rc4-586.pl 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
#!/usr/bin/env perl

# ====================================================================
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# At some point it became apparent that the original SSLeay RC4
# assembler implementation performs suboptimally on latest IA-32
# microarchitectures. After re-tuning performance has changed as
# following:
#
# Pentium	-10%
# Pentium III	+12%
# AMD		+50%(*)
# P4		+250%(**)
#
# (*)	This number is actually a trade-off:-) It's possible to
#	achieve	+72%, but at the cost of -48% off PIII performance.
#	In other words code performing further 13% faster on AMD
#	would perform almost 2 times slower on Intel PIII...
#	For reference! This code delivers ~80% of rc4-amd64.pl
#	performance on the same Opteron machine.
# (**)	This number requires compressed key schedule set up by
#	RC4_set_key [see commentary below for further details].
#
#					<appro@fy.chalmers.se>

# May 2011
#
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
# performance in cycles per processed byte (less is better) and
# improvement relative to previous version of this module is:
#
# Pentium	10.2			# original numbers
# Pentium III	7.8(*)
# Intel P4	7.5
#
# Opteron	6.1/+20%		# new MMX numbers
# Core2		5.3/+67%(**)
# Westmere	5.1/+94%(**)
# Sandy Bridge	5.0/+8%
# Atom		12.6/+6%
#
# (*)	PIII can actually deliver 6.6 cycles per byte with MMX code,
#	but this specific code performs poorly on Core2. And vice
#	versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
#	poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
#	[anymore], I chose to discard PIII-specific code path and opt
#	for original IALU-only code, which is why MMX/SSE code path
#	is guarded by SSE2 bit (see below), not MMX/SSE.
# (**)	Performance vs. block size on Core2 and Westmere had a maximum
#	at ... 64 bytes block size. And it was quite a maximum, 40-60%
#	in comparison to largest 8KB block size. Above improvement
#	coefficients are for the largest block size.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"rc4-586.pl");

$xx="eax";
$yy="ebx";
$tx="ecx";
$ty="edx";
$inp="esi";
$out="ebp";
$dat="edi";

sub RC4_loop {
  my $i=shift;
  my $func = ($i==0)?*mov:*or;

	&add	(&LB($yy),&LB($tx));
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&mov	(&DWP(0,$dat,$xx,4),$ty);
	&add	($ty,$tx);
	&inc	(&LB($xx));
	&and	($ty,0xff);
	&ror	($out,8)	if ($i!=0);
	if ($i<3) {
	  &mov	($tx,&DWP(0,$dat,$xx,4));
	} else {
	  &mov	($tx,&wparam(3));	# reload [re-biased] out
	}
	&$func	($out,&DWP(0,$dat,$ty,4));
}

if ($alt=0) {
  # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
  # but ~40% slower on Core2 and Westmere... Attempt to add movz
  # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
  # on Core2 with movz it's almost 20% slower than below alternative
  # code... Yes, it's a total mess...
  my @XX=($xx,$out);
  $RC4_loop_mmx = sub {		# SSE actually...
    my $i=shift;
    my $j=$i<=0?0:$i>>1;
    my $mm=$i<=0?"mm0":"mm".($i&1);

	&add	(&LB($yy),&LB($tx));
	&lea	(@XX[1],&DWP(1,@XX[0]));
	&pxor	("mm2","mm0")				if ($i==0);
	&psllq	("mm1",8)				if ($i==0);
	&and	(@XX[1],0xff);
	&pxor	("mm0","mm0")				if ($i<=0);
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&pxor	("mm1","mm2")				if ($i==0);
	&mov	(&DWP(0,$dat,$XX[0],4),$ty);
	&add	(&LB($ty),&LB($tx));
	&movd	(@XX[0],"mm7")				if ($i==0);
	&mov	($tx,&DWP(0,$dat,@XX[1],4));
	&pxor	("mm1","mm1")				if ($i==1);
	&movq	("mm2",&QWP(0,$inp))			if ($i==1);
	&movq	(&QWP(-8,(@XX[0],$inp)),"mm1")		if ($i==0);
	&pinsrw	($mm,&DWP(0,$dat,$ty,4),$j);

	push	(@XX,shift(@XX))			if ($i>=0);
  }
} else {
  # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
  # brings down AMD by 7%...
  $RC4_loop_mmx = sub {
    my $i=shift;

	&add	(&LB($yy),&LB($tx));
	&psllq	("mm1",8*(($i-1)&7))			if (abs($i)!=1);
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&mov	(&DWP(0,$dat,$xx,4),$ty);
	&inc	($xx);
	&add	($ty,$tx);
	&movz	($xx,&LB($xx));				# (*)
	&movz	($ty,&LB($ty));				# (*)
	&pxor	("mm2",$i==1?"mm0":"mm1")		if ($i>=0);
	&movq	("mm0",&QWP(0,$inp))			if ($i<=0);
	&movq	(&QWP(-8,($out,$inp)),"mm2")		if ($i==0);
	&mov	($tx,&DWP(0,$dat,$xx,4));
	&movd	($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));

	# (*)	This is the key to Core2 and Westmere performance.
	#	Whithout movz out-of-order execution logic confuses
	#	itself and fails to reorder loads and stores. Problem
	#	appears to be fixed in Sandy Bridge...
  }
}

&external_label("OPENSSL_ia32cap_P");

# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
&function_begin("RC4");
	&mov	($dat,&wparam(0));	# load key schedule pointer
	&mov	($ty, &wparam(1));	# load len
	&mov	($inp,&wparam(2));	# load inp
	&mov	($out,&wparam(3));	# load out

	&xor	($xx,$xx);		# avoid partial register stalls
	&xor	($yy,$yy);

	&cmp	($ty,0);		# safety net
	&je	(&label("abort"));

	&mov	(&LB($xx),&BP(0,$dat));	# load key->x
	&mov	(&LB($yy),&BP(4,$dat));	# load key->y
	&add	($dat,8);

	&lea	($tx,&DWP(0,$inp,$ty));
	&sub	($out,$inp);		# re-bias out
	&mov	(&wparam(1),$tx);	# save input+len

	&inc	(&LB($xx));

	# detect compressed key schedule...
	&cmp	(&DWP(256,$dat),-1);
	&je	(&label("RC4_CHAR"));

	&mov	($tx,&DWP(0,$dat,$xx,4));

	&and	($ty,-4);		# how many 4-byte chunks?
	&jz	(&label("loop1"));

	&test	($ty,-8);
	&mov	(&wparam(3),$out);	# $out as accumulator in these loops
	&jz	(&label("go4loop4"));

	&picmeup($out,"OPENSSL_ia32cap_P");
	&bt	(&DWP(0,$out),26);	# check SSE2 bit [could have been MMX]
	&jnc	(&label("go4loop4"));

	&mov	($out,&wparam(3))	if (!$alt);
	&movd	("mm7",&wparam(3))	if ($alt);
	&and	($ty,-8);
	&lea	($ty,&DWP(-8,$inp,$ty));
	&mov	(&DWP(-4,$dat),$ty);	# save input+(len/8)*8-8

	&$RC4_loop_mmx(-1);
	&jmp(&label("loop_mmx_enter"));

	&set_label("loop_mmx",16);
		&$RC4_loop_mmx(0);
	&set_label("loop_mmx_enter");
		for 	($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
		&mov	($ty,$yy);
		&xor	($yy,$yy);		# this is second key to Core2
		&mov	(&LB($yy),&LB($ty));	# and Westmere performance...
		&cmp	($inp,&DWP(-4,$dat));
		&lea	($inp,&DWP(8,$inp));
	&jb	(&label("loop_mmx"));

    if ($alt) {
	&movd	($out,"mm7");
	&pxor	("mm2","mm0");
	&psllq	("mm1",8);
	&pxor	("mm1","mm2");
	&movq	(&QWP(-8,$out,$inp),"mm1");
    } else {
	&psllq	("mm1",56);
	&pxor	("mm2","mm1");
	&movq	(&QWP(-8,$out,$inp),"mm2");
    }
	&emms	();

	&cmp	($inp,&wparam(1));	# compare to input+len
	&je	(&label("done"));
	&jmp	(&label("loop1"));

&set_label("go4loop4",16);
	&lea	($ty,&DWP(-4,$inp,$ty));
	&mov	(&wparam(2),$ty);	# save input+(len/4)*4-4

	&set_label("loop4");
		for ($i=0;$i<4;$i++) { RC4_loop($i); }
		&ror	($out,8);
		&xor	($out,&DWP(0,$inp));
		&cmp	($inp,&wparam(2));	# compare to input+(len/4)*4-4
		&mov	(&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
		&lea	($inp,&DWP(4,$inp));
		&mov	($tx,&DWP(0,$dat,$xx,4));
	&jb	(&label("loop4"));

	&cmp	($inp,&wparam(1));	# compare to input+len
	&je	(&label("done"));
	&mov	($out,&wparam(3));	# restore $out

	&set_label("loop1",16);
		&add	(&LB($yy),&LB($tx));
		&mov	($ty,&DWP(0,$dat,$yy,4));
		&mov	(&DWP(0,$dat,$yy,4),$tx);
		&mov	(&DWP(0,$dat,$xx,4),$ty);
		&add	($ty,$tx);
		&inc	(&LB($xx));
		&and	($ty,0xff);
		&mov	($ty,&DWP(0,$dat,$ty,4));
		&xor	(&LB($ty),&BP(0,$inp));
		&lea	($inp,&DWP(1,$inp));
		&mov	($tx,&DWP(0,$dat,$xx,4));
		&cmp	($inp,&wparam(1));	# compare to input+len
		&mov	(&BP(-1,$out,$inp),&LB($ty));
	&jb	(&label("loop1"));

	&jmp	(&label("done"));

# this is essentially Intel P4 specific codepath...
&set_label("RC4_CHAR",16);
	&movz	($tx,&BP(0,$dat,$xx));
	# strangely enough unrolled loop performs over 20% slower...
	&set_label("cloop1");
		&add	(&LB($yy),&LB($tx));
		&movz	($ty,&BP(0,$dat,$yy));
		&mov	(&BP(0,$dat,$yy),&LB($tx));
		&mov	(&BP(0,$dat,$xx),&LB($ty));
		&add	(&LB($ty),&LB($tx));
		&movz	($ty,&BP(0,$dat,$ty));
		&add	(&LB($xx),1);
		&xor	(&LB($ty),&BP(0,$inp));
		&lea	($inp,&DWP(1,$inp));
		&movz	($tx,&BP(0,$dat,$xx));
		&cmp	($inp,&wparam(1));
		&mov	(&BP(-1,$out,$inp),&LB($ty));
	&jb	(&label("cloop1"));

&set_label("done");
	&dec	(&LB($xx));
	&mov	(&DWP(-4,$dat),$yy);		# save key->y
	&mov	(&BP(-8,$dat),&LB($xx));	# save key->x
&set_label("abort");
&function_end("RC4");

########################################################################

$inp="esi";
$out="edi";
$idi="ebp";
$ido="ecx";
$idx="edx";

# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
&function_begin("private_RC4_set_key");
	&mov	($out,&wparam(0));		# load key
	&mov	($idi,&wparam(1));		# load len
	&mov	($inp,&wparam(2));		# load data
	&picmeup($idx,"OPENSSL_ia32cap_P");

	&lea	($out,&DWP(2*4,$out));		# &key->data
	&lea	($inp,&DWP(0,$inp,$idi));	# $inp to point at the end
	&neg	($idi);
	&xor	("eax","eax");
	&mov	(&DWP(-4,$out),$idi);		# borrow key->y

	&bt	(&DWP(0,$idx),20);		# check for bit#20
	&jc	(&label("c1stloop"));

&set_label("w1stloop",16);
	&mov	(&DWP(0,$out,"eax",4),"eax");	# key->data[i]=i;
	&add	(&LB("eax"),1);			# i++;
	&jnc	(&label("w1stloop"));

	&xor	($ido,$ido);
	&xor	($idx,$idx);

&set_label("w2ndloop",16);
	&mov	("eax",&DWP(0,$out,$ido,4));
	&add	(&LB($idx),&BP(0,$inp,$idi));
	&add	(&LB($idx),&LB("eax"));
	&add	($idi,1);
	&mov	("ebx",&DWP(0,$out,$idx,4));
	&jnz	(&label("wnowrap"));
	  &mov	($idi,&DWP(-4,$out));
	&set_label("wnowrap");
	&mov	(&DWP(0,$out,$idx,4),"eax");
	&mov	(&DWP(0,$out,$ido,4),"ebx");
	&add	(&LB($ido),1);
	&jnc	(&label("w2ndloop"));
&jmp	(&label("exit"));

# Unlike all other x86 [and x86_64] implementations, Intel P4 core
# [including EM64T] was found to perform poorly with above "32-bit" key
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
# schedule for x86[_64], because non-P4 implementations suffer from
# significant performance losses then, e.g. PIII exhibits >2x
# deterioration, and so does Opteron. In order to assure optimal
# all-round performance, we detect P4 at run-time and set up compressed
# key schedule, which is recognized by RC4 procedure.

&set_label("c1stloop",16);
	&mov	(&BP(0,$out,"eax"),&LB("eax"));	# key->data[i]=i;
	&add	(&LB("eax"),1);			# i++;
	&jnc	(&label("c1stloop"));

	&xor	($ido,$ido);
	&xor	($idx,$idx);
	&xor	("ebx","ebx");

&set_label("c2ndloop",16);
	&mov	(&LB("eax"),&BP(0,$out,$ido));
	&add	(&LB($idx),&BP(0,$inp,$idi));
	&add	(&LB($idx),&LB("eax"));
	&add	($idi,1);
	&mov	(&LB("ebx"),&BP(0,$out,$idx));
	&jnz	(&label("cnowrap"));
	  &mov	($idi,&DWP(-4,$out));
	&set_label("cnowrap");
	&mov	(&BP(0,$out,$idx),&LB("eax"));
	&mov	(&BP(0,$out,$ido),&LB("ebx"));
	&add	(&LB($ido),1);
	&jnc	(&label("c2ndloop"));

	&mov	(&DWP(256,$out),-1);		# mark schedule as compressed

&set_label("exit");
	&xor	("eax","eax");
	&mov	(&DWP(-8,$out),"eax");		# key->x=0;
	&mov	(&DWP(-4,$out),"eax");		# key->y=0;
&function_end("private_RC4_set_key");

# const char *RC4_options(void);
&function_begin_B("RC4_options");
	&call	(&label("pic_point"));
&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
	&picmeup("edx","OPENSSL_ia32cap_P");
	&mov	("edx",&DWP(0,"edx"));
	&bt	("edx",20);
	&jc	(&label("1xchar"));
	&bt	("edx",26);
	&jnc	(&label("ret"));
	&add	("eax",25);
	&ret	();
&set_label("1xchar");
	&add	("eax",12);
&set_label("ret");
	&ret	();
&set_label("opts",64);
&asciz	("rc4(4x,int)");
&asciz	("rc4(1x,char)");
&asciz	("rc4(8x,mmx)");
&asciz	("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
&align	(64);
&function_end_B("RC4_options");

&asm_finish();