Newer
Older
/*****************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
Daniel Stenberg
committed
* Copyright (C) 2001, Daniel Stenberg, <daniel@haxx.se>, et al.
* In order to be useful for every potential user, curl and libcurl are
* dual-licensed under the MPL and the MIT/X-derivate licenses.
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the MPL or the MIT/X-derivate
* licenses. You may pick one of these licenses.
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
* $Id$
*****************************************************************************/
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/* -- WIN32 approved -- */
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include "strequal.h"
#if defined(WIN32) && !defined(__GNUC__) || defined(__MINGW32__)
#include <winsock.h>
#include <time.h>
#include <io.h>
#else
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/resource.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <netdb.h>
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_NET_IF_H
#include <net/if.h>
#endif
#include <sys/ioctl.h>
#include <signal.h>
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifndef HAVE_SELECT
#error "We can't compile without select() support!"
#endif
#ifndef HAVE_SOCKET
#error "We can't compile without socket() support!"
#endif
#endif
#include "urldata.h"
#include <curl/curl.h>
#include <curl/types.h>
#include "netrc.h"
#include "hostip.h"
#include "transfer.h"
#include "sendf.h"
#include "speedcheck.h"
#include "getpass.h"
#include "progress.h"
#include "getdate.h"
#include "url.h"
#include "getinfo.h"
#include "ssluse.h"
#define _MPRINTF_REPLACE /* use our functions only */
#include <curl/mprintf.h>
/* The last #include file should be: */
#ifdef MALLOCDEBUG
#include "memdebug.h"
#endif
Daniel Stenberg
committed
#ifndef min
#define min(a, b) ((a) < (b) ? (a) : (b))
#endif
/*
* compareheader()
*
* Returns TRUE if 'headerline' contains the 'header' with given 'content'.
* Pass headers WITH the colon.
*/
static bool
compareheader(char *headerline, /* line to check */
const char *header, /* header keyword _with_ colon */
const char *content) /* content string to find */
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
{
/* RFC2616, section 4.2 says: "Each header field consists of a name followed
* by a colon (":") and the field value. Field names are case-insensitive.
* The field value MAY be preceded by any amount of LWS, though a single SP
* is preferred." */
size_t hlen = strlen(header);
size_t clen;
size_t len;
char *start;
char *end;
if(!strnequal(headerline, header, hlen))
return FALSE; /* doesn't start with header */
/* pass the header */
start = &headerline[hlen];
/* pass all white spaces */
while(*start && isspace((int)*start))
start++;
/* find the end of the header line */
end = strchr(start, '\r'); /* lines end with CRLF */
if(!end) {
/* in case there's a non-standard compliant line here */
end = strchr(start, '\n');
if(!end)
/* hm, there's no line ending here, return false and bail out! */
return FALSE;
}
len = end-start; /* length of the content part of the input line */
clen = strlen(content); /* length of the word to find */
/* find the content string in the rest of the line */
for(;len>=clen;len--, start++) {
if(strnequal(start, content, clen))
return TRUE; /* match! */
}
return FALSE; /* no match */
}
/*
* Transfer()
*
* This function is what performs the actual transfer. It is capable of
* doing both ways simultaneously.
* The transfer must already have been setup by a call to Curl_Transfer().
*
* Note that headers are created in a preallocated buffer of a default size.
* That buffer can be enlarged on demand, but it is never shrinken again.
*
* Parts of this function was once written by the friendly Mark Butler
* <butlerm@xmission.com>.
*/
ssize_t nread; /* number of bytes read */
int bytecount = 0; /* total number of bytes read */
int writebytecount = 0; /* number of bytes written */
long contentlength=0; /* size of incoming data */
struct timeval start = Curl_tvnow();
struct timeval now = start; /* current time */
bool header = TRUE; /* incoming data has HTTP header */
int headerline = 0; /* counts header lines to better track the
first one */
char *hbufp; /* points at *end* of header line */
int hbuflen = 0;
char *str; /* within buf */
char *str_start; /* within buf */
char *end_ptr; /* within buf */
char *p; /* within headerbuff */
bool content_range = FALSE; /* set TRUE if Content-Range: was found */
int offset = 0; /* possible resume offset read from the
Content-Range: header */
int httpcode = 0; /* error code from the 'HTTP/1.? XXX' line */
Daniel Stenberg
committed
int httpversion = -1; /* the HTTP version*10 */
bool write_after_100_header = FALSE; /* should we enable the write after
we received a 100-continue/timeout
or directly */
/* for the low speed checks: */
CURLcode urg;
time_t timeofdoc=0;
long bodywrites=0;
/* the highest fd we use + 1 */
Daniel Stenberg
committed
struct SessionHandle *data;
struct connectdata *conn = (struct connectdata *)c_conn;
char *buf;
int maxfd;
data = conn->data; /* there's the root struct */
Daniel Stenberg
committed
buf = data->state.buffer;
maxfd = (conn->sockfd>conn->writesockfd?conn->sockfd:conn->writesockfd)+1;
Daniel Stenberg
committed
hbufp = data->state.headerbuff;
now = Curl_tvnow();
start = now;
#define KEEP_READ 1
#define KEEP_WRITE 2
Curl_pgrsTime(data, TIMER_PRETRANSFER);
Curl_speedinit(data);
if((conn->sockfd == -1) &&
(conn->writesockfd == -1)) {
/* nothing to read, nothing to write, we're already OK! */
return CURLE_OK;
}
if (!conn->getheader) {
header = FALSE;
if(conn->size > 0)
Curl_pgrsSetDownloadSize(data, conn->size);
/* we want header and/or body, if neither then don't do this! */
if(conn->getheader ||
Daniel Stenberg
committed
!data->set.no_body) {
fd_set readfd;
fd_set writefd;
fd_set rkeepfd;
fd_set wkeepfd;
struct timeval interval;
int keepon=0;
/* timeout every X second
- makes a better progress meter (i.e even when no data is read, the
meter can be updated and reflect reality)
- allows removal of the alarm() crap
- variable timeout is easier
*/
FD_ZERO (&readfd); /* clear it */
if(conn->sockfd != -1) {
FD_SET (conn->sockfd, &readfd); /* read socket */
keepon |= KEEP_READ;
}
FD_ZERO (&writefd); /* clear it */
if(conn->writesockfd != -1) {
Daniel Stenberg
committed
if (data->set.expect100header)
/* wait with write until we either got 100-continue or a timeout */
write_after_100_header = TRUE;
else {
FD_SET (conn->writesockfd, &writefd); /* write socket */
keepon |= KEEP_WRITE;
}
}
/* get these in backup variables to be able to restore them on each lap in
the select() loop */
rkeepfd = readfd;
wkeepfd = writefd;
while (keepon) {
readfd = rkeepfd; /* set those every lap in the loop */
writefd = wkeepfd;
interval.tv_sec = 1;
interval.tv_usec = 0;
switch (select (maxfd, &readfd, &writefd, NULL, &interval)) {
case -1: /* select() error, stop reading */
#ifdef EINTR
/* The EINTR is not serious, and it seems you might get this more
ofen when using the lib in a multi-threaded environment! */
if(errno == EINTR)
;
else
#endif
keepon = 0; /* no more read or write */
continue;
case 0: /* timeout */
if (write_after_100_header) {
write_after_100_header = FALSE;
FD_SET (conn->writesockfd, &writefd); /* write socket */
keepon |= KEEP_WRITE;
wkeepfd = writefd;
}
break;
default:
if((keepon & KEEP_READ) && FD_ISSET(conn->sockfd, &readfd)) {
/* read! */
urg = Curl_read(conn, conn->sockfd, buf, BUFSIZE -1, &nread);
/* NULL terminate, allowing string ops to be used */
if (0 < (signed int) nread)
buf[nread] = 0;
/* if we receive 0 or less here, the server closed the connection and
we bail out from this! */
else if (0 >= (signed int) nread) {
keepon &= ~KEEP_READ;
Daniel Stenberg
committed
FD_ZERO(&rkeepfd);
break;
}
str = buf; /* Default buffer to use when we write the
buffer, it may be changed in the flow below
before the actual storing is done. */
/* Since this is a two-state thing, we check if we are parsing
headers at the moment or not. */
if (header) {
/* we are in parse-the-header-mode */
/* header line within buffer loop */
do {
int hbufp_index;
str_start = str; /* str_start is start of line within buf */
end_ptr = strchr (str_start, '\n');
if (!end_ptr) {
/* no more complete header lines within buffer */
/* copy what is remaining into headerbuff */
int str_length = (int)strlen(str);
/*
* We enlarge the header buffer if it seems to be too
* smallish
*/
Daniel Stenberg
committed
if (hbuflen + (int)str_length >= data->state.headersize) {
char *newbuff;
long newsize=MAX((hbuflen+str_length)*3/2,
Daniel Stenberg
committed
data->state.headersize*2);
hbufp_index = hbufp - data->state.headerbuff;
newbuff = (char *)realloc(data->state.headerbuff, newsize);
if(!newbuff) {
failf (data, "Failed to alloc memory for big header!");
return CURLE_READ_ERROR;
}
Daniel Stenberg
committed
data->state.headersize=newsize;
data->state.headerbuff = newbuff;
hbufp = data->state.headerbuff + hbufp_index;
}
strcpy (hbufp, str);
hbufp += strlen (str);
hbuflen += strlen (str);
break; /* read more and try again */
}
str = end_ptr + 1; /* move just past new line */
/*
* We're about to copy a chunk of data to the end of the
* already received header. We make sure that the full string
* fit in the allocated header buffer, or else we enlarge
* it.
*/
Daniel Stenberg
committed
if (hbuflen + (str - str_start) >= data->state.headersize) {
char *newbuff;
long newsize=MAX((hbuflen+(str-str_start))*3/2,
Daniel Stenberg
committed
data->state.headersize*2);
hbufp_index = hbufp - data->state.headerbuff;
newbuff = (char *)realloc(data->state.headerbuff, newsize);
if(!newbuff) {
failf (data, "Failed to alloc memory for big header!");
return CURLE_READ_ERROR;
}
Daniel Stenberg
committed
data->state.headersize= newsize;
data->state.headerbuff = newbuff;
hbufp = data->state.headerbuff + hbufp_index;
}
/* copy to end of line */
strncpy (hbufp, str_start, str - str_start);
hbufp += str - str_start;
hbuflen += str - str_start;
*hbufp = 0;
Daniel Stenberg
committed
p = data->state.headerbuff;
/****
* We now have a FULL header line that p points to
*****/
if (('\n' == *p) || ('\r' == *p)) {
/* Zero-length header line means end of headers! */
if ('\r' == *p)
p++; /* pass the \r byte */
if ('\n' == *p)
p++; /* pass the \n byte */
if(100 == httpcode) {
/*
* we have made a HTTP PUT or POST and this is 1.1-lingo
* that tells us that the server is OK with this and ready
* to receive our stuff.
* However, we'll get more headers now so we must get
* back into the header-parsing state!
*/
header = TRUE;
headerline = 0; /* we restart the header line counter */
/* if we did wait for this do enable write now! */
if (write_after_100_header) {
write_after_100_header = FALSE;
FD_SET (conn->writesockfd, &writefd); /* write socket */
keepon |= KEEP_WRITE;
wkeepfd = writefd;
}
}
Daniel Stenberg
committed
else
header = FALSE; /* no more header to parse! */
Daniel Stenberg
committed
if (417 == httpcode) {
/*
* we got: "417 Expectation Failed" this means:
* we have made a HTTP call and our Expect Header
* seems to cause a problem => abort the write operations
* (or prevent them from starting
*/
write_after_100_header = FALSE;
keepon &= ~KEEP_WRITE;
FD_ZERO(&wkeepfd);
}
/* now, only output this if the header AND body are requested:
*/
Daniel Stenberg
committed
if (data->set.http_include_header)
Daniel Stenberg
committed
urg = Curl_client_write(data, writetype,
data->state.headerbuff,
Daniel Stenberg
committed
p - data->state.headerbuff);
Daniel Stenberg
committed
data->info.header_size += p - data->state.headerbuff;
Daniel Stenberg
committed
conn->headerbytecount += p - data->state.headerbuff;
Daniel Stenberg
committed
if(!header) {
/*
*
Daniel Stenberg
committed
* If we requested a "no body", this is a good time to get
* out and return home.
*/
Daniel Stenberg
committed
if(data->set.no_body)
return CURLE_OK;
if(!conn->bits.close) {
/* If this is not the last request before a close, we must
set the maximum download size to the size of the
expected document or else, we won't know when to stop
reading! */
if(-1 != conn->size)
conn->maxdownload = conn->size;
/* If max download size is *zero* (nothing) we already
have nothing and can safely return ok now! */
if(0 == conn->maxdownload)
return CURLE_OK;
/* What to do if the size is *not* known? */
}
break; /* exit header line loop */
}
Daniel Stenberg
committed
/* We continue reading headers, so reset the line-based
header parsing variables hbufp && hbuflen */
Daniel Stenberg
committed
hbufp = data->state.headerbuff;
hbuflen = 0;
continue;
/*
* Checks for special headers coming up.
*/
if (!headerline++) {
/* This is the first header, it MUST be the error code line
or else we consiser this to be the body right away! */
Daniel Stenberg
committed
int httpversion_major;
int nc=sscanf (p, " HTTP/%d.%d %3d",
&httpversion_major ,&httpversion, &httpcode);
if (nc==3) {
httpversion+=10*httpversion_major;
}
else {
/* this is the real world, not a Nirvana
NCSA 1.5.x returns this crap when asked for HTTP/1.1
*/
nc=sscanf (p, " HTTP %3d", &httpcode);
httpversion = 10;
}
if (nc) {
Daniel Stenberg
committed
data->info.httpcode = httpcode;
data->info.httpversion = httpversion;
/* 404 -> URL not found! */
Daniel Stenberg
committed
if (data->set.http_fail_on_error &&
(httpcode >= 400)) {
/* If we have been told to fail hard on HTTP-errors,
here is the check for that: */
/* serious error, go home! */
failf (data, "The requested file was not found");
return CURLE_HTTP_NOT_FOUND;
}
Daniel Stenberg
committed
if(httpversion == 10)
/* Default action for HTTP/1.0 must be to close, unless
we get one of those fancy headers that tell us the
server keeps it open for us! */
conn->bits.close = TRUE;
if (httpcode == 304)
/* (quote from RFC2616, section 10.3.5):
* The 304 response MUST NOT contain a
* message-body, and thus is always
* terminated by the first empty line
* after the header fields.
*/
conn->size=0;
}
else {
header = FALSE; /* this is not a header line */
break;
}
}
/* check for Content-Length: header lines to get size */
if (strnequal("Content-Length:", p, 15) &&
sscanf (p+15, " %ld", &contentlength)) {
conn->size = contentlength;
Curl_pgrsSetDownloadSize(data, contentlength);
}
else if((httpversion == 10) &&
conn->bits.httpproxy &&
compareheader(p, "Proxy-Connection:", "keep-alive")) {
/*
* When a HTTP/1.0 reply comes when using a proxy, the
* 'Proxy-Connection: keep-alive' line tells us the
* connection will be kept alive for our pleasure.
* Default action for 1.0 is to close.
*/
conn->bits.close = FALSE; /* don't close when done */
infof(data, "HTTP/1.0 proxy connection set to keep alive!\n");
}
else if((httpversion == 10) &&
compareheader(p, "Connection:", "keep-alive")) {
/*
* A HTTP/1.0 reply with the 'Connection: keep-alive' line
* tells us the connection will be kept alive for our
* pleasure. Default action for 1.0 is to close.
*
* [RFC2068, section 19.7.1] */
conn->bits.close = FALSE; /* don't close when done */
infof(data, "HTTP/1.0 connection set to keep alive!\n");
}
else if (compareheader(p, "Connection:", "close")) {
/*
* [RFC 2616, section 8.1.2.1]
* "Connection: close" is HTTP/1.1 language and means that
* the connection will close when this request has been
* served.
*/
conn->bits.close = TRUE; /* close when done */
}
else if (compareheader(p, "Transfer-Encoding:", "chunked")) {
/*
* [RFC 2616, section 3.6.1] A 'chunked' transfer encoding
* means that the server will send a series of "chunks". Each
* chunk starts with line with info (including size of the
* coming block) (terminated with CRLF), then a block of data
* with the previously mentioned size. There can be any amount
* of chunks, and a chunk-data set to zero signals the
* end-of-chunks. */
conn->bits.chunk = TRUE; /* chunks coming our way */
/* init our chunky engine */
Curl_httpchunk_init(conn);
else if (strnequal("Content-Range:", p, 14)) {
if (sscanf (p+14, " bytes %d-", &offset) ||
sscanf (p+14, " bytes: %d-", &offset)) {
/* This second format was added August 1st 2000 by Igor
Khristophorov since Sun's webserver JavaWebServer/1.1.1
obviously sends the header this way! :-( */
if (conn->resume_from == offset) {
/* we asked for a resume and we got it */
content_range = TRUE;
}
}
}
else if(data->cookies &&
strnequal("Set-Cookie:", p, 11)) {
Curl_cookie_add(data->cookies, TRUE, &p[12], conn->name);
}
else if(strnequal("Last-Modified:", p,
strlen("Last-Modified:")) &&
Daniel Stenberg
committed
(data->set.timecondition || data->set.get_filetime) ) {
time_t secs=time(NULL);
timeofdoc = curl_getdate(p+strlen("Last-Modified:"), &secs);
if(data->set.get_filetime>=0)
Daniel Stenberg
committed
data->info.filetime = timeofdoc;
else if ((httpcode >= 300 && httpcode < 400) &&
Daniel Stenberg
committed
(data->set.http_follow_location) &&
strnequal("Location:", p, 9)) {
/* this is the URL that the server advices us to get instead */
char *ptr;
char *start=p;
char backup;
start += 9; /* pass "Location:" */
/* Skip spaces and tabs. We do this to support multiple
white spaces after the "Location:" keyword. */
while(*start && isspace((int)*start ))
start++;
ptr = start; /* start scanning here */
/* scan through the string to find the end */
while(*ptr && !isspace((int)*ptr))
ptr++;
backup = *ptr; /* store the ending letter */
*ptr = '\0'; /* zero terminate */
conn->newurl = strdup(start); /* clone string */
*ptr = backup; /* restore ending letter */
/*
* End of header-checks. Write them to the client.
*/
Daniel Stenberg
committed
if (data->set.http_include_header)
urg = Curl_client_write(data, writetype, p, hbuflen);
Daniel Stenberg
committed
data->info.header_size += hbuflen;
/* reset hbufp pointer && hbuflen */
Daniel Stenberg
committed
hbufp = data->state.headerbuff;
hbuflen = 0;
}
while (*str); /* header line within buffer */
/* We might have reached the end of the header part here, but
there might be a non-header part left in the end of the read
buffer. */
if (!header) {
/* the next token and forward is not part of
the header! */
/* we subtract the remaining header size from the buffer */
nread -= (str - buf);
}
} /* end if header mode */
/* This is not an 'else if' since it may be a rest from the header
parsing, where the beginning of the buffer is headers and the end
is non-headers. */
if (str && !header && ((signed int)nread > 0)) {
if(0 == bodywrites) {
/* These checks are only made the first time we are about to
write a piece of the body */
if(conn->protocol&PROT_HTTP) {
/* HTTP-only checks */
Daniel Stenberg
committed
/* abort after the headers if "follow Location" is set */
infof (data, "Follow to new URL: %s\n", conn->newurl);
Daniel Stenberg
committed
return CURLE_OK;
}
else if (conn->resume_from &&
Daniel Stenberg
committed
!content_range &&
Daniel Stenberg
committed
(data->set.httpreq==HTTPREQ_GET)) {
/* we wanted to resume a download, although the server
Daniel Stenberg
committed
doesn't seem to support this and we did this with a GET
(if it wasn't a GET we did a POST or PUT resume) */
failf (data, "HTTP server doesn't seem to support "
"byte ranges. Cannot resume.");
return CURLE_HTTP_RANGE_ERROR;
}
Daniel Stenberg
committed
else if(data->set.timecondition && !conn->range) {
/* A time condition has been set AND no ranges have been
requested. This seems to be what chapter 13.3.4 of
RFC 2616 defines to be the correct action for a
HTTP/1.1 client */
Daniel Stenberg
committed
if((timeofdoc > 0) && (data->set.timevalue > 0)) {
switch(data->set.timecondition) {
case TIMECOND_IFMODSINCE:
default:
Daniel Stenberg
committed
if(timeofdoc < data->set.timevalue) {
"The requested document is not new enough\n");
return CURLE_OK;
}
break;
case TIMECOND_IFUNMODSINCE:
Daniel Stenberg
committed
if(timeofdoc > data->set.timevalue) {
"The requested document is not old enough\n");
return CURLE_OK;
}
break;
} /* switch */
} /* two valid time strings */
} /* we have a time condition */
} /* this is HTTP */
} /* this is the first time we write a body part */
bodywrites++;
if(conn->bits.chunk) {
/*
Daniel Stenberg
committed
* Bless me father for I have sinned. Here comes a chunked
* transfer flying and we need to decode this properly. While
* the name says read, this function both reads and writes away
* the data. The returned 'nread' holds the number of actual
* data it wrote to the client. */
CHUNKcode res =
Curl_httpchunk_read(conn, str, nread, &nread);
if(CHUNKE_OK < res) {
failf(data, "Receeived problem in the chunky parser");
else if(CHUNKE_STOP == res) {
/* we're done reading chunks! */
keepon &= ~KEEP_READ; /* read no more */
Daniel Stenberg
committed
FD_ZERO(&rkeepfd);
/* There are now possibly N number of bytes at the end of the
str buffer that weren't written to the client, but we don't
care about them right now. */
}
/* If it returned OK, we just keep going */
if((-1 != conn->maxdownload) &&
Daniel Stenberg
committed
(bytecount + nread >= conn->maxdownload)) {
nread = conn->maxdownload - bytecount;
if((signed int)nread < 0 ) /* this should be unusual */
Daniel Stenberg
committed
keepon &= ~KEEP_READ; /* we're done reading */
Daniel Stenberg
committed
FD_ZERO(&rkeepfd);
}
bytecount += nread;
Curl_pgrsSetDownloadCounter(data, (double)bytecount);
if(!conn->bits.chunk && nread) {
/* If this is chunky transfer, it was already written */
urg = Curl_client_write(data, CLIENTWRITE_BODY, str, nread);
if(urg)
return urg;
}
} /* if (! header and data to read ) */
} /* if( read from socket ) */
if((keepon & KEEP_WRITE) && FD_ISSET(conn->writesockfd, &writefd)) {
/* write */
int i, si;
Daniel Stenberg
committed
nread = data->set.fread(buf, 1, conn->upload_bufsize, data->set.in);
/* the signed int typecase of nread of for systems that has
unsigned size_t */
if ((signed int)nread<=0) {
/* done */
keepon &= ~KEEP_WRITE; /* we're done writing */
Daniel Stenberg
committed
FD_ZERO(&wkeepfd);
writebytecount += nread;
Curl_pgrsSetUploadCounter(data, (double)writebytecount);
/* convert LF to CRLF if so asked */
Daniel Stenberg
committed
if (data->set.crlf) {
for(i = 0, si = 0; i < (int)nread; i++, si++) {
if (buf[i] == 0x0a) {
data->state.scratch[si++] = 0x0d;
data->state.scratch[si] = 0x0a;
data->state.scratch[si] = buf[i];
}
}
nread = si;
buf = data->state.scratch; /* point to the new buffer */
}
/* write to socket */
urg = Curl_write(conn, conn->writesockfd, buf, nread,
&bytes_written);
failf(data, "Failed uploading data");
return CURLE_WRITE_ERROR;
}
if(data->set.crlf)
buf = data->state.buffer; /* put it back on the buffer */
}
break;
}
now = Curl_tvnow();
if(Curl_pgrsUpdate(conn))
urg = CURLE_ABORTED_BY_CALLBACK;
else
urg = Curl_speedcheck (data, now);
if (urg)
return urg;
Daniel Stenberg
committed
if(data->progress.ulspeed > conn->upload_bufsize) {
/* If we're transfering more data per second than fits in our buffer,
we increase the buffer size to adjust to the current
speed. However, we must not set it larger than BUFSIZE. We don't
adjust it downwards again since we don't see any point in that!
*/
conn->upload_bufsize=(long)min(data->progress.ulspeed, BUFSIZE);
}
Daniel Stenberg
committed
if (data->set.timeout &&
((Curl_tvdiff(now, start)/1000) > data->set.timeout)) {
failf (data, "Operation timed out with %d out of %d bytes received",
bytecount, conn->size);
return CURLE_OPERATION_TIMEOUTED;
}
}
}
/*
* The tranfer has been performed. Just make some general checks before
* returning.
*/
Daniel Stenberg
committed
if(!(data->set.no_body) && contentlength &&
(bytecount != contentlength)) {
failf(data, "transfer closed with %d bytes remaining to read",
contentlength-bytecount);
return CURLE_PARTIAL_FILE;
}
else if(conn->bits.chunk && conn->proto.http->chunk.datasize) {
failf(data, "transfer closed with at least %d bytes remaining",
conn->proto.http->chunk.datasize);
return CURLE_PARTIAL_FILE;
}
if(Curl_pgrsUpdate(conn))
return CURLE_ABORTED_BY_CALLBACK;
if(conn->bytecountp)
*conn->bytecountp = bytecount; /* read count */
if(conn->writebytecountp)
*conn->writebytecountp = writebytecount; /* write count */
return CURLE_OK;
}
Daniel Stenberg
committed
CURLcode Curl_perform(struct SessionHandle *data)
Daniel Stenberg
committed
bool port=TRUE; /* allow data->set.use_port to set port to use */
Daniel Stenberg
committed
char *newurl = NULL; /* possibly a new URL to follow to! */
Daniel Stenberg
committed
if(!data->change.url)
/* we can't do anything wihout URL */
return CURLE_URL_MALFORMAT;
#ifdef USE_SSLEAY
/* Init the SSL session ID cache here. We do it here since we want to
do it after the *_setopt() calls (that could change the size) but
before any transfer. */
Daniel Stenberg
committed
Curl_SSL_InitSessions(data, data->set.ssl.numsessions);
#endif
Daniel Stenberg
committed
data->set.followlocation=0; /* reset the location-follow counter */
data->state.this_is_a_follow = FALSE; /* reset this */
Curl_initinfo(data); /* reset session-specific information "variables" */
Curl_pgrsStartNow(data);
Curl_pgrsTime(data, TIMER_STARTSINGLE);
if(res == CURLE_OK) {
if((CURLE_WRITE_ERROR == res) && conn->bits.reuse) {
/* This was a re-use of a connection and we got a write error in the
* DO-phase. Then we DISCONNECT this connection and have another
* attempt to CONNECT and then DO again! The retry cannot possibly
* find another connection to re-use, since we only keep one possible
* connection for each.
*/
infof(data, "The re-used connection seems dead, get a new one\n");
conn->bits.close = TRUE; /* enforce close of this connetion */
res = Curl_done(conn); /* we are so done with this */
if(CURLE_OK == res) {
/* Now, redo the connect */
res = Curl_connect(data, &conn, port);
if(CURLE_OK == res)
/* ... finally back to actually retry the DO phase */
res = Curl_do(conn);
}
}
if(res == CURLE_OK) {
Daniel Stenberg
committed
CURLcode res2; /* just a local extra result container */
Daniel Stenberg
committed
if(conn->protocol&PROT_FTPS)
/* FTPS, disable ssl while transfering data */
conn->ssl.use = FALSE;
res = Transfer(conn); /* now fetch that URL please */
Daniel Stenberg
committed
if(conn->protocol&PROT_FTPS)
/* FTPS, enable ssl again after havving transferred data */
conn->ssl.use = TRUE;
Daniel Stenberg
committed
if(res == CURLE_OK)
Daniel Stenberg
committed
/*
* We must duplicate the new URL here as the connection data
* may be free()ed in the Curl_done() function.
*/
newurl = conn->newurl?strdup(conn->newurl):NULL;
else
/* The transfer phase returned error, we mark the connection to get
* closed to prevent being re-used. This is becasue we can't
* possibly know if the connection is in a good shape or not now. */
conn->bits.close = TRUE;
Daniel Stenberg
committed
Daniel Stenberg
committed
/* Always run Curl_done(), even if some of the previous calls
failed, but return the previous (original) error code */
res2 = Curl_done(conn);
if(CURLE_OK == res)
res = res2;
Daniel Stenberg
committed
/*
* Important: 'conn' cannot be used here, since it may have been closed
* in 'Curl_done' or other functions.
*/
if((res == CURLE_OK) && newurl) {
/* Location: redirect
This is assumed to happen for HTTP(S) only!
char prot[16]; /* URL protocol string storage */
char letter; /* used for a silly sscanf */
port=TRUE; /* by default we use the user set port number even after
a Location: */
Daniel Stenberg
committed
if (data->set.maxredirs && (data->set.followlocation >= data->set.maxredirs)) {
failf(data,"Maximum (%d) redirects followed", data->set.maxredirs);
res=CURLE_TOO_MANY_REDIRECTS;
break;
}
/* mark the next request as a followed location: */