ghash-x86.pl 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# March, May, June 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
# code paths: vanilla x86 and vanilla MMX. Former will be executed on
# 486 and Pentium, latter on all others. MMX GHASH features so called
# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
# of per-key storage [+512 bytes shared table]. Performance results
# are for streamed GHASH subroutine and are expressed in cycles per
# processed byte, less is better:
#
#		gcc 2.95.3(*)	MMX assembler	x86 assembler
#
# Pentium	105/111(**)	-		50
# PIII		68 /75		12.2		24
# P4		125/125		17.8		84(***)
# Opteron	66 /70		10.1		30
# Core2		54 /67		8.4		18
#
# (*)	gcc 3.4.x was observed to generate few percent slower code,
#	which is one of reasons why 2.95.3 results were chosen,
#	another reason is lack of 3.4.x results for older CPUs;
#	comparison with MMX results is not completely fair, because C
#	results are for vanilla "256B" implementation, while
#	assembler results are for "528B";-)
# (**)	second number is result for code compiled with -fPIC flag,
#	which is actually more relevant, because assembler code is
#	position-independent;
# (***)	see comment in non-MMX routine for further details;
#
# To summarize, it's >2-5 times faster than gcc-generated code. To
# anchor it to something else SHA1 assembler processes one byte in
# 11-13 cycles on contemporary x86 cores. As for choice of MMX in
# particular, see comment at the end of the file...

# May 2010
#
# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
# The question is how close is it to theoretical limit? The pclmulqdq
# instruction latency appears to be 14 cycles and there can't be more
# than 2 of them executing at any given time. This means that single
# Karatsuba multiplication would take 28 cycles *plus* few cycles for
# pre- and post-processing. Then multiplication has to be followed by
# modulo-reduction. Given that aggregated reduction method [see
# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
# white paper by Intel] allows you to perform reduction only once in
# a while we can assume that asymptotic performance can be estimated
# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
# and Naggr is the aggregation factor.
#
# Before we proceed to this implementation let's have closer look at
# the best-performing code suggested by Intel in their white paper.
# By tracing inter-register dependencies Tmod is estimated as ~19
# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
# processed byte. As implied, this is quite optimistic estimate,
# because it does not account for Karatsuba pre- and post-processing,
# which for a single multiplication is ~5 cycles. Unfortunately Intel
# does not provide performance data for GHASH alone. But benchmarking
# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
# the result accounts even for pre-computing of degrees of the hash
# key H, but its portion is negligible at 16KB buffer size.
#
# Moving on to the implementation in question. Tmod is estimated as
# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
# 2.16. How is it possible that measured performance is better than
# optimistic theoretical estimate? There is one thing Intel failed
# to recognize. By serializing GHASH with CTR in same subroutine
# former's performance is really limited to above (Tmul + Tmod/Naggr)
# equation. But if GHASH procedure is detached, the modulo-reduction
# can be interleaved with Naggr-1 multiplications at instruction level
# and under ideal conditions even disappear from the equation. So that
# optimistic theoretical estimate for this implementation is ...
# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
# where Tproc is time required for Karatsuba pre- and post-processing,
# is more realistic estimate. In this case it gives ... 1.91 cycles.
# Or in other words, depending on how well we can interleave reduction
# and one of the two multiplications the performance should be betwen
# 1.91 and 2.16. As already mentioned, this implementation processes
# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
# - in 2.02. x86_64 performance is better, because larger register
# bank allows to interleave reduction and multiplication better.
#
# Does it make sense to increase Naggr? To start with it's virtually
# impossible in 32-bit mode, because of limited register bank
# capacity. Otherwise improvement has to be weighed agiainst slower
# setup, as well as code size and complexity increase. As even
# optimistic estimate doesn't promise 30% performance improvement,
# there are currently no plans to increase Naggr.
#
# Special thanks to David Woodhouse <dwmw2@infradead.org> for
# providing access to a Westmere-based system on behalf of Intel
# Open Source Technology Centre.

# January 2010
#
# Tweaked to optimize transitions between integer and FP operations
# on same XMM register, PCLMULQDQ subroutine was measured to process
# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
# The minor regression on Westmere is outweighed by ~15% improvement
# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
# similar manner resulted in almost 20% degradation on Sandy Bridge,
# where original 64-bit code processes one byte in 1.95 cycles.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");

$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
$inp  = "edi";
$Htbl = "esi";

$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
		# than unrolled, which has to be weighted against
		# 2.5x x86-specific code size reduction.

sub x86_loop {
    my $off = shift;
    my $rem = "eax";

	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
	&mov	($Zll,&DWP(8,$Htbl,$Zll));
	&xor	($rem,$rem);	# avoid partial register stalls on PIII

	# shrd practically kills P4, 2.5x deterioration, but P4 has
	# MMX code-path to execute. shrd runs tad faster [than twice
	# the shifts, move's and or's] on pre-MMX Pentium (as well as
	# PIII and Core2), *but* minimizes code size, spares register
	# and thus allows to fold the loop...
	if (!$unroll) {
	my $cnt = $inp;
	&mov	($cnt,15);
	&jmp	(&label("x86_loop"));
	&set_label("x86_loop",16);
	    for($i=1;$i<=2;$i++) {
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		&mov	(&LB($rem),&BP($off,"esp",$cnt));
		if ($i&1) {
			&and	(&LB($rem),0xf0);
		} else {
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));

		if ($i&1) {
			&dec	($cnt);
			&js	(&label("x86_break"));
		} else {
			&jmp	(&label("x86_loop"));
		}
	    }
	&set_label("x86_break",16);
	} else {
	    for($i=1;$i<32;$i++) {
		&comment($i);
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		if ($i&1) {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&and	(&LB($rem),0xf0);
		} else {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));
	    }
	}
	&bswap	($Zll);
	&bswap	($Zlh);
	&bswap	($Zhl);
	if (!$x86only) {
		&bswap	($Zhh);
	} else {
		&mov	("eax",$Zhh);
		&bswap	("eax");
		&mov	($Zhh,"eax");
	}
}

if ($unroll) {
    &function_begin_B("_x86_gmult_4bit_inner");
	&x86_loop(4);
	&ret	();
    &function_end_B("_x86_gmult_4bit_inner");
}

sub deposit_rem_4bit {
    my $bias = shift;

	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
}

$suffix = $x86only ? "" : "_x86";

&function_begin("gcm_gmult_4bit".$suffix);
	&stack_push(16+4+1);			# +1 for stack alignment
	&mov	($inp,&wparam(0));		# load Xi
	&mov	($Htbl,&wparam(1));		# load Htable

	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
	&mov	($Zhl,&DWP(4,$inp));
	&mov	($Zlh,&DWP(8,$inp));
	&mov	($Zll,&DWP(12,$inp));

	&deposit_rem_4bit(16);

	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(12,"esp"),$Zll);
	&shr	($Zll,20);
	&and	($Zll,0xf0);

	if ($unroll) {
		&call	("_x86_gmult_4bit_inner");
	} else {
		&x86_loop(0);
		&mov	($inp,&wparam(0));
	}

	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(0,$inp),$Zhh);
	&stack_pop(16+4+1);
&function_end("gcm_gmult_4bit".$suffix);

&function_begin("gcm_ghash_4bit".$suffix);
	&stack_push(16+4+1);			# +1 for 64-bit alignment
	&mov	($Zll,&wparam(0));		# load Xi
	&mov	($Htbl,&wparam(1));		# load Htable
	&mov	($inp,&wparam(2));		# load in
	&mov	("ecx",&wparam(3));		# load len
	&add	("ecx",$inp);
	&mov	(&wparam(3),"ecx");

	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
	&mov	($Zhl,&DWP(4,$Zll));
	&mov	($Zlh,&DWP(8,$Zll));
	&mov	($Zll,&DWP(12,$Zll));

	&deposit_rem_4bit(16);

    &set_label("x86_outer_loop",16);
	&xor	($Zll,&DWP(12,$inp));		# xor with input
	&xor	($Zlh,&DWP(8,$inp));
	&xor	($Zhl,&DWP(4,$inp));
	&xor	($Zhh,&DWP(0,$inp));
	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(0,"esp"),$Zhh);

	&shr	($Zll,20);
	&and	($Zll,0xf0);

	if ($unroll) {
		&call	("_x86_gmult_4bit_inner");
	} else {
		&x86_loop(0);
		&mov	($inp,&wparam(2));
	}
	&lea	($inp,&DWP(16,$inp));
	&cmp	($inp,&wparam(3));
	&mov	(&wparam(2),$inp)	if (!$unroll);
	&jb	(&label("x86_outer_loop"));

	&mov	($inp,&wparam(0));	# load Xi
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(0,$inp),$Zhh);
	&stack_pop(16+4+1);
&function_end("gcm_ghash_4bit".$suffix);

if (!$x86only) {{{

&static_label("rem_4bit");

if (!$sse2) {{	# pure-MMX "May" version...

$S=12;		# shift factor for rem_4bit

&function_begin_B("_mmx_gmult_4bit_inner");
# MMX version performs 3.5 times better on P4 (see comment in non-MMX
# routine for further details), 100% better on Opteron, ~70% better
# on Core2 and PIII... In other words effort is considered to be well
# spent... Since initial release the loop was unrolled in order to
# "liberate" register previously used as loop counter. Instead it's
# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
# The path involves move of Z.lo from MMX to integer register,
# effective address calculation and finally merge of value to Z.hi.
# Reference to rem_4bit is scheduled so late that I had to >>4
# rem_4bit elements. This resulted in 20-45% procent improvement
# on contemporary µ-archs.
{
    my $cnt;
    my $rem_4bit = "eax";
    my @rem = ($Zhh,$Zll);
    my $nhi = $Zhl;
    my $nlo = $Zlh;

    my ($Zlo,$Zhi) = ("mm0","mm1");
    my $tmp = "mm2";

	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
	&mov	($nhi,$Zll);
	&mov	(&LB($nlo),&LB($nhi));
	&shl	(&LB($nlo),4);
	&and	($nhi,0xf0);
	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
	&movd	($rem[0],$Zlo);

	for ($cnt=28;$cnt>=-2;$cnt--) {
	    my $odd = $cnt&1;
	    my $nix = $odd ? $nlo : $nhi;

		&shl	(&LB($nlo),4)			if ($odd);
		&psrlq	($Zlo,4);
		&movq	($tmp,$Zhi);
		&psrlq	($Zhi,4);
		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
		&psllq	($tmp,60);
		&and	($nhi,0xf0)			if ($odd);
		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
		&and	($rem[0],0xf);
		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
		&movd	($rem[1],$Zlo);
		&pxor	($Zlo,$tmp);

		push	(@rem,shift(@rem));		# "rotate" registers
	}

	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]

	&psrlq	($Zlo,32);	# lower part of Zlo is already there
	&movd	($Zhl,$Zhi);
	&psrlq	($Zhi,32);
	&movd	($Zlh,$Zlo);
	&movd	($Zhh,$Zhi);
	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4

	&bswap	($Zll);
	&bswap	($Zhl);
	&bswap	($Zlh);
	&xor	($Zhh,$inp);
	&bswap	($Zhh);

	&ret	();
}
&function_end_B("_mmx_gmult_4bit_inner");

&function_begin("gcm_gmult_4bit_mmx");
	&mov	($inp,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&movz	($Zll,&BP(15,$inp));

	&call	("_mmx_gmult_4bit_inner");

	&mov	($inp,&wparam(0));	# load Xi
	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);
&function_end("gcm_gmult_4bit_mmx");

# Streamed version performs 20% better on P4, 7% on Opteron,
# 10% on Core2 and PIII...
&function_begin("gcm_ghash_4bit_mmx");
	&mov	($Zhh,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable
	&mov	($inp,&wparam(2));	# load in
	&mov	($Zlh,&wparam(3));	# load len

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&add	($Zlh,$inp);
	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
	&stack_push(4+1);		# +1 for stack alignment

	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
	&mov	($Zhl,&DWP(4,$Zhh));
	&mov	($Zlh,&DWP(8,$Zhh));
	&mov	($Zhh,&DWP(0,$Zhh));
	&jmp	(&label("mmx_outer_loop"));

    &set_label("mmx_outer_loop",16);
	&xor	($Zll,&DWP(12,$inp));
	&xor	($Zhl,&DWP(4,$inp));
	&xor	($Zlh,&DWP(8,$inp));
	&xor	($Zhh,&DWP(0,$inp));
	&mov	(&wparam(2),$inp);
	&mov	(&DWP(12,"esp"),$Zll);
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(0,"esp"),$Zhh);

	&mov	($inp,"esp");
	&shr	($Zll,24);

	&call	("_mmx_gmult_4bit_inner");

	&mov	($inp,&wparam(2));
	&lea	($inp,&DWP(16,$inp));
	&cmp	($inp,&wparam(3));
	&jb	(&label("mmx_outer_loop"));

	&mov	($inp,&wparam(0));	# load Xi
	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);

	&stack_pop(4+1);
&function_end("gcm_ghash_4bit_mmx");

}} else {{	# "June" MMX version...
		# ... has slower "April" gcm_gmult_4bit_mmx with folded
		# loop. This is done to conserve code size...
$S=16;		# shift factor for rem_4bit

sub mmx_loop() {
# MMX version performs 2.8 times better on P4 (see comment in non-MMX
# routine for further details), 40% better on Opteron and Core2, 50%
# better on PIII... In other words effort is considered to be well
# spent...
    my $inp = shift;
    my $rem_4bit = shift;
    my $cnt = $Zhh;
    my $nhi = $Zhl;
    my $nlo = $Zlh;
    my $rem = $Zll;

    my ($Zlo,$Zhi) = ("mm0","mm1");
    my $tmp = "mm2";

	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
	&mov	($nhi,$Zll);
	&mov	(&LB($nlo),&LB($nhi));
	&mov	($cnt,14);
	&shl	(&LB($nlo),4);
	&and	($nhi,0xf0);
	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
	&movd	($rem,$Zlo);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_loop",16);
	&psrlq	($Zlo,4);
	&and	($rem,0xf);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&dec	($cnt);
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
	&mov	($nhi,$nlo);
	&pxor	($Zlo,$tmp);
	&js	(&label("mmx_break"));

	&shl	(&LB($nlo),4);
	&and	($rem,0xf);
	&psrlq	($Zlo,4);
	&and	($nhi,0xf0);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
	&pxor	($Zlo,$tmp);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_break",16);
	&shl	(&LB($nlo),4);
	&and	($rem,0xf);
	&psrlq	($Zlo,4);
	&and	($nhi,0xf0);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
	&pxor	($Zlo,$tmp);

	&psrlq	($Zlo,4);
	&and	($rem,0xf);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
	&pxor	($Zlo,$tmp);

	&psrlq	($Zlo,32);	# lower part of Zlo is already there
	&movd	($Zhl,$Zhi);
	&psrlq	($Zhi,32);
	&movd	($Zlh,$Zlo);
	&movd	($Zhh,$Zhi);

	&bswap	($Zll);
	&bswap	($Zhl);
	&bswap	($Zlh);
	&bswap	($Zhh);
}

&function_begin("gcm_gmult_4bit_mmx");
	&mov	($inp,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&movz	($Zll,&BP(15,$inp));

	&mmx_loop($inp,"eax");

	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);
&function_end("gcm_gmult_4bit_mmx");

######################################################################
# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
# (see gcm128.c for details). It provides further 20-40% performance
# improvement over above mentioned "May" version.

&static_label("rem_8bit");

&function_begin("gcm_ghash_4bit_mmx");
{ my ($Zlo,$Zhi) = ("mm7","mm6");
  my $rem_8bit = "esi";
  my $Htbl = "ebx";

    # parameter block
    &mov	("eax",&wparam(0));		# Xi
    &mov	("ebx",&wparam(1));		# Htable
    &mov	("ecx",&wparam(2));		# inp
    &mov	("edx",&wparam(3));		# len
    &mov	("ebp","esp");			# original %esp
    &call	(&label("pic_point"));
    &set_label	("pic_point");
    &blindpop	($rem_8bit);
    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));

    &sub	("esp",512+16+16);		# allocate stack frame...
    &and	("esp",-64);			# ...and align it
    &sub	("esp",16);			# place for (u8)(H[]<<4)

    &add	("edx","ecx");			# pointer to the end of input
    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp

    { my @lo  = ("mm0","mm1","mm2");
      my @hi  = ("mm3","mm4","mm5");
      my @tmp = ("mm6","mm7");
      my ($off1,$off2,$i) = (0,0,);

      &add	($Htbl,128);			# optimize for size
      &lea	("edi",&DWP(16+128,"esp"));
      &lea	("ebp",&DWP(16+256+128,"esp"));

      # decompose Htable (low and high parts are kept separately),
      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
      for ($i=0;$i<18;$i++) {

	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
	&psllq	($tmp[1],60)				if ($i>1);
	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
	&por	($lo[2],$tmp[1])			if ($i>1);
	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
	&shl	("edx",4)				if ($i<16);
	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);

	unshift	(@lo,pop(@lo));			# "rotate" registers
	unshift	(@hi,pop(@hi));
	unshift	(@tmp,pop(@tmp));
	$off1 += 8	if ($i>0);
	$off2 += 8	if ($i>1);
      }
    }

    &movq	($Zhi,&QWP(0,"eax"));
    &mov	("ebx",&DWP(8,"eax"));
    &mov	("edx",&DWP(12,"eax"));		# load Xi

&set_label("outer",16);
  { my $nlo = "eax";
    my $dat = "edx";
    my @nhi = ("edi","ebp");
    my @rem = ("ebx","ecx");
    my @red = ("mm0","mm1","mm2");
    my $tmp = "mm3";

    &xor	($dat,&DWP(12,"ecx"));		# merge input data
    &xor	("ebx",&DWP(8,"ecx"));
    &pxor	($Zhi,&QWP(0,"ecx"));
    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
    &mov	(&DWP(528+8,"esp"),"ebx");
    &movq	(&QWP(528+0,"esp"),$Zhi);
    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp

    &xor	($nlo,$nlo);
    &rol	($dat,8);
    &mov	(&LB($nlo),&LB($dat));
    &mov	($nhi[1],$nlo);
    &and	(&LB($nlo),0x0f);
    &shr	($nhi[1],4);
    &pxor	($red[0],$red[0]);
    &rol	($dat,8);			# next byte
    &pxor	($red[1],$red[1]);
    &pxor	($red[2],$red[2]);

    # Just like in "May" verson modulo-schedule for critical path in
    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
    # is scheduled so late that rem_8bit[] has to be shifted *right*
    # by 16, which is why last argument to pinsrw is 2, which
    # corresponds to <<32=<<48>>16...
    for ($j=11,$i=0;$i<15;$i++) {

      if ($i>0) {
	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
	&rol	($dat,8);				# next byte
	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));

	&pxor	($Zlo,$tmp);
	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
      } else {
	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
      }

	&mov	(&LB($nlo),&LB($dat));
	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);

	&movd	($rem[0],$Zlo);
	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
	&psrlq	($Zlo,8);				# Z>>=8

	&movq	($tmp,$Zhi);
	&mov	($nhi[0],$nlo);
	&psrlq	($Zhi,8);

	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
	&and	(&LB($nlo),0x0f);
	&psllq	($tmp,56);

	&pxor	($Zhi,$red[1])				if ($i>1);
	&shr	($nhi[0],4);
	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);

	unshift	(@red,pop(@red));			# "rotate" registers
	unshift	(@rem,pop(@rem));
	unshift	(@nhi,pop(@nhi));
    }

    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)

    &pxor	($Zlo,$tmp);
    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
    &movz	($rem[1],&LB($rem[1]));

    &pxor	($red[2],$red[2]);			# clear 2nd word
    &psllq	($red[1],4);

    &movd	($rem[0],$Zlo);
    &psrlq	($Zlo,4);				# Z>>=4

    &movq	($tmp,$Zhi);
    &psrlq	($Zhi,4);
    &shl	($rem[0],4);				# rem<<4

    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
    &psllq	($tmp,60);
    &movz	($rem[0],&LB($rem[0]));

    &pxor	($Zlo,$tmp);
    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));

    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
    &pxor	($Zhi,$red[1]);

    &movd	($dat,$Zlo);
    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48

    &psllq	($red[0],12);				# correct by <<16>>4
    &pxor	($Zhi,$red[0]);
    &psrlq	($Zlo,32);
    &pxor	($Zhi,$red[2]);

    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
    &movd	("ebx",$Zlo);
    &movq	($tmp,$Zhi);			# 01234567
    &psllw	($Zhi,8);			# 1.3.5.7.
    &psrlw	($tmp,8);			# .0.2.4.6
    &por	($Zhi,$tmp);			# 10325476
    &bswap	($dat);
    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
    &bswap	("ebx");
    
    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
    &jne	(&label("outer"));
  }

    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
    &mov	(&DWP(12,"eax"),"edx");
    &mov	(&DWP(8,"eax"),"ebx");
    &movq	(&QWP(0,"eax"),$Zhi);

    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
    &emms	();
}
&function_end("gcm_ghash_4bit_mmx");
}}

if ($sse2) {{
######################################################################
# PCLMULQDQ version.

$Xip="eax";
$Htbl="edx";
$const="ecx";
$inp="esi";
$len="ebx";

($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
($Xn,$Xhn)=("xmm6","xmm7");

&static_label("bswap");

sub clmul64x64_T2 {	# minimal "register" pressure
my ($Xhi,$Xi,$Hkey)=@_;

	&movdqa		($Xhi,$Xi);		#
	&pshufd		($T1,$Xi,0b01001110);
	&pshufd		($T2,$Hkey,0b01001110);
	&pxor		($T1,$Xi);		#
	&pxor		($T2,$Hkey);

	&pclmulqdq	($Xi,$Hkey,0x00);	#######
	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
	&pclmulqdq	($T1,$T2,0x00);		#######
	&xorps		($T1,$Xi);		#
	&xorps		($T1,$Xhi);		#

	&movdqa		($T2,$T1);		#
	&psrldq		($T1,8);
	&pslldq		($T2,8);		#
	&pxor		($Xhi,$T1);
	&pxor		($Xi,$T2);		#
}

sub clmul64x64_T3 {
# Even though this subroutine offers visually better ILP, it
# was empirically found to be a tad slower than above version.
# At least in gcm_ghash_clmul context. But it's just as well,
# because loop modulo-scheduling is possible only thanks to
# minimized "register" pressure...
my ($Xhi,$Xi,$Hkey)=@_;

	&movdqa		($T1,$Xi);		#
	&movdqa		($Xhi,$Xi);
	&pclmulqdq	($Xi,$Hkey,0x00);	#######
	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
	&pshufd		($T2,$T1,0b01001110);	#
	&pshufd		($T3,$Hkey,0b01001110);
	&pxor		($T2,$T1);		#
	&pxor		($T3,$Hkey);
	&pclmulqdq	($T2,$T3,0x00);		#######
	&pxor		($T2,$Xi);		#
	&pxor		($T2,$Xhi);		#

	&movdqa		($T3,$T2);		#
	&psrldq		($T2,8);
	&pslldq		($T3,8);		#
	&pxor		($Xhi,$T2);
	&pxor		($Xi,$T3);		#
}

if (1) {		# Algorithm 9 with <<1 twist.
			# Reduction is shorter and uses only two
			# temporary registers, which makes it better
			# candidate for interleaving with 64x64
			# multiplication. Pre-modulo-scheduled loop
			# was found to be ~20% faster than Algorithm 5
			# below. Algorithm 9 was therefore chosen for
			# further optimization...

sub reduction_alg9 {	# 17/13 times faster than Intel version
my ($Xhi,$Xi) = @_;

	# 1st phase
	&movdqa		($T1,$Xi);		#
	&psllq		($Xi,1);
	&pxor		($Xi,$T1);		#
	&psllq		($Xi,5);		#
	&pxor		($Xi,$T1);		#
	&psllq		($Xi,57);		#
	&movdqa		($T2,$Xi);		#
	&pslldq		($Xi,8);
	&psrldq		($T2,8);		#
	&pxor		($Xi,$T1);
	&pxor		($Xhi,$T2);		#

	# 2nd phase
	&movdqa		($T2,$Xi);
	&psrlq		($Xi,5);
	&pxor		($Xi,$T2);		#
	&psrlq		($Xi,1);		#
	&pxor		($Xi,$T2);		#
	&pxor		($T2,$Xhi);
	&psrlq		($Xi,1);		#
	&pxor		($Xi,$T2);		#
}

&function_begin_B("gcm_init_clmul");
	&mov		($Htbl,&wparam(0));
	&mov		($Xip,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Hkey,&QWP(0,$Xip));
	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap

	# <<1 twist
	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
	&movdqa		($T1,$Hkey);
	&psllq		($Hkey,1);
	&pxor		($T3,$T3);		#
	&psrlq		($T1,63);
	&pcmpgtd	($T3,$T2);		# broadcast carry bit
	&pslldq		($T1,8);
	&por		($Hkey,$T1);		# H<<=1

	# magic reduction
	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial

	# calculate H^2
	&movdqa		($Xi,$Hkey);
	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
	&reduction_alg9	($Xhi,$Xi);

	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2

	&ret		();
&function_end_B("gcm_init_clmul");

&function_begin_B("gcm_gmult_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($T3,&QWP(0,$const));
	&movups		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$T3);

	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
	&reduction_alg9	($Xhi,$Xi);

	&pshufb		($Xi,$T3);
	&movdqu		(&QWP(0,$Xip),$Xi);

	&ret	();
&function_end_B("gcm_gmult_clmul");

&function_begin("gcm_ghash_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));
	&mov		($inp,&wparam(2));
	&mov		($len,&wparam(3));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($T3,&QWP(0,$const));
	&movdqu		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$T3);

	&sub		($len,0x10);
	&jz		(&label("odd_tail"));

	#######
	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
	#	[(H*Ii+1) + (H*Xi+1)] mod P =
	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
	#
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
	&pshufb		($T1,$T3);
	&pshufb		($Xn,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T2	($Xhn,$Xn,$Hkey);	# H*Ii+1
	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2