSSL by Joseph Barr-Pixton.
(CVE-2015-1788)
[Andy Polyakov]
*) Exploitable out-of-bounds read in X509_cmp_time
X509_cmp_time does not properly check the length of the ASN1_TIME
string and can read a few bytes out of bounds. In addition,
X509_cmp_time accepts an arbitrary number of fractional seconds in the
time string.
An attacker can use this to craft malformed certificates and CRLs of
various sizes and potentially cause a segmentation fault, resulting in
a DoS on applications that verify certificates or CRLs. TLS clients
that verify CRLs are affected. TLS clients and servers with client
authentication enabled may be affected if they use custom verification
callbacks.
This issue was reported to OpenSSL by Robert Swiecki (Google), and
*) PKCS7 crash with missing EnvelopedContent
The PKCS#7 parsing code does not handle missing inner EncryptedContent
correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs
with missing content and trigger a NULL pointer dereference on parsing.
Applications that decrypt PKCS#7 data or otherwise parse PKCS#7
structures from untrusted sources are affected. OpenSSL clients and
servers are not affected.
This issue was reported to OpenSSL by Michal Zalewski (Google).
(CVE-2015-1790)
*) CMS verify infinite loop with unknown hash function
When verifying a signedData message the CMS code can enter an infinite loop
if presented with an unknown hash function OID. This can be used to perform
denial of service against any system which verifies signedData messages using
the CMS code.
This issue was reported to OpenSSL by Johannes Bauer.
(CVE-2015-1792)
[Stephen Henson]
*) Race condition handling NewSessionTicket
If a NewSessionTicket is received by a multi-threaded client when attempting to
reuse a previous ticket then a race condition can occur potentially leading to
a double free of the ticket data.
(CVE-2015-1791)
[Matt Caswell]
Emilia Kasper
committed
*) Only support 256-bit or stronger elliptic curves with the
'ecdh_auto' setting (server) or by default (client). Of supported
curves, prefer P-256 (both).
[Emilia Kasper]
Changes between 1.0.2 and 1.0.2a [19 Mar 2015]
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
*) ClientHello sigalgs DoS fix
If a client connects to an OpenSSL 1.0.2 server and renegotiates with an
invalid signature algorithms extension a NULL pointer dereference will
occur. This can be exploited in a DoS attack against the server.
This issue was was reported to OpenSSL by David Ramos of Stanford
University.
(CVE-2015-0291)
[Stephen Henson and Matt Caswell]
*) Multiblock corrupted pointer fix
OpenSSL 1.0.2 introduced the "multiblock" performance improvement. This
feature only applies on 64 bit x86 architecture platforms that support AES
NI instructions. A defect in the implementation of "multiblock" can cause
OpenSSL's internal write buffer to become incorrectly set to NULL when
using non-blocking IO. Typically, when the user application is using a
socket BIO for writing, this will only result in a failed connection.
However if some other BIO is used then it is likely that a segmentation
fault will be triggered, thus enabling a potential DoS attack.
This issue was reported to OpenSSL by Daniel Danner and Rainer Mueller.
(CVE-2015-0290)
[Matt Caswell]
*) Segmentation fault in DTLSv1_listen fix
The DTLSv1_listen function is intended to be stateless and processes the
initial ClientHello from many peers. It is common for user code to loop
over the call to DTLSv1_listen until a valid ClientHello is received with
an associated cookie. A defect in the implementation of DTLSv1_listen means
that state is preserved in the SSL object from one invocation to the next
that can lead to a segmentation fault. Errors processing the initial
ClientHello can trigger this scenario. An example of such an error could be
that a DTLS1.0 only client is attempting to connect to a DTLS1.2 only
server.
This issue was reported to OpenSSL by Per Allansson.
(CVE-2015-0207)
[Matt Caswell]
*) Segmentation fault in ASN1_TYPE_cmp fix
The function ASN1_TYPE_cmp will crash with an invalid read if an attempt is
made to compare ASN.1 boolean types. Since ASN1_TYPE_cmp is used to check
certificate signature algorithm consistency this can be used to crash any
certificate verification operation and exploited in a DoS attack. Any
application which performs certificate verification is vulnerable including
OpenSSL clients and servers which enable client authentication.
(CVE-2015-0286)
[Stephen Henson]
*) Segmentation fault for invalid PSS parameters fix
The signature verification routines will crash with a NULL pointer
dereference if presented with an ASN.1 signature using the RSA PSS
algorithm and invalid parameters. Since these routines are used to verify
certificate signature algorithms this can be used to crash any
certificate verification operation and exploited in a DoS attack. Any
application which performs certificate verification is vulnerable including
OpenSSL clients and servers which enable client authentication.
This issue was was reported to OpenSSL by Brian Carpenter.
(CVE-2015-0208)
[Stephen Henson]
*) ASN.1 structure reuse memory corruption fix
Reusing a structure in ASN.1 parsing may allow an attacker to cause
memory corruption via an invalid write. Such reuse is and has been
strongly discouraged and is believed to be rare.
Applications that parse structures containing CHOICE or ANY DEFINED BY
components may be affected. Certificate parsing (d2i_X509 and related
functions) are however not affected. OpenSSL clients and servers are
not affected.
(CVE-2015-0287)
[Stephen Henson]
*) PKCS7 NULL pointer dereferences fix
The PKCS#7 parsing code does not handle missing outer ContentInfo
correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with
missing content and trigger a NULL pointer dereference on parsing.
Applications that verify PKCS#7 signatures, decrypt PKCS#7 data or
otherwise parse PKCS#7 structures from untrusted sources are
affected. OpenSSL clients and servers are not affected.
This issue was reported to OpenSSL by Michal Zalewski (Google).
(CVE-2015-0289)
*) DoS via reachable assert in SSLv2 servers fix
A malicious client can trigger an OPENSSL_assert (i.e., an abort) in
servers that both support SSLv2 and enable export cipher suites by sending
a specially crafted SSLv2 CLIENT-MASTER-KEY message.
This issue was discovered by Sean Burford (Google) and Emilia Käsper
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
*) Empty CKE with client auth and DHE fix
If client auth is used then a server can seg fault in the event of a DHE
ciphersuite being selected and a zero length ClientKeyExchange message
being sent by the client. This could be exploited in a DoS attack.
(CVE-2015-1787)
[Matt Caswell]
*) Handshake with unseeded PRNG fix
Under certain conditions an OpenSSL 1.0.2 client can complete a handshake
with an unseeded PRNG. The conditions are:
- The client is on a platform where the PRNG has not been seeded
automatically, and the user has not seeded manually
- A protocol specific client method version has been used (i.e. not
SSL_client_methodv23)
- A ciphersuite is used that does not require additional random data from
the PRNG beyond the initial ClientHello client random (e.g. PSK-RC4-SHA).
If the handshake succeeds then the client random that has been used will
have been generated from a PRNG with insufficient entropy and therefore the
output may be predictable.
For example using the following command with an unseeded openssl will
succeed on an unpatched platform:
openssl s_client -psk 1a2b3c4d -tls1_2 -cipher PSK-RC4-SHA
(CVE-2015-0285)
[Matt Caswell]
*) Use After Free following d2i_ECPrivatekey error fix
A malformed EC private key file consumed via the d2i_ECPrivateKey function
could cause a use after free condition. This, in turn, could cause a double
free in several private key parsing functions (such as d2i_PrivateKey
or EVP_PKCS82PKEY) and could lead to a DoS attack or memory corruption
for applications that receive EC private keys from untrusted
sources. This scenario is considered rare.
This issue was discovered by the BoringSSL project and fixed in their
commit 517073cd4b.
(CVE-2015-0209)
[Matt Caswell]
*) X509_to_X509_REQ NULL pointer deref fix
The function X509_to_X509_REQ will crash with a NULL pointer dereference if
the certificate key is invalid. This function is rarely used in practice.
This issue was discovered by Brian Carpenter.
(CVE-2015-0288)
[Stephen Henson]
*) Removed the export ciphers from the DEFAULT ciphers
[Kurt Roeckx]
Changes between 1.0.1l and 1.0.2 [22 Jan 2015]
*) Facilitate "universal" ARM builds targeting range of ARM ISAs, e.g.
ARMv5 through ARMv8, as opposite to "locking" it to single one.
So far those who have to target multiple platforms would compromise
and argue that binary targeting say ARMv5 would still execute on
ARMv8. "Universal" build resolves this compromise by providing
near-optimal performance even on newer platforms.
[Andy Polyakov]
*) Accelerated NIST P-256 elliptic curve implementation for x86_64
(other platforms pending).
[Shay Gueron & Vlad Krasnov (Intel Corp), Andy Polyakov]
*) Add support for the SignedCertificateTimestampList certificate and
OCSP response extensions from RFC6962.
[Rob Stradling]
*) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.)
for corner cases. (Certain input points at infinity could lead to
bogus results, with non-infinity inputs mapped to infinity too.)
[Bodo Moeller]
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
*) Initial support for PowerISA 2.0.7, first implemented in POWER8.
This covers AES, SHA256/512 and GHASH. "Initial" means that most
common cases are optimized and there still is room for further
improvements. Vector Permutation AES for Altivec is also added.
[Andy Polyakov]
*) Add support for little-endian ppc64 Linux target.
[Marcelo Cerri (IBM)]
*) Initial support for AMRv8 ISA crypto extensions. This covers AES,
SHA1, SHA256 and GHASH. "Initial" means that most common cases
are optimized and there still is room for further improvements.
Both 32- and 64-bit modes are supported.
[Andy Polyakov, Ard Biesheuvel (Linaro)]
*) Improved ARMv7 NEON support.
[Andy Polyakov]
*) Support for SPARC Architecture 2011 crypto extensions, first
implemented in SPARC T4. This covers AES, DES, Camellia, SHA1,
SHA256/512, MD5, GHASH and modular exponentiation.
[Andy Polyakov, David Miller]
*) Accelerated modular exponentiation for Intel processors, a.k.a.
RSAZ.
*) Support for new and upcoming Intel processors, including AVX2,
BMI and SHA ISA extensions. This includes additional "stitched"
implementations, AESNI-SHA256 and GCM, and multi-buffer support
for TLS encrypt.
This work was sponsored by Intel Corp.
[Andy Polyakov]
*) Support for DTLS 1.2. This adds two sets of DTLS methods: DTLS_*_method()
supports both DTLS 1.2 and 1.0 and should use whatever version the peer
supports and DTLSv1_2_*_method() which supports DTLS 1.2 only.
[Steve Henson]
*) Use algorithm specific chains in SSL_CTX_use_certificate_chain_file():
[Steve Henson]
*) Extended RSA OAEP support via EVP_PKEY API. Options to specify digest,
MGF1 digest and OAEP label.
[Steve Henson]
*) Add EVP support for key wrapping algorithms, to avoid problems with
existing code the flag EVP_CIPHER_CTX_WRAP_ALLOW has to be set in
the EVP_CIPHER_CTX or an error is returned. Add AES and DES3 wrap
algorithms and include tests cases.
[Steve Henson]
*) Add functions to allocate and set the fields of an ECDSA_METHOD
structure.
[Douglas E. Engert, Steve Henson]
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
*) New functions OPENSSL_gmtime_diff and ASN1_TIME_diff to find the
difference in days and seconds between two tm or ASN1_TIME structures.
[Steve Henson]
*) Add -rev test option to s_server to just reverse order of characters
received by client and send back to server. Also prints an abbreviated
summary of the connection parameters.
[Steve Henson]
*) New option -brief for s_client and s_server to print out a brief summary
of connection parameters.
[Steve Henson]
*) Add callbacks for arbitrary TLS extensions.
[Trevor Perrin <trevp@trevp.net> and Ben Laurie]
*) New option -crl_download in several openssl utilities to download CRLs
from CRLDP extension in certificates.
[Steve Henson]
*) New options -CRL and -CRLform for s_client and s_server for CRLs.
[Steve Henson]
*) New function X509_CRL_diff to generate a delta CRL from the difference
of two full CRLs. Add support to "crl" utility.
[Steve Henson]
*) New functions to set lookup_crls function and to retrieve
X509_STORE from X509_STORE_CTX.
[Steve Henson]
*) Print out deprecated issuer and subject unique ID fields in
certificates.
[Steve Henson]
*) Extend OCSP I/O functions so they can be used for simple general purpose
HTTP as well as OCSP. New wrapper function which can be used to download
CRLs using the OCSP API.
[Steve Henson]
*) Delegate command line handling in s_client/s_server to SSL_CONF APIs.
[Steve Henson]
*) SSL_CONF* functions. These provide a common framework for application
configuration using configuration files or command lines.
[Steve Henson]
*) SSL/TLS tracing code. This parses out SSL/TLS records using the
message callback and prints the results. Needs compile time option
"enable-ssl-trace". New options to s_client and s_server to enable
tracing.
[Steve Henson]
*) New ctrl and macro to retrieve supported points extensions.
Print out extension in s_server and s_client.
[Steve Henson]
*) New functions to retrieve certificate signature and signature
OID NID.
[Steve Henson]
*) Add functions to retrieve and manipulate the raw cipherlist sent by a
client to OpenSSL.
[Steve Henson]
*) New Suite B modes for TLS code. These use and enforce the requirements
of RFC6460: restrict ciphersuites, only permit Suite B algorithms and
only use Suite B curves. The Suite B modes can be set by using the
strings "SUITEB128", "SUITEB192" or "SUITEB128ONLY" for the cipherstring.
[Steve Henson]
*) New chain verification flags for Suite B levels of security. Check
algorithms are acceptable when flags are set in X509_verify_cert.
[Steve Henson]
*) Make tls1_check_chain return a set of flags indicating checks passed
by a certificate chain. Add additional tests to handle client
certificates: checks for matching certificate type and issuer name
comparison.
[Steve Henson]
*) If an attempt is made to use a signature algorithm not in the peer
preference list abort the handshake. If client has no suitable
signature algorithms in response to a certificate request do not
use the certificate.
[Steve Henson]
*) If server EC tmp key is not in client preference list abort handshake.
[Steve Henson]
*) Add support for certificate stores in CERT structure. This makes it
possible to have different stores per SSL structure or one store in
the parent SSL_CTX. Include distinct stores for certificate chain
verification and chain building. New ctrl SSL_CTRL_BUILD_CERT_CHAIN
to build and store a certificate chain in CERT structure: returning
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
an error if the chain cannot be built: this will allow applications
to test if a chain is correctly configured.
Note: if the CERT based stores are not set then the parent SSL_CTX
store is used to retain compatibility with existing behaviour.
[Steve Henson]
*) New function ssl_set_client_disabled to set a ciphersuite disabled
mask based on the current session, check mask when sending client
hello and checking the requested ciphersuite.
[Steve Henson]
*) New ctrls to retrieve and set certificate types in a certificate
request message. Print out received values in s_client. If certificate
types is not set with custom values set sensible values based on
supported signature algorithms.
[Steve Henson]
*) Support for distinct client and server supported signature algorithms.
[Steve Henson]
*) Add certificate callback. If set this is called whenever a certificate
is required by client or server. An application can decide which
certificate chain to present based on arbitrary criteria: for example
supported signature algorithms. Add very simple example to s_server.
This fixes many of the problems and restrictions of the existing client
certificate callback: for example you can now clear an existing
certificate and specify the whole chain.
[Steve Henson]
*) Add new "valid_flags" field to CERT_PKEY structure which determines what
the certificate can be used for (if anything). Set valid_flags field
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
in new tls1_check_chain function. Simplify ssl_set_cert_masks which used
to have similar checks in it.
Add new "cert_flags" field to CERT structure and include a "strict mode".
This enforces some TLS certificate requirements (such as only permitting
certificate signature algorithms contained in the supported algorithms
extension) which some implementations ignore: this option should be used
with caution as it could cause interoperability issues.
[Steve Henson]
*) Update and tidy signature algorithm extension processing. Work out
shared signature algorithms based on preferences and peer algorithms
and print them out in s_client and s_server. Abort handshake if no
shared signature algorithms.
[Steve Henson]
*) Add new functions to allow customised supported signature algorithms
for SSL and SSL_CTX structures. Add options to s_client and s_server
to support them.
[Steve Henson]
*) New function SSL_certs_clear() to delete all references to certificates
from an SSL structure. Before this once a certificate had been added
it couldn't be removed.
[Steve Henson]
*) Integrate hostname, email address and IP address checking with certificate
verification. New verify options supporting checking in openssl utility.
[Steve Henson]
*) Fixes and wildcard matching support to hostname and email checking
functions. Add manual page.
[Florian Weimer (Red Hat Product Security Team)]
*) New functions to check a hostname email or IP address against a
certificate. Add options x509 utility to print results of checks against
a certificate.
[Steve Henson]
*) Fix OCSP checking.
[Rob Stradling <rob.stradling@comodo.com> and Ben Laurie]
*) Initial experimental support for explicitly trusted non-root CAs.
OpenSSL still tries to build a complete chain to a root but if an
intermediate CA has a trust setting included that is used. The first
setting is used: whether to trust (e.g., -addtrust option to the x509
utility) or reject.
[Steve Henson]
*) Add -trusted_first option which attempts to find certificates in the
trusted store even if an untrusted chain is also supplied.
[Steve Henson]
*) MIPS assembly pack updates: support for MIPS32r2 and SmartMIPS ASE,
platform support for Linux and Android.
[Andy Polyakov]
*) Support for linux-x32, ILP32 environment in x86_64 framework.
[Andy Polyakov]
*) Experimental multi-implementation support for FIPS capable OpenSSL.
When in FIPS mode the approved implementations are used as normal,
when not in FIPS mode the internal unapproved versions are used instead.
This means that the FIPS capable OpenSSL isn't forced to use the
(often lower performance) FIPS implementations outside FIPS mode.
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
[Steve Henson]
*) Transparently support X9.42 DH parameters when calling
PEM_read_bio_DHparameters. This means existing applications can handle
the new parameter format automatically.
[Steve Henson]
*) Initial experimental support for X9.42 DH parameter format: mainly
to support use of 'q' parameter for RFC5114 parameters.
[Steve Henson]
*) Add DH parameters from RFC5114 including test data to dhtest.
[Steve Henson]
*) Support for automatic EC temporary key parameter selection. If enabled
the most preferred EC parameters are automatically used instead of
hardcoded fixed parameters. Now a server just has to call:
SSL_CTX_set_ecdh_auto(ctx, 1) and the server will automatically
support ECDH and use the most appropriate parameters.
[Steve Henson]
*) Enhance and tidy EC curve and point format TLS extension code. Use
static structures instead of allocation if default values are used.
New ctrls to set curves we wish to support and to retrieve shared curves.
Print out shared curves in s_server. New options to s_server and s_client
to set list of supported curves.
[Steve Henson]
*) New ctrls to retrieve supported signature algorithms and
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
supported curve values as an array of NIDs. Extend openssl utility
to print out received values.
[Steve Henson]
*) Add new APIs EC_curve_nist2nid and EC_curve_nid2nist which convert
between NIDs and the more common NIST names such as "P-256". Enhance
ecparam utility and ECC method to recognise the NIST names for curves.
[Steve Henson]
*) Enhance SSL/TLS certificate chain handling to support different
chains for each certificate instead of one chain in the parent SSL_CTX.
[Steve Henson]
*) Support for fixed DH ciphersuite client authentication: where both
server and client use DH certificates with common parameters.
[Steve Henson]
*) Support for fixed DH ciphersuites: those requiring DH server
certificates.
[Steve Henson]
*) New function i2d_re_X509_tbs for re-encoding the TBS portion of
the certificate.
Note: Related 1.0.2-beta specific macros X509_get_cert_info,
X509_CINF_set_modified, X509_CINF_get_issuer, X509_CINF_get_extensions and
X509_CINF_get_signature were reverted post internal team review.
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
Changes between 1.0.1k and 1.0.1l [15 Jan 2015]
*) Build fixes for the Windows and OpenVMS platforms
[Matt Caswell and Richard Levitte]
Changes between 1.0.1j and 1.0.1k [8 Jan 2015]
*) Fix DTLS segmentation fault in dtls1_get_record. A carefully crafted DTLS
message can cause a segmentation fault in OpenSSL due to a NULL pointer
dereference. This could lead to a Denial Of Service attack. Thanks to
Markus Stenberg of Cisco Systems, Inc. for reporting this issue.
(CVE-2014-3571)
[Steve Henson]
*) Fix DTLS memory leak in dtls1_buffer_record. A memory leak can occur in the
dtls1_buffer_record function under certain conditions. In particular this
could occur if an attacker sent repeated DTLS records with the same
sequence number but for the next epoch. The memory leak could be exploited
by an attacker in a Denial of Service attack through memory exhaustion.
Thanks to Chris Mueller for reporting this issue.
(CVE-2015-0206)
[Matt Caswell]
*) Fix issue where no-ssl3 configuration sets method to NULL. When openssl is
built with the no-ssl3 option and a SSL v3 ClientHello is received the ssl
method would be set to NULL which could later result in a NULL pointer
dereference. Thanks to Frank Schmirler for reporting this issue.
(CVE-2014-3569)
[Kurt Roeckx]
*) Abort handshake if server key exchange message is omitted for ephemeral
ECDH ciphersuites.
Thanks to Karthikeyan Bhargavan of the PROSECCO team at INRIA for
reporting this issue.
*) Remove non-export ephemeral RSA code on client and server. This code
violated the TLS standard by allowing the use of temporary RSA keys in
non-export ciphersuites and could be used by a server to effectively
downgrade the RSA key length used to a value smaller than the server
certificate. Thanks for Karthikeyan Bhargavan of the PROSECCO team at
INRIA or reporting this issue.
(CVE-2015-0204)
[Steve Henson]
*) Fixed issue where DH client certificates are accepted without verification.
An OpenSSL server will accept a DH certificate for client authentication
without the certificate verify message. This effectively allows a client to
authenticate without the use of a private key. This only affects servers
which trust a client certificate authority which issues certificates
containing DH keys: these are extremely rare and hardly ever encountered.
Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting
this issue.
(CVE-2015-0205)
[Steve Henson]
*) Ensure that the session ID context of an SSL is updated when its
SSL_CTX is updated via SSL_set_SSL_CTX.
The session ID context is typically set from the parent SSL_CTX,
and can vary with the CTX.
[Adam Langley]
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
*) Fix various certificate fingerprint issues.
By using non-DER or invalid encodings outside the signed portion of a
certificate the fingerprint can be changed without breaking the signature.
Although no details of the signed portion of the certificate can be changed
this can cause problems with some applications: e.g. those using the
certificate fingerprint for blacklists.
1. Reject signatures with non zero unused bits.
If the BIT STRING containing the signature has non zero unused bits reject
the signature. All current signature algorithms require zero unused bits.
2. Check certificate algorithm consistency.
Check the AlgorithmIdentifier inside TBS matches the one in the
certificate signature. NB: this will result in signature failure
errors for some broken certificates.
Thanks to Konrad Kraszewski from Google for reporting this issue.
3. Check DSA/ECDSA signatures use DER.
Re-encode DSA/ECDSA signatures and compare with the original received
signature. Return an error if there is a mismatch.
This will reject various cases including garbage after signature
(thanks to Antti Karjalainen and Tuomo Untinen from the Codenomicon CROSS
program for discovering this case) and use of BER or invalid ASN.1 INTEGERs
(negative or with leading zeroes).
Further analysis was conducted and fixes were developed by Stephen Henson
of the OpenSSL core team.
(CVE-2014-8275)
[Steve Henson]
*) Correct Bignum squaring. Bignum squaring (BN_sqr) may produce incorrect
results on some platforms, including x86_64. This bug occurs at random
with a very low probability, and is not known to be exploitable in any
way, though its exact impact is difficult to determine. Thanks to Pieter
Wuille (Blockstream) who reported this issue and also suggested an initial
fix. Further analysis was conducted by the OpenSSL development team and
Adam Langley of Google. The final fix was developed by Andy Polyakov of
the OpenSSL core team.
(CVE-2014-3570)
[Andy Polyakov]
*) Do not resume sessions on the server if the negotiated protocol
version does not match the session's version. Resuming with a different
version, while not strictly forbidden by the RFC, is of questionable
sanity and breaks all known clients.
*) Tighten handling of the ChangeCipherSpec (CCS) message: reject
early CCS messages during renegotiation. (Note that because