Newer
Older
/* crypto/bn/bn_mul.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#ifndef BN_DEBUG
# undef NDEBUG /* avoid conflicting definitions */
# define NDEBUG
#endif
#include <assert.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
/* Here follows specialised variants of bn_add_words() and
bn_sub_words(). They have the property performing operations on
arrays of different sizes. The sizes of those arrays is expressed through
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
which is the delta between the two lengths, calculated as len(a)-len(b).
All lengths are the number of BN_ULONGs... For the operations that require
a result array as parameter, it must have the length cl+abs(dl).
These functions should probably end up in bn_asm.c as soon as there are
assembler counterparts for the systems that use assembler files. */
BN_ULONG bn_sub_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, t;
assert(cl >= 0);
c = bn_sub_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
for (;;)
{
t = b[0];
r[0] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[1];
r[1] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[2];
r[2] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[3];
r[3] = (0-t-c)&BN_MASK2;
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
if (t != 0) c=1;
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
#endif
while(c)
{
t = a[0];
r[0] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[1];
r[1] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[2];
r[2] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[3];
r[3] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
save_dl = dl;
a += 4;
r += 4;
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
BN_ULONG bn_add_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, l, t;
assert(cl >= 0);
c = bn_add_words(r, a, b, cl);
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
while (c)
{
l=(c+b[0])&BN_MASK2;
c=(l < c);
r[0]=l;
if (++dl >= 0) break;
l=(c+b[1])&BN_MASK2;
c=(l < c);
r[1]=l;
if (++dl >= 0) break;
l=(c+b[2])&BN_MASK2;
c=(l < c);
r[2]=l;
if (++dl >= 0) break;
l=(c+b[3])&BN_MASK2;
c=(l < c);
r[3]=l;
if (++dl >= 0) break;
save_dl = dl;
b+=4;
r+=4;
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
#endif
if (save_dl < dl)
{
switch (dl - save_dl)
{
case 1:
r[1] = b[1];
if (++dl >= 0) break;
case 2:
r[2] = b[2];
if (++dl >= 0) break;
case 3:
r[3] = b[3];
if (++dl >= 0) break;
}
b += 4;
r += 4;
}
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = b[0];
if (++dl >= 0) break;
r[1] = b[1];
if (++dl >= 0) break;
r[2] = b[2];
if (++dl >= 0) break;
r[3] = b[3];
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
#endif
while (c)
{
t=(a[0]+c)&BN_MASK2;
c=(t < c);
r[0]=t;
if (--dl <= 0) break;
t=(a[1]+c)&BN_MASK2;
c=(t < c);
r[1]=t;
if (--dl <= 0) break;
t=(a[2]+c)&BN_MASK2;
c=(t < c);
r[2]=t;
if (--dl <= 0) break;
t=(a[3]+c)&BN_MASK2;
c=(t < c);
r[3]=t;
if (--dl <= 0) break;
save_dl = dl;
a+=4;
r+=4;
}
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (dl > 0)
{
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
#ifdef BN_RECURSION
/* Karatsuba recursive multiplication algorithm
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
/* r is 2*n2 words in size,
* a and b are both n2 words in size.
* n2 must be a power of 2.
* We multiply and return the result.
* t must be 2*n2 words in size
* a[0]*b[0]
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
* a[1]*b[1]
*/
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t)
int n=n2/2,c1,c2;
int tna=n+dna, tnb=n+dnb;
unsigned int neg,zero;
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
# endif
# ifdef BN_MUL_COMBA
# if 0
if (n2 == 4)
bn_mul_comba4(r,a,b);
return;
}
# endif
/* Only call bn_mul_comba 8 if n2 == 8 and the
* two arrays are complete [steve]
*/
if (n2 == 8 && dna == 0 && dnb == 0)
{
bn_mul_comba8(r,a,b);
return;
}
# endif /* BN_MUL_COMBA */
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
{
bn_mul_normal(r,a,n2+dna,b,n2+dnb);
if ((dna + dnb) < 0)
memset(&r[2*n2 + dna + dnb], 0,
sizeof(BN_ULONG) * -(dna + dnb));
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
break;
case -3:
zero=1;
break;
case -2:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
neg=1;
break;
case -1:
case 0:
case 1:
zero=1;
break;
case 2:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
neg=1;
break;
case 3:
zero=1;
break;
case 4:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
# ifdef BN_MUL_COMBA
if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
extra args to do this well */
{
if (!zero)
bn_mul_comba4(&(t[n2]),t,&(t[n]));
else
memset(&(t[n2]),0,8*sizeof(BN_ULONG));
bn_mul_comba4(r,a,b);
bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
}
else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
take extra args to do this
well */
{
if (!zero)
bn_mul_comba8(&(t[n2]),t,&(t[n]));
else
memset(&(t[n2]),0,16*sizeof(BN_ULONG));
bn_mul_comba8(r,a,b);
bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
}
else
# endif /* BN_MUL_COMBA */
{
p= &(t[n2*2]);
if (!zero)
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
else
memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
bn_mul_recursive(r,a,b,n,0,0,p);
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
Ralf S. Engelschall
committed
c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
if (neg) /* if t[32] is negative */
Ralf S. Engelschall
committed
c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
}
else
{
/* Might have a carry */
Ralf S. Engelschall
committed
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
* c1 holds the carry bits
*/
Ralf S. Engelschall
committed
c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
if (c1)
{
p= &(r[n+n2]);
lo= *p;
ln=(lo+c1)&BN_MASK2;
*p=ln;
/* The overflow will stop before we over write
* words we should not overwrite */
if (ln < (BN_ULONG)c1)
{
do {
p++;
lo= *p;
ln=(lo+1)&BN_MASK2;
*p=ln;
} while (ln == 0);
}
}
}
/* n+tn is the word length
* t needs to be n*4 is size, as does r */
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
int tna, int tnb, BN_ULONG *t)
int i,j,n2=n*2;
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
n, tna, n, tnb);
# endif
if (n < 8)
{
bn_mul_normal(r,a,n+tna,b,n+tnb);
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
neg=1;
break;
case -1:
case 0:
case 1:
zero=1;
/* break; */
case 2:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
neg=1;
break;
case 3:
zero=1;
/* break; */
case 4:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
break;
}
/* The zero case isn't yet implemented here. The speedup
would probably be negligible. */
# if 0
if (n == 4)
{
bn_mul_comba4(&(t[n2]),t,&(t[n]));
bn_mul_comba4(r,a,b);
bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
}
else
# endif
if (n == 8)
bn_mul_comba8(&(t[n2]),t,&(t[n]));
bn_mul_comba8(r,a,b);
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
p= &(t[n2*2]);
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
bn_mul_recursive(r,a,b,n,0,0,p);
i=n/2;
/* If there is only a bottom half to the number,
* just do it */
if (tna > tnb)
j = tna - i;
else
j = tnb - i;
if (j == 0)
{
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
}
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
{
bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
memset(&(r[n2+tna+tnb]),0,
sizeof(BN_ULONG)*(n2-tna-tnb));
}
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
{
memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
}
else
{
for (;;)
{
i/=2;
/* these simplified conditions work
* exclusively because difference
* between tna and tnb is 1 or 0 */
if (i < tna || i < tnb)
bn_mul_part_recursive(&(r[n2]),
&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
break;
}
else if (i == tna || i == tnb)
bn_mul_recursive(&(r[n2]),
&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
break;
}
}
}
}
}
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
Ralf S. Engelschall
committed
c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
if (neg) /* if t[32] is negative */
{
c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
}
else
{
/* Might have a carry */
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
}
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
* c1 holds the carry bits
*/
Ralf S. Engelschall
committed
c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
if (c1)
{
p= &(r[n+n2]);
lo= *p;
ln=(lo+c1)&BN_MASK2;
*p=ln;
/* The overflow will stop before we over write
* words we should not overwrite */
if (ln < (BN_ULONG)c1)
{
do {
p++;
lo= *p;
ln=(lo+1)&BN_MASK2;
*p=ln;
} while (ln == 0);
}
/* a and b must be the same size, which is n2.
* r needs to be n2 words and t needs to be n2*2
*/
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
BN_ULONG *t)
int n=n2/2;
# ifdef BN_COUNT
fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
# endif
bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
{
bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
}
else
{
bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
}
/* a and b must be the same size, which is n2.
* r needs to be n2 words and t needs to be n2*2
* l is the low words of the output.
* t needs to be n2*3
*/
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
BN_ULONG *t)
int i,n;
int c1,c2;
int neg,oneg,zero;
BN_ULONG ll,lc,*lp,*mp;
# ifdef BN_COUNT
fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
# endif
n=n2/2;
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/* Calculate (al-ah)*(bh-bl) */
neg=zero=0;
c1=bn_cmp_words(&(a[0]),&(a[n]),n);
c2=bn_cmp_words(&(b[n]),&(b[0]),n);
switch (c1*3+c2)
{
case -4:
bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
break;
case -3:
zero=1;
break;
case -2:
bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
neg=1;
break;
case -1:
case 0:
case 1:
zero=1;
break;
case 2:
bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
neg=1;
break;
case 3:
zero=1;
break;
case 4:
bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
break;
}
oneg=neg;
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
/* r[10] = (a[1]*b[1]) */
# ifdef BN_MUL_COMBA
if (n == 8)
{
bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
bn_mul_comba8(r,&(a[n]),&(b[n]));
}
else
# endif
bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
/* s0 == low(al*bl)
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
* We know s0 and s1 so the only unknown is high(al*bl)
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
* high(al*bl) == s1 - (r[0]+l[0]+t[0])
*/
if (l != NULL)
lp= &(t[n2+n]);
Ralf S. Engelschall
committed
c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
}
else
{
c1=0;
lp= &(r[0]);
}
if (neg)
Ralf S. Engelschall
committed
neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
else
{
bn_add_words(&(t[n2]),lp,&(t[0]),n);
neg=0;
}
if (l != NULL)
{
bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
}
else
{
lp= &(t[n2+n]);
mp= &(t[n2]);
for (i=0; i<n; i++)
lp[i]=((~mp[i])+1)&BN_MASK2;
}
/* s[0] = low(al*bl)
* t[3] = high(al*bl)
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
* r[10] = (a[1]*b[1])
*/
/* R[10] = al*bl
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
* R[32] = ah*bh
*/
/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
* R[3]=r[1]+(carry/borrow)
*/
if (l != NULL)
{
lp= &(t[n2]);
Ralf S. Engelschall
committed
c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
}
else
{
lp= &(t[n2+n]);
c1=0;
}
Ralf S. Engelschall
committed
c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
if (oneg)
Ralf S. Engelschall
committed
c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
Ralf S. Engelschall
committed
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
Ralf S. Engelschall
committed
c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
if (oneg)
Ralf S. Engelschall
committed
c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
Ralf S. Engelschall
committed
c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
{
i=0;
if (c1 > 0)
{
lc=c1;
do {
ll=(r[i]+lc)&BN_MASK2;
r[i++]=ll;
lc=(lc > ll);
} while (lc);
}
else
{
lc= -c1;
do {
ll=r[i];
r[i++]=(ll-lc)&BN_MASK2;
lc=(lc > ll);
} while (lc);
}
}
if (c2 != 0) /* Add starting at r[1] */
{
i=n;
if (c2 > 0)
{
lc=c2;
do {
ll=(r[i]+lc)&BN_MASK2;
r[i++]=ll;
lc=(lc > ll);
} while (lc);
}
else
{
lc= -c2;
do {
ll=r[i];
r[i++]=(ll-lc)&BN_MASK2;
lc=(lc > ll);
} while (lc);
}
#endif /* BN_RECURSION */
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
int ret=0;
int top,al,bl;
BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
int i;
#endif
#ifdef BN_RECURSION
BIGNUM *t=NULL;
#endif
#ifdef BN_COUNT
fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
#endif
bn_check_top(a);
bn_check_top(b);
bn_check_top(r);
al=a->top;
bl=b->top;
if ((al == 0) || (bl == 0))
BN_zero(r);
return(1);
top=al+bl;
BN_CTX_start(ctx);
if ((r == a) || (r == b))
{
if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
}
rr->neg=a->neg^b->neg;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
i = al-bl;
#endif
#ifdef BN_MUL_COMBA
if (i == 0)
# if 0
if (al == 4)
if (bn_wexpand(rr,8) == NULL) goto err;
rr->top=8;
bn_mul_comba4(rr->d,a->d,b->d);
goto end;
}