Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
->`perform_getsock`
Functions that return socket information. Which socket(s) to wait for which
action(s) during the particular multi state.
->disconnect is called immediately before the TCP connection is shutdown.
->readwrite gets called during transfer to allow the protocol to do extra
reads/writes
->defport is the default report TCP or UDP port this protocol uses
->protocol is one or more bits in the `CURLPROTO_*` set. The SSL versions
have their "base" protocol set and then the SSL variation. Like
"HTTP|HTTPS".
->flags is a bitmask with additional information about the protocol that will
make it get treated differently by the generic engine:
- `PROTOPT_SSL` - will make it connect and negotiate SSL
- `PROTOPT_DUAL` - this protocol uses two connections
- `PROTOPT_CLOSEACTION` - this protocol has actions to do before closing the
connection. This flag is no longer used by code, yet still set for a bunch
- `PROTOPT_DIRLOCK` - "direction lock". The SSH protocols set this bit to
limit which "direction" of socket actions that the main engine will
- `PROTOPT_NONETWORK` - a protocol that doesn't use network (read file:)
- `PROTOPT_NEEDSPWD` - this protocol needs a password and will use a default
one unless one is provided
- `PROTOPT_NOURLQUERY` - this protocol can't handle a query part on the URL
(?foo=bar)
## conncache
Is a hash table with connections for later re-use. Each `Curl_easy` has a
pointer to its connection cache. Each multi handle sets up a connection
cache that all added `Curl_easy`s share by default.
The libcurl share API allocates a `Curl_share` struct, exposed to the
external API as "CURLSH *".
The idea is that the struct can have a set of its own versions of caches and
pools and then by providing this struct in the `CURLOPT_SHARE` option, those
specific `Curl_easy`s will use the caches/pools that this share handle
Then individual `Curl_easy` structs can be made to share specific things
that they otherwise wouldn't, such as cookies.
The `Curl_share` struct can currently hold cookies, DNS cache and the SSL
session cache.
## CookieInfo
This is the main cookie struct. It holds all known cookies and related
information. Each `Curl_easy` has its own private CookieInfo even when
they are added to a multi handle. They can be made to share cookies by using
the share API.
[1]: https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
[2]: https://curl.haxx.se/libcurl/c/curl_easy_init.html
[3]: https://c-ares.haxx.se/
[4]: https://tools.ietf.org/html/rfc7230 "RFC 7230"
[5]: https://curl.haxx.se/libcurl/c/CURLOPT_ACCEPT_ENCODING.html
[6]: https://curl.haxx.se/docs/manpage.html#--compressed
[7]: https://curl.haxx.se/libcurl/c/curl_multi_socket_action.html
[8]: https://curl.haxx.se/libcurl/c/curl_multi_timeout.html
[9]: https://curl.haxx.se/libcurl/c/curl_multi_setopt.html
[10]: https://curl.haxx.se/libcurl/c/CURLMOPT_TIMERFUNCTION.html
[11]: https://curl.haxx.se/libcurl/c/curl_multi_perform.html
[12]: https://curl.haxx.se/libcurl/c/curl_multi_fdset.html
[13]: https://curl.haxx.se/libcurl/c/curl_multi_add_handle.html
[14]: https://curl.haxx.se/libcurl/c/curl_multi_info_read.html
[15]: https://tools.ietf.org/html/rfc7231#section-3.1.2.2