aes-586.pl 101 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Version 4.3.
#
# You might fail to appreciate this module performance from the first
# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
# to be *the* best Intel C compiler without -KPIC, performance appears
# to be virtually identical... But try to re-configure with shared
# library support... Aha! Intel compiler "suddenly" lags behind by 30%
# [on P4, more on others]:-) And if compared to position-independent
# code generated by GNU C, this code performs *more* than *twice* as
# fast! Yes, all this buzz about PIC means that unlike other hand-
# coded implementations, this one was explicitly designed to be safe
# to use even in shared library context... This also means that this
# code isn't necessarily absolutely fastest "ever," because in order
# to achieve position independence an extra register has to be
# off-loaded to stack, which affects the benchmark result.
#
# Special note about instruction choice. Do you recall RC4_INT code
# performing poorly on P4? It might be the time to figure out why.
# RC4_INT code implies effective address calculations in base+offset*4
# form. Trouble is that it seems that offset scaling turned to be
# critical path... At least eliminating scaling resulted in 2.8x RC4
# performance improvement [as you might recall]. As AES code is hungry
# for scaling too, I [try to] avoid the latter by favoring off-by-2
# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
#
# As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
# void. Performance improvement with off-by-2 shifts was observed on
# intermediate implementation, which was spilling yet another register
# to stack... Final offset*4 code below runs just a tad faster on P4,
# but exhibits up to 10% improvement on other cores.
#
# Second version is "monolithic" replacement for aes_core.c, which in
# addition to AES_[de|en]crypt implements private_AES_set_[de|en]cryption_key.
# This made it possible to implement little-endian variant of the
# algorithm without modifying the base C code. Motivating factor for
# the undertaken effort was that it appeared that in tight IA-32
# register window little-endian flavor could achieve slightly higher
# Instruction Level Parallelism, and it indeed resulted in up to 15%
# better performance on most recent µ-archs...
#
# Third version adds AES_cbc_encrypt implementation, which resulted in
# up to 40% performance imrovement of CBC benchmark results. 40% was
# observed on P4 core, where "overall" imrovement coefficient, i.e. if
# compared to PIC generated by GCC and in CBC mode, was observed to be
# as large as 4x:-) CBC performance is virtually identical to ECB now
# and on some platforms even better, e.g. 17.6 "small" cycles/byte on
# Opteron, because certain function prologues and epilogues are
# effectively taken out of the loop...
#
# Version 3.2 implements compressed tables and prefetch of these tables
# in CBC[!] mode. Former means that 3/4 of table references are now
# misaligned, which unfortunately has negative impact on elder IA-32
# implementations, Pentium suffered 30% penalty, PIII - 10%.
#
# Version 3.3 avoids L1 cache aliasing between stack frame and
# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
# latter is achieved by copying the key schedule to controlled place in
# stack. This unfortunately has rather strong impact on small block CBC
# performance, ~2x deterioration on 16-byte block if compared to 3.3.
#
# Version 3.5 checks if there is L1 cache aliasing between user-supplied
# key schedule and S-boxes and abstains from copying the former if
# there is no. This allows end-user to consciously retain small block
# performance by aligning key schedule in specific manner.
#
# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
#
# Current ECB performance numbers for 128-bit key in CPU cycles per
# processed byte [measure commonly used by AES benchmarkers] are:
#
#		small footprint		fully unrolled
# P4		24			22
# AMD K8	20			19
# PIII		25			23
# Pentium	81			78
#
# Version 3.7 reimplements outer rounds as "compact." Meaning that
# first and last rounds reference compact 256 bytes S-box. This means
# that first round consumes a lot more CPU cycles and that encrypt
# and decrypt performance becomes asymmetric. Encrypt performance
# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
# aggressively pre-fetched.
#
# Version 4.0 effectively rolls back to 3.6 and instead implements
# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
# which use exclusively 256 byte S-box. These functions are to be
# called in modes not concealing plain text, such as ECB, or when
# we're asked to process smaller amount of data [or unconditionally
# on hyper-threading CPU]. Currently it's called unconditionally from
# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
# still needs to be modified to switch between slower and faster
# mode when appropriate... But in either case benchmark landscape
# changes dramatically and below numbers are CPU cycles per processed
# byte for 128-bit key.
#
#		ECB encrypt	ECB decrypt	CBC large chunk
# P4		56[60]		84[100]		23
# AMD K8	48[44]		70[79]		18
# PIII		41[50]		61[91]		24
# Core 2	32[38]		45[70]		18.5
# Pentium	120		160		77
#
# Version 4.1 switches to compact S-box even in key schedule setup.
#
# Version 4.2 prefetches compact S-box in every SSE round or in other
# words every cache-line is *guaranteed* to be accessed within ~50
# cycles window. Why just SSE? Because it's needed on hyper-threading
# CPU! Which is also why it's prefetched with 64 byte stride. Best
# part is that it has no negative effect on performance:-)  
#
# Version 4.3 implements switch between compact and non-compact block
# functions in AES_cbc_encrypt depending on how much data was asked
# to be processed in one stroke.
#
######################################################################
# Timing attacks are classified in two classes: synchronous when
# attacker consciously initiates cryptographic operation and collects
# timing data of various character afterwards, and asynchronous when
# malicious code is executed on same CPU simultaneously with AES,
# instruments itself and performs statistical analysis of this data.
#
# As far as synchronous attacks go the root to the AES timing
# vulnerability is twofold. Firstly, of 256 S-box elements at most 160
# are referred to in single 128-bit block operation. Well, in C
# implementation with 4 distinct tables it's actually as little as 40
# references per 256 elements table, but anyway... Secondly, even
# though S-box elements are clustered into smaller amount of cache-
# lines, smaller than 160 and even 40, it turned out that for certain
# plain-text pattern[s] or simply put chosen plain-text and given key
# few cache-lines remain unaccessed during block operation. Now, if
# attacker can figure out this access pattern, he can deduct the key
# [or at least part of it]. The natural way to mitigate this kind of
# attacks is to minimize the amount of cache-lines in S-box and/or
# prefetch them to ensure that every one is accessed for more uniform
# timing. But note that *if* plain-text was concealed in such way that
# input to block function is distributed *uniformly*, then attack
# wouldn't apply. Now note that some encryption modes, most notably
# CBC, do mask the plain-text in this exact way [secure cipher output
# is distributed uniformly]. Yes, one still might find input that
# would reveal the information about given key, but if amount of
# candidate inputs to be tried is larger than amount of possible key
# combinations then attack becomes infeasible. This is why revised
# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
# of data is to be processed in one stroke. The current size limit of
# 512 bytes is chosen to provide same [diminishigly low] probability
# for cache-line to remain untouched in large chunk operation with
# large S-box as for single block operation with compact S-box and
# surely needs more careful consideration...
#
# As for asynchronous attacks. There are two flavours: attacker code
# being interleaved with AES on hyper-threading CPU at *instruction*
# level, and two processes time sharing single core. As for latter.
# Two vectors. 1. Given that attacker process has higher priority,
# yield execution to process performing AES just before timer fires
# off the scheduler, immediately regain control of CPU and analyze the
# cache state. For this attack to be efficient attacker would have to
# effectively slow down the operation by several *orders* of magnitute,
# by ratio of time slice to duration of handful of AES rounds, which
# unlikely to remain unnoticed. Not to mention that this also means
# that he would spend correspondigly more time to collect enough
# statistical data to mount the attack. It's probably appropriate to
# say that if adeversary reckons that this attack is beneficial and
# risks to be noticed, you probably have larger problems having him
# mere opportunity. In other words suggested code design expects you
# to preclude/mitigate this attack by overall system security design.
# 2. Attacker manages to make his code interrupt driven. In order for
# this kind of attack to be feasible, interrupt rate has to be high
# enough, again comparable to duration of handful of AES rounds. But
# is there interrupt source of such rate? Hardly, not even 1Gbps NIC
# generates interrupts at such raging rate...
#
# And now back to the former, hyper-threading CPU or more specifically
# Intel P4. Recall that asynchronous attack implies that malicious
# code instruments itself. And naturally instrumentation granularity
# has be noticeably lower than duration of codepath accessing S-box.
# Given that all cache-lines are accessed during that time that is.
# Current implementation accesses *all* cache-lines within ~50 cycles
# window, which is actually *less* than RDTSC latency on Intel P4!

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
&static_label("AES_Te");
&static_label("AES_Td");

$s0="eax";
$s1="ebx";
$s2="ecx";
$s3="edx";
$key="edi";
$acc="esi";
$tbl="ebp";

# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
# by caller
$__ra=&DWP(0,"esp");	# return address
$__s0=&DWP(4,"esp");	# s0 backing store
$__s1=&DWP(8,"esp");	# s1 backing store
$__s2=&DWP(12,"esp");	# s2 backing store
$__s3=&DWP(16,"esp");	# s3 backing store
$__key=&DWP(20,"esp");	# pointer to key schedule
$__end=&DWP(24,"esp");	# pointer to end of key schedule
$__tbl=&DWP(28,"esp");	# %ebp backing store

# stack frame layout in AES_[en|crypt] routines, which differs from
# above by 4 and overlaps by %ebp backing store
$_tbl=&DWP(24,"esp");
$_esp=&DWP(28,"esp");

sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }

$speed_limit=512;	# chunks smaller than $speed_limit are
			# processed with compact routine in CBC mode
$small_footprint=1;	# $small_footprint=1 code is ~5% slower [on
			# recent µ-archs], but ~5 times smaller!
			# I favor compact code to minimize cache
			# contention and in hope to "collect" 5% back
			# in real-life applications...

$vertical_spin=0;	# shift "verticaly" defaults to 0, because of
			# its proof-of-concept status...
# Note that there is no decvert(), as well as last encryption round is
# performed with "horizontal" shifts. This is because this "vertical"
# implementation [one which groups shifts on a given $s[i] to form a
# "column," unlike "horizontal" one, which groups shifts on different
# $s[i] to form a "row"] is work in progress. It was observed to run
# few percents faster on Intel cores, but not AMD. On AMD K8 core it's
# whole 12% slower:-( So we face a trade-off... Shall it be resolved
# some day? Till then the code is considered experimental and by
# default remains dormant...

sub encvert()
{ my ($te,@s) = @_;
  my $v0 = $acc, $v1 = $key;

	&mov	($v0,$s[3]);				# copy s3
	&mov	(&DWP(4,"esp"),$s[2]);			# save s2
	&mov	($v1,$s[0]);				# copy s0
	&mov	(&DWP(8,"esp"),$s[1]);			# save s1

	&movz	($s[2],&HB($s[0]));
	&and	($s[0],0xFF);
	&mov	($s[0],&DWP(0,$te,$s[0],8));		# s0>>0
	&shr	($v1,16);
	&mov	($s[3],&DWP(3,$te,$s[2],8));		# s0>>8
	&movz	($s[1],&HB($v1));
	&and	($v1,0xFF);
	&mov	($s[2],&DWP(2,$te,$v1,8));		# s0>>16
	 &mov	($v1,$v0);
	&mov	($s[1],&DWP(1,$te,$s[1],8));		# s0>>24

	&and	($v0,0xFF);
	&xor	($s[3],&DWP(0,$te,$v0,8));		# s3>>0
	&movz	($v0,&HB($v1));
	&shr	($v1,16);
	&xor	($s[2],&DWP(3,$te,$v0,8));		# s3>>8
	&movz	($v0,&HB($v1));
	&and	($v1,0xFF);
	&xor	($s[1],&DWP(2,$te,$v1,8));		# s3>>16
	 &mov	($v1,&DWP(4,"esp"));			# restore s2
	&xor	($s[0],&DWP(1,$te,$v0,8));		# s3>>24

	&mov	($v0,$v1);
	&and	($v1,0xFF);
	&xor	($s[2],&DWP(0,$te,$v1,8));		# s2>>0
	&movz	($v1,&HB($v0));
	&shr	($v0,16);
	&xor	($s[1],&DWP(3,$te,$v1,8));		# s2>>8
	&movz	($v1,&HB($v0));
	&and	($v0,0xFF);
	&xor	($s[0],&DWP(2,$te,$v0,8));		# s2>>16
	 &mov	($v0,&DWP(8,"esp"));			# restore s1
	&xor	($s[3],&DWP(1,$te,$v1,8));		# s2>>24

	&mov	($v1,$v0);
	&and	($v0,0xFF);
	&xor	($s[1],&DWP(0,$te,$v0,8));		# s1>>0
	&movz	($v0,&HB($v1));
	&shr	($v1,16);
	&xor	($s[0],&DWP(3,$te,$v0,8));		# s1>>8
	&movz	($v0,&HB($v1));
	&and	($v1,0xFF);
	&xor	($s[3],&DWP(2,$te,$v1,8));		# s1>>16
	 &mov	($key,$__key);				# reincarnate v1 as key
	&xor	($s[2],&DWP(1,$te,$v0,8));		# s1>>24
}

# Another experimental routine, which features "horizontal spin," but
# eliminates one reference to stack. Strangely enough runs slower...
sub enchoriz()
{ my $v0 = $key, $v1 = $acc;

	&movz	($v0,&LB($s0));			#  3, 2, 1, 0*
	&rotr	($s2,8);			#  8,11,10, 9
	&mov	($v1,&DWP(0,$te,$v0,8));	#  0
	&movz	($v0,&HB($s1));			#  7, 6, 5*, 4
	&rotr	($s3,16);			# 13,12,15,14
	&xor	($v1,&DWP(3,$te,$v0,8));	#  5
	&movz	($v0,&HB($s2));			#  8,11,10*, 9
	&rotr	($s0,16);			#  1, 0, 3, 2
	&xor	($v1,&DWP(2,$te,$v0,8));	# 10
	&movz	($v0,&HB($s3));			# 13,12,15*,14
	&xor	($v1,&DWP(1,$te,$v0,8));	# 15, t[0] collected
	&mov	($__s0,$v1);			# t[0] saved

	&movz	($v0,&LB($s1));			#  7, 6, 5, 4*
	&shr	($s1,16);			#  -, -, 7, 6
	&mov	($v1,&DWP(0,$te,$v0,8));	#  4
	&movz	($v0,&LB($s3));			# 13,12,15,14*
	&xor	($v1,&DWP(2,$te,$v0,8));	# 14
	&movz	($v0,&HB($s0));			#  1, 0, 3*, 2
	&and	($s3,0xffff0000);		# 13,12, -, -
	&xor	($v1,&DWP(1,$te,$v0,8));	#  3
	&movz	($v0,&LB($s2));			#  8,11,10, 9*
	&or	($s3,$s1);			# 13,12, 7, 6
	&xor	($v1,&DWP(3,$te,$v0,8));	#  9, t[1] collected
	&mov	($s1,$v1);			#  s[1]=t[1]

	&movz	($v0,&LB($s0));			#  1, 0, 3, 2*
	&shr	($s2,16);			#  -, -, 8,11
	&mov	($v1,&DWP(2,$te,$v0,8));	#  2
	&movz	($v0,&HB($s3));			# 13,12, 7*, 6
	&xor	($v1,&DWP(1,$te,$v0,8));	#  7
	&movz	($v0,&HB($s2));			#  -, -, 8*,11
	&xor	($v1,&DWP(0,$te,$v0,8));	#  8
	&mov	($v0,$s3);
	&shr	($v0,24);			# 13
	&xor	($v1,&DWP(3,$te,$v0,8));	# 13, t[2] collected

	&movz	($v0,&LB($s2));			#  -, -, 8,11*
	&shr	($s0,24);			#  1*
	&mov	($s2,&DWP(1,$te,$v0,8));	# 11
	&xor	($s2,&DWP(3,$te,$s0,8));	#  1
	&mov	($s0,$__s0);			# s[0]=t[0]
	&movz	($v0,&LB($s3));			# 13,12, 7, 6*
	&shr	($s3,16);			#   ,  ,13,12
	&xor	($s2,&DWP(2,$te,$v0,8));	#  6
	&mov	($key,$__key);			# reincarnate v0 as key
	&and	($s3,0xff);			#   ,  ,13,12*
	&mov	($s3,&DWP(0,$te,$s3,8));	# 12
	&xor	($s3,$s2);			# s[2]=t[3] collected
	&mov	($s2,$v1);			# s[2]=t[2]
}

# More experimental code... SSE one... Even though this one eliminates
# *all* references to stack, it's not faster...
sub sse_encbody()
{
	&movz	($acc,&LB("eax"));		#  0
	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  0
	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
	&movz	("edx",&HB("eax"));		#  1
	&mov	("edx",&DWP(3,$tbl,"edx",8));	#  1
	&shr	("eax",16);			#  5, 4

	&movz	($acc,&LB("ebx"));		# 10
	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 10
	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
	&movz	($acc,&HB("ebx"));		# 11
	&xor	("edx",&DWP(1,$tbl,$acc,8));	# 11
	&shr	("ebx",16);			# 15,14

	&movz	($acc,&HB("eax"));		#  5
	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  5
	&movq	("mm3",QWP(16,$key));
	&movz	($acc,&HB("ebx"));		# 15
	&xor	("ecx",&DWP(1,$tbl,$acc,8));	# 15
	&movd	("mm0","ecx");			# t[0] collected

	&movz	($acc,&LB("eax"));		#  4
	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  4
	&movd	("eax","mm2");			#  7, 6, 3, 2
	&movz	($acc,&LB("ebx"));		# 14
	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 14
	&movd	("ebx","mm6");			# 13,12, 9, 8

	&movz	($acc,&HB("eax"));		#  3
	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  3
	&movz	($acc,&HB("ebx"));		#  9
	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  9
	&movd	("mm1","ecx");			# t[1] collected

	&movz	($acc,&LB("eax"));		#  2
	&mov	("ecx",&DWP(2,$tbl,$acc,8));	#  2
	&shr	("eax",16);			#  7, 6
	&punpckldq	("mm0","mm1");		# t[0,1] collected
	&movz	($acc,&LB("ebx"));		#  8
	&xor	("ecx",&DWP(0,$tbl,$acc,8));	#  8
	&shr	("ebx",16);			# 13,12

	&movz	($acc,&HB("eax"));		#  7
	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  7
	&pxor	("mm0","mm3");
	&movz	("eax",&LB("eax"));		#  6
	&xor	("edx",&DWP(2,$tbl,"eax",8));	#  6
	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
	&movz	($acc,&HB("ebx"));		# 13
	&xor	("ecx",&DWP(3,$tbl,$acc,8));	# 13
	&xor	("ecx",&DWP(24,$key));		# t[2]
	&movd	("mm4","ecx");			# t[2] collected
	&movz	("ebx",&LB("ebx"));		# 12
	&xor	("edx",&DWP(0,$tbl,"ebx",8));	# 12
	&shr	("ecx",16);
	&movd	("eax","mm1");			#  5, 4, 1, 0
	&mov	("ebx",&DWP(28,$key));		# t[3]
	&xor	("ebx","edx");
	&movd	("mm5","ebx");			# t[3] collected
	&and	("ebx",0xffff0000);
	&or	("ebx","ecx");

	&punpckldq	("mm4","mm5");		# t[2,3] collected
}

######################################################################
# "Compact" block function
######################################################################

sub enccompact()
{ my $Fn = mov;
  while ($#_>5) { pop(@_); $Fn=sub{}; }
  my ($i,$te,@s)=@_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	# $Fn is used in first compact round and its purpose is to
	# void restoration of some values from stack, so that after
	# 4xenccompact with extra argument $key value is left there...
	if ($i==3)  {	&$Fn	($key,$__key);			}##%edx
	else        {	&mov	($out,$s[0]);			}
			&and	($out,0xFF);
	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
			&movz	($out,&BP(-128,$te,$out,1));

	if ($i==3)  {	$tmp=$s[1];				}##%eax
			&movz	($tmp,&HB($s[1]));
			&movz	($tmp,&BP(-128,$te,$tmp,1));
			&shl	($tmp,8);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
	else        {	&mov	($tmp,$s[2]);
			&shr	($tmp,16);			}
	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
			&and	($tmp,0xFF);
			&movz	($tmp,&BP(-128,$te,$tmp,1));
			&shl	($tmp,16);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
	else        {	&mov	($tmp,$s[3]);
			&shr	($tmp,24);			}
			&movz	($tmp,&BP(-128,$te,$tmp,1));
			&shl	($tmp,24);
			&xor	($out,$tmp);
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&mov	($s[3],$acc);			}
	&comment();
}

sub enctransform()
{ my @s = ($s0,$s1,$s2,$s3);
  my $i = shift;
  my $tmp = $tbl;
  my $r2  = $key ;

	&mov	($acc,$s[$i]);
	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($r2,&DWP(0,$s[$i],$s[$i]));
	&sub	($acc,$tmp);
	&and	($r2,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	&mov	($tmp,$s[$i]);
	&xor	($acc,$r2);	# r2

	&xor	($s[$i],$acc);	# r0 ^ r2
	&rotl	($s[$i],24);
	&xor	($s[$i],$acc)	# ROTATE(r2^r0,24) ^ r2
	&rotr	($tmp,16);
	&xor	($s[$i],$tmp);
	&rotr	($tmp,8);
	&xor	($s[$i],$tmp);
}

&function_begin_B("_x86_AES_encrypt_compact");
	# note that caller is expected to allocate stack frame for me!
	&mov	($__key,$key);			# save key

	&xor	($s0,&DWP(0,$key));		# xor with key
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&mov	($acc,&DWP(240,$key));		# load key->rounds
	&lea	($acc,&DWP(-2,$acc,$acc));
	&lea	($acc,&DWP(0,$key,$acc,8));
	&mov	($__end,$acc);			# end of key schedule

	# prefetch Te4
	&mov	($key,&DWP(0-128,$tbl));
	&mov	($acc,&DWP(32-128,$tbl));
	&mov	($key,&DWP(64-128,$tbl));
	&mov	($acc,&DWP(96-128,$tbl));
	&mov	($key,&DWP(128-128,$tbl));
	&mov	($acc,&DWP(160-128,$tbl));
	&mov	($key,&DWP(192-128,$tbl));
	&mov	($acc,&DWP(224-128,$tbl));

	&set_label("loop",16);

		&enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
		&enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
		&enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
		&enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
		&enctransform(2);
		&enctransform(3);
		&enctransform(0);
		&enctransform(1);
		&mov 	($key,$__key);
		&mov	($tbl,$__tbl);
		&add	($key,16);		# advance rd_key
		&xor	($s0,&DWP(0,$key));
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));

	&cmp	($key,$__end);
	&mov	($__key,$key);
	&jb	(&label("loop"));

	&enccompact(0,$tbl,$s0,$s1,$s2,$s3);
	&enccompact(1,$tbl,$s1,$s2,$s3,$s0);
	&enccompact(2,$tbl,$s2,$s3,$s0,$s1);
	&enccompact(3,$tbl,$s3,$s0,$s1,$s2);

	&xor	($s0,&DWP(16,$key));
	&xor	($s1,&DWP(20,$key));
	&xor	($s2,&DWP(24,$key));
	&xor	($s3,&DWP(28,$key));

	&ret	();
&function_end_B("_x86_AES_encrypt_compact");

######################################################################
# "Compact" SSE block function.
######################################################################
#
# Performance is not actually extraordinary in comparison to pure
# x86 code. In particular encrypt performance is virtually the same.
# Decrypt performance on the other hand is 15-20% better on newer
# µ-archs [but we're thankful for *any* improvement here], and ~50%
# better on PIII:-) And additionally on the pros side this code
# eliminates redundant references to stack and thus relieves/
# minimizes the pressure on the memory bus.
#
# MMX register layout                           lsb
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
# |          mm4          |          mm0          |
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
# |     s3    |     s2    |     s1    |     s0    |    
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
#
# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
# In this terms encryption and decryption "compact" permutation
# matrices can be depicted as following:
#
# encryption              lsb	# decryption              lsb
# +----++----+----+----+----+	# +----++----+----+----+----+
# | t0 || 15 | 10 |  5 |  0 |	# | t0 ||  7 | 10 | 13 |  0 |
# +----++----+----+----+----+	# +----++----+----+----+----+
# | t1 ||  3 | 14 |  9 |  4 |	# | t1 || 11 | 14 |  1 |  4 |
# +----++----+----+----+----+	# +----++----+----+----+----+
# | t2 ||  7 |  2 | 13 |  8 |	# | t2 || 15 |  2 |  5 |  8 |
# +----++----+----+----+----+	# +----++----+----+----+----+
# | t3 || 11 |  6 |  1 | 12 |	# | t3 ||  3 |  6 |  9 | 12 |
# +----++----+----+----+----+	# +----++----+----+----+----+
#
######################################################################
# Why not xmm registers? Short answer. It was actually tested and
# was not any faster, but *contrary*, most notably on Intel CPUs.
# Longer answer. Main advantage of using mm registers is that movd
# latency is lower, especially on Intel P4. While arithmetic
# instructions are twice as many, they can be scheduled every cycle
# and not every second one when they are operating on xmm register,
# so that "arithmetic throughput" remains virtually the same. And
# finally the code can be executed even on elder SSE-only CPUs:-)

sub sse_enccompact()
{
	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
	&pshufw	("mm5","mm4",0x0d);		# 15,14,11,10
	&movd	("eax","mm1");			#  5, 4, 1, 0
	&movd	("ebx","mm5");			# 15,14,11,10

	&movz	($acc,&LB("eax"));		#  0
	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
	&movz	("edx",&HB("eax"));		#  1
	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
	&shl	("edx",8);			#  1
	&shr	("eax",16);			#  5, 4

	&movz	($acc,&LB("ebx"));		# 10
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 10
	&shl	($acc,16);			# 10
	&or	("ecx",$acc);			# 10
	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
	&movz	($acc,&HB("ebx"));		# 11
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 11
	&shl	($acc,24);			# 11
	&or	("edx",$acc);			# 11
	&shr	("ebx",16);			# 15,14

	&movz	($acc,&HB("eax"));		#  5
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  5
	&shl	($acc,8);			#  5
	&or	("ecx",$acc);			#  5
	&movz	($acc,&HB("ebx"));		# 15
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 15
	&shl	($acc,24);			# 15
	&or	("ecx",$acc);			# 15
	&movd	("mm0","ecx");			# t[0] collected

	&movz	($acc,&LB("eax"));		#  4
	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  4
	&movd	("eax","mm2");			#  7, 6, 3, 2
	&movz	($acc,&LB("ebx"));		# 14
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 14
	&shl	($acc,16);			# 14
	&or	("ecx",$acc);			# 14

	&movd	("ebx","mm6");			# 13,12, 9, 8
	&movz	($acc,&HB("eax"));		#  3
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  3
	&shl	($acc,24);			#  3
	&or	("ecx",$acc);			#  3
	&movz	($acc,&HB("ebx"));		#  9
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  9
	&shl	($acc,8);			#  9
	&or	("ecx",$acc);			#  9
	&movd	("mm1","ecx");			# t[1] collected

	&movz	($acc,&LB("ebx"));		#  8
	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  8
	&shr	("ebx",16);			# 13,12
	&movz	($acc,&LB("eax"));		#  2
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  2
	&shl	($acc,16);			#  2
	&or	("ecx",$acc);			#  2
	&shr	("eax",16);			#  7, 6

	&punpckldq	("mm0","mm1");		# t[0,1] collected

	&movz	($acc,&HB("eax"));		#  7
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  7
	&shl	($acc,24);			#  7
	&or	("ecx",$acc);			#  7
	&and	("eax",0xff);			#  6
	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  6
	&shl	("eax",16);			#  6
	&or	("edx","eax");			#  6
	&movz	($acc,&HB("ebx"));		# 13
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 13
	&shl	($acc,8);			# 13
	&or	("ecx",$acc);			# 13
	&movd	("mm4","ecx");			# t[2] collected
	&and	("ebx",0xff);			# 12
	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	# 12
	&or	("edx","ebx");			# 12
	&movd	("mm5","edx");			# t[3] collected

	&punpckldq	("mm4","mm5");		# t[2,3] collected
}

					if (!$x86only) {
&function_begin_B("_sse_AES_encrypt_compact");
	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8

	# note that caller is expected to allocate stack frame for me!
	&mov	($acc,&DWP(240,$key));		# load key->rounds
	&lea	($acc,&DWP(-2,$acc,$acc));
	&lea	($acc,&DWP(0,$key,$acc,8));
	&mov	($__end,$acc);			# end of key schedule

	&mov	($s0,0x1b1b1b1b);		# magic constant
	&mov	(&DWP(8,"esp"),$s0);
	&mov	(&DWP(12,"esp"),$s0);

	# prefetch Te4
	&mov	($s0,&DWP(0-128,$tbl));
	&mov	($s1,&DWP(32-128,$tbl));
	&mov	($s2,&DWP(64-128,$tbl));
	&mov	($s3,&DWP(96-128,$tbl));
	&mov	($s0,&DWP(128-128,$tbl));
	&mov	($s1,&DWP(160-128,$tbl));
	&mov	($s2,&DWP(192-128,$tbl));
	&mov	($s3,&DWP(224-128,$tbl));

	&set_label("loop",16);
		&sse_enccompact();
		&add	($key,16);
		&cmp	($key,$__end);
		&ja	(&label("out"));

		&movq	("mm2",&QWP(8,"esp"));
		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
		&movq	("mm1","mm0");		&movq	("mm5","mm4");	# r0
		&pcmpgtb("mm3","mm0");		&pcmpgtb("mm7","mm4");
		&pand	("mm3","mm2");		&pand	("mm7","mm2");
		&pshufw	("mm2","mm0",0xb1);	&pshufw	("mm6","mm4",0xb1);# ROTATE(r0,16)
		&paddb	("mm0","mm0");		&paddb	("mm4","mm4");
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# = r2
		&pshufw	("mm3","mm2",0xb1);	&pshufw	("mm7","mm6",0xb1);# r0
		&pxor	("mm1","mm0");		&pxor	("mm5","mm4");	# r0^r2
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(r0,16)

		&movq	("mm2","mm3");		&movq	("mm6","mm7");
		&pslld	("mm3",8);		&pslld	("mm7",8);
		&psrld	("mm2",24);		&psrld	("mm6",24);
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= r0<<8
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= r0>>24

		&movq	("mm3","mm1");		&movq	("mm7","mm5");
		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
		&psrld	("mm1",8);		&psrld	("mm5",8);
		&mov	($s0,&DWP(0-128,$tbl));
		&pslld	("mm3",24);		&pslld	("mm7",24);
		&mov	($s1,&DWP(64-128,$tbl));
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= (r2^r0)<<8
		&mov	($s2,&DWP(128-128,$tbl));
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= (r2^r0)>>24
		&mov	($s3,&DWP(192-128,$tbl));

		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
	&jmp	(&label("loop"));

	&set_label("out",16);
	&pxor	("mm0",&QWP(0,$key));
	&pxor	("mm4",&QWP(8,$key));

	&ret	();
&function_end_B("_sse_AES_encrypt_compact");
					}

######################################################################
# Vanilla block function.
######################################################################

sub encstep()
{ my ($i,$te,@s) = @_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	# lines marked with #%e?x[i] denote "reordered" instructions...
	if ($i==3)  {	&mov	($key,$__key);			}##%edx
	else        {	&mov	($out,$s[0]);
			&and	($out,0xFF);			}
	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
			&mov	($out,&DWP(0,$te,$out,8));

	if ($i==3)  {	$tmp=$s[1];				}##%eax
			&movz	($tmp,&HB($s[1]));
			&xor	($out,&DWP(3,$te,$tmp,8));

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
	else        {	&mov	($tmp,$s[2]);
			&shr	($tmp,16);			}
	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
			&and	($tmp,0xFF);
			&xor	($out,&DWP(2,$te,$tmp,8));

	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
	else        {	&mov	($tmp,$s[3]); 
			&shr	($tmp,24)			}
			&xor	($out,&DWP(1,$te,$tmp,8));
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&mov	($s[3],$acc);			}
			&comment();
}

sub enclast()
{ my ($i,$te,@s)=@_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	if ($i==3)  {	&mov	($key,$__key);			}##%edx
	else        {	&mov	($out,$s[0]);			}
			&and	($out,0xFF);
	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
			&mov	($out,&DWP(2,$te,$out,8));
			&and	($out,0x000000ff);

	if ($i==3)  {	$tmp=$s[1];				}##%eax
			&movz	($tmp,&HB($s[1]));
			&mov	($tmp,&DWP(0,$te,$tmp,8));
			&and	($tmp,0x0000ff00);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
	else        {	&mov	($tmp,$s[2]);
			&shr	($tmp,16);			}
	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
			&and	($tmp,0xFF);
			&mov	($tmp,&DWP(0,$te,$tmp,8));
			&and	($tmp,0x00ff0000);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
	else        {	&mov	($tmp,$s[3]);
			&shr	($tmp,24);			}
			&mov	($tmp,&DWP(2,$te,$tmp,8));
			&and	($tmp,0xff000000);
			&xor	($out,$tmp);
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&mov	($s[3],$acc);			}
}

&function_begin_B("_x86_AES_encrypt");
	if ($vertical_spin) {
		# I need high parts of volatile registers to be accessible...
		&exch	($s1="edi",$key="ebx");
		&mov	($s2="esi",$acc="ecx");
	}

	# note that caller is expected to allocate stack frame for me!
	&mov	($__key,$key);			# save key

	&xor	($s0,&DWP(0,$key));		# xor with key
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&mov	($acc,&DWP(240,$key));		# load key->rounds

	if ($small_footprint) {
	    &lea	($acc,&DWP(-2,$acc,$acc));
	    &lea	($acc,&DWP(0,$key,$acc,8));
	    &mov	($__end,$acc);		# end of key schedule

	    &set_label("loop",16);
		if ($vertical_spin) {
		    &encvert($tbl,$s0,$s1,$s2,$s3);
		} else {
		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
		}
		&add	($key,16);		# advance rd_key
		&xor	($s0,&DWP(0,$key));
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));
	    &cmp	($key,$__end);
	    &mov	($__key,$key);
	    &jb		(&label("loop"));
	}
	else {
	    &cmp	($acc,10);
	    &jle	(&label("10rounds"));
	    &cmp	($acc,12);
	    &jle	(&label("12rounds"));

	&set_label("14rounds",4);
	    for ($i=1;$i<3;$i++) {
		if ($vertical_spin) {
		    &encvert($tbl,$s0,$s1,$s2,$s3);
		} else {
		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
		}
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	    &add	($key,32);
	    &mov	($__key,$key);		# advance rd_key
	&set_label("12rounds",4);
	    for ($i=1;$i<3;$i++) {
		if ($vertical_spin) {
		    &encvert($tbl,$s0,$s1,$s2,$s3);
		} else {
		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
		}
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	    &add	($key,32);
	    &mov	($__key,$key);		# advance rd_key
	&set_label("10rounds",4);
	    for ($i=1;$i<10;$i++) {
		if ($vertical_spin) {
		    &encvert($tbl,$s0,$s1,$s2,$s3);
		} else {
		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
		}
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	}

	if ($vertical_spin) {
	    # "reincarnate" some registers for "horizontal" spin...
	    &mov	($s1="ebx",$key="edi");
	    &mov	($s2="ecx",$acc="esi");
	}
	&enclast(0,$tbl,$s0,$s1,$s2,$s3);
	&enclast(1,$tbl,$s1,$s2,$s3,$s0);
	&enclast(2,$tbl,$s2,$s3,$s0,$s1);
	&enclast(3,$tbl,$s3,$s0,$s1,$s2);

	&add	($key,$small_footprint?16:160);
	&xor	($s0,&DWP(0,$key));
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&ret	();

&set_label("AES_Te",64);	# Yes! I keep it in the code segment!
	&_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
	&_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
	&_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
	&_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
	&_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
	&_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
	&_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
	&_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
	&_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
	&_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
	&_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
	&_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
	&_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
	&_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
	&_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
	&_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
	&_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
	&_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
	&_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
	&_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
	&_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
	&_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
	&_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
	&_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
	&_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
	&_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
	&_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
	&_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
	&_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
	&_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
	&_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
	&_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
	&_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
	&_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
	&_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
	&_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
	&_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
	&_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
	&_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
	&_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
	&_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
	&_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
	&_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
	&_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
	&_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
	&_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
	&_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
	&_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
	&_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
	&_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
	&_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
	&_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
	&_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
	&_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
	&_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
	&_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
	&_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
	&_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
	&_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
	&_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
	&_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
	&_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
	&_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
	&_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);

#Te4	# four copies of Te4 to choose from to avoid L1 aliasing
	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
#rcon:
	&data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
	&data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
	&data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
	&data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
&function_end_B("_x86_AES_encrypt");

# void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
&function_begin("AES_encrypt");
	&mov	($acc,&wparam(0));		# load inp
	&mov	($key,&wparam(2));		# load key

	&mov	($s0,"esp");
	&sub	("esp",36);
	&and	("esp",-64);			# align to cache-line

	# place stack frame just "above" the key schedule
	&lea	($s1,&DWP(-64-63,$key));
	&sub	($s1,"esp");
	&neg	($s1);
	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
	&sub	("esp",$s1);
	&add	("esp",4);	# 4 is reserved for caller's return address
	&mov	($_esp,$s0);			# save stack pointer

	&call   (&label("pic_point"));          # make it PIC!
	&set_label("pic_point");
	&blindpop($tbl);
	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));

	# pick Te4 copy which can't "overlap" with stack frame or key schedule
	&lea	($s1,&DWP(768-4,"esp"));
	&sub	($s1,$tbl);
	&and	($s1,0x300);
	&lea	($tbl,&DWP(2048+128,$tbl,$s1));

					if (!$x86only) {
	&bt	(&DWP(0,$s0),25);	# check for SSE bit
	&jnc	(&label("x86"));

	&movq	("mm0",&QWP(0,$acc));
	&movq	("mm4",&QWP(8,$acc));
	&call	("_sse_AES_encrypt_compact");
	&mov	("esp",$_esp);			# restore stack pointer
	&mov	($acc,&wparam(1));		# load out
	&movq	(&QWP(0,$acc),"mm0");		# write output data
	&movq	(&QWP(8,$acc),"mm4");
	&emms	();
	&function_end_A();
					}
	&set_label("x86",16);
	&mov	($_tbl,$tbl);
	&mov	($s0,&DWP(0,$acc));		# load input data
	&mov	($s1,&DWP(4,$acc));
	&mov	($s2,&DWP(8,$acc));
	&mov	($s3,&DWP(12,$acc));
	&call	("_x86_AES_encrypt_compact");
	&mov	("esp",$_esp);			# restore stack pointer
	&mov	($acc,&wparam(1));		# load out
	&mov	(&DWP(0,$acc),$s0);		# write output data
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);
&function_end("AES_encrypt");

#--------------------------------------------------------------------#

######################################################################
# "Compact" block function
######################################################################

sub deccompact()
{ my $Fn = mov;
  while ($#_>5) { pop(@_); $Fn=sub{}; }
  my ($i,$td,@s)=@_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	# $Fn is used in first compact round and its purpose is to
	# void restoration of some values from stack, so that after
	# 4xdeccompact with extra argument $key, $s0 and $s1 values
	# are left there...
	if($i==3)   {	&$Fn	($key,$__key);			}
	else        {	&mov	($out,$s[0]);			}
			&and	($out,0xFF);
			&movz	($out,&BP(-128,$td,$out,1));

	if ($i==3)  {	$tmp=$s[1];				}
			&movz	($tmp,&HB($s[1]));
			&movz	($tmp,&BP(-128,$td,$tmp,1));
			&shl	($tmp,8);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
	else        {	mov	($tmp,$s[2]);			}
			&shr	($tmp,16);
			&and	($tmp,0xFF);
			&movz	($tmp,&BP(-128,$td,$tmp,1));
			&shl	($tmp,16);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[3]; &$Fn ($s[2],$__s1);		}
	else        {	&mov	($tmp,$s[3]);			}
			&shr	($tmp,24);
			&movz	($tmp,&BP(-128,$td,$tmp,1));
			&shl	($tmp,24);
			&xor	($out,$tmp);
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&$Fn	($s[3],$__s0);			}
}

# must be called with 2,3,0,1 as argument sequence!!!
sub dectransform()
{ my @s = ($s0,$s1,$s2,$s3);
  my $i = shift;
  my $tmp = $key;
  my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
  my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
  my $tp8 = $tbl;

	&mov	($acc,$s[$i]);
	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp2,&DWP(0,$s[$i],$s[$i]));
	&sub	($acc,$tmp);
	&and	($tp2,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	&xor	($acc,$tp2);
	&mov	($tp2,$acc);

	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp4,&DWP(0,$tp2,$tp2));
	&sub	($acc,$tmp);
	&and	($tp4,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	 &xor	($tp2,$s[$i]);	# tp2^tp1
	&xor	($acc,$tp4);
	&mov	($tp4,$acc);

	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp8,&DWP(0,$tp4,$tp4));
	&sub	($acc,$tmp);
	&and	($tp8,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	 &xor	($tp4,$s[$i]);	# tp4^tp1
	 &rotl	($s[$i],8);	# = ROTATE(tp1,8)
	&xor	($tp8,$acc);

	&xor	($s[$i],$tp2);
	&xor	($tp2,$tp8);
	&rotl	($tp2,24);
	&xor	($s[$i],$tp4);
	&xor	($tp4,$tp8);
	&rotl	($tp4,16);
	&xor	($s[$i],$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
	&rotl	($tp8,8);
	&xor	($s[$i],$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
	&xor	($s[$i],$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
	 &mov	($s[0],$__s0)			if($i==2); #prefetch $s0
	 &mov	($s[1],$__s1)			if($i==3); #prefetch $s1
	 &mov	($s[2],$__s2)			if($i==1);
	&xor	($s[$i],$tp8);	# ^= ROTATE(tp8,8)

	&mov	($s[3],$__s3)			if($i==1);
	&mov	(&DWP(4+4*$i,"esp"),$s[$i])	if($i>=2);
}

&function_begin_B("_x86_AES_decrypt_compact");
	# note that caller is expected to allocate stack frame for me!
	&mov	($__key,$key);			# save key

	&xor	($s0,&DWP(0,$key));		# xor with key
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&mov	($acc,&DWP(240,$key));		# load key->rounds

	&lea	($acc,&DWP(-2,$acc,$acc));
	&lea	($acc,&DWP(0,$key,$acc,8));
	&mov	($__end,$acc);			# end of key schedule

	# prefetch Td4
	&mov	($key,&DWP(0-128,$tbl));
	&mov	($acc,&DWP(32-128,$tbl));
	&mov	($key,&DWP(64-128,$tbl));
	&mov	($acc,&DWP(96-128,$tbl));
	&mov	($key,&DWP(128-128,$tbl));
	&mov	($acc,&DWP(160-128,$tbl));
	&mov	($key,&DWP(192-128,$tbl));
	&mov	($acc,&DWP(224-128,$tbl));

	&set_label("loop",16);

		&deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
		&deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
		&deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
		&deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
		&dectransform(2);
		&dectransform(3);
		&dectransform(0);
		&dectransform(1);
		&mov 	($key,$__key);
		&mov	($tbl,$__tbl);
		&add	($key,16);		# advance rd_key
		&xor	($s0,&DWP(0,$key));
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));

	&cmp	($key,$__end);
	&mov	($__key,$key);
	&jb	(&label("loop"));

	&deccompact(0,$tbl,$s0,$s3,$s2,$s1);
	&deccompact(1,$tbl,$s1,$s0,$s3,$s2);
	&deccompact(2,$tbl,$s2,$s1,$s0,$s3);
	&deccompact(3,$tbl,$s3,$s2,$s1,$s0);

	&xor	($s0,&DWP(16,$key));
	&xor	($s1,&DWP(20,$key));
	&xor	($s2,&DWP(24,$key));
	&xor	($s3,&DWP(28,$key));

	&ret	();
&function_end_B("_x86_AES_decrypt_compact");

######################################################################
# "Compact" SSE block function.
######################################################################

sub sse_deccompact()
{
	&pshufw	("mm1","mm0",0x0c);		#  7, 6, 1, 0
	&movd	("eax","mm1");			#  7, 6, 1, 0

	&pshufw	("mm5","mm4",0x09);		# 13,12,11,10
	&movz	($acc,&LB("eax"));		#  0
	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
	&movd	("ebx","mm5");			# 13,12,11,10
	&movz	("edx",&HB("eax"));		#  1
	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
	&shl	("edx",8);			#  1

	&pshufw	("mm2","mm0",0x06);		#  3, 2, 5, 4
	&movz	($acc,&LB("ebx"));		# 10
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 10
	&shl	($acc,16);			# 10
	&or	("ecx",$acc);			# 10
	&shr	("eax",16);			#  7, 6
	&movz	($acc,&HB("ebx"));		# 11
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 11
	&shl	($acc,24);			# 11
	&or	("edx",$acc);			# 11
	&shr	("ebx",16);			# 13,12

	&pshufw	("mm6","mm4",0x03);		# 9, 8,15,14
	&movz	($acc,&HB("eax"));		#  7
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  7
	&shl	($acc,24);			#  7
	&or	("ecx",$acc);			#  7
	&movz	($acc,&HB("ebx"));		# 13
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 13
	&shl	($acc,8);			# 13
	&or	("ecx",$acc);			# 13
	&movd	("mm0","ecx");			# t[0] collected

	&movz	($acc,&LB("eax"));		#  6
	&movd	("eax","mm2");			#  3, 2, 5, 4
	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  6
	&shl	("ecx",16);			#  6
	&movz	($acc,&LB("ebx"));		# 12
	&movd	("ebx","mm6");			#  9, 8,15,14
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 12
	&or	("ecx",$acc);			# 12

	&movz	($acc,&LB("eax"));		#  4
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  4
	&or	("edx",$acc);			#  4
	&movz	($acc,&LB("ebx"));		# 14
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 14
	&shl	($acc,16);			# 14
	&or	("edx",$acc);			# 14
	&movd	("mm1","edx");			# t[1] collected

	&movz	($acc,&HB("eax"));		#  5
	&movz	("edx",&BP(-128,$tbl,$acc,1));	#  5
	&shl	("edx",8);			#  5
	&movz	($acc,&HB("ebx"));		# 15
	&shr	("eax",16);			#  3, 2
	&movz	($acc,&BP(-128,$tbl,$acc,1));	# 15
	&shl	($acc,24);			# 15
	&or	("edx",$acc);			# 15
	&shr	("ebx",16);			#  9, 8

	&punpckldq	("mm0","mm1");		# t[0,1] collected

	&movz	($acc,&HB("ebx"));		#  9
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  9
	&shl	($acc,8);			#  9
	&or	("ecx",$acc);			#  9
	&and	("ebx",0xff);			#  8
	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	#  8
	&or	("edx","ebx");			#  8
	&movz	($acc,&LB("eax"));		#  2
	&movz	($acc,&BP(-128,$tbl,$acc,1));	#  2
	&shl	($acc,16);			#  2
	&or	("edx",$acc);			#  2
	&movd	("mm4","edx");			# t[2] collected
	&movz	("eax",&HB("eax"));		#  3
	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  3
	&shl	("eax",24);			#  3
	&or	("ecx","eax");			#  3
	&movd	("mm5","ecx");			# t[3] collected

	&punpckldq	("mm4","mm5");		# t[2,3] collected
}

					if (!$x86only) {
&function_begin_B("_sse_AES_decrypt_compact");
	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8

	# note that caller is expected to allocate stack frame for me!
	&mov	($acc,&DWP(240,$key));		# load key->rounds
	&lea	($acc,&DWP(-2,$acc,$acc));
	&lea	($acc,&DWP(0,$key,$acc,8));
	&mov	($__end,$acc);			# end of key schedule

	&mov	($s0,0x1b1b1b1b);		# magic constant
	&mov	(&DWP(8,"esp"),$s0);
	&mov	(&DWP(12,"esp"),$s0);

	# prefetch Td4
	&mov	($s0,&DWP(0-128,$tbl));
	&mov	($s1,&DWP(32-128,$tbl));
	&mov	($s2,&DWP(64-128,$tbl));
	&mov	($s3,&DWP(96-128,$tbl));
	&mov	($s0,&DWP(128-128,$tbl));
	&mov	($s1,&DWP(160-128,$tbl));
	&mov	($s2,&DWP(192-128,$tbl));
	&mov	($s3,&DWP(224-128,$tbl));

	&set_label("loop",16);
		&sse_deccompact();
		&add	($key,16);
		&cmp	($key,$__end);
		&ja	(&label("out"));

		# ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
		&movq	("mm3","mm0");		&movq	("mm7","mm4");
		&movq	("mm2","mm0",1);	&movq	("mm6","mm4",1);
		&movq	("mm1","mm0");		&movq	("mm5","mm4");
		&pshufw	("mm0","mm0",0xb1);	&pshufw	("mm4","mm4",0xb1);# = ROTATE(tp0,16)
		&pslld	("mm2",8);		&pslld	("mm6",8);
		&psrld	("mm3",8);		&psrld	("mm7",8);
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<8
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>8
		&pslld	("mm2",16);		&pslld	("mm6",16);
		&psrld	("mm3",16);		&psrld	("mm7",16);
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<24
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>24

		&movq	("mm3",&QWP(8,"esp"));
		&pxor	("mm2","mm2");		&pxor	("mm6","mm6");
		&pcmpgtb("mm2","mm1");		&pcmpgtb("mm6","mm5");
		&pand	("mm2","mm3");		&pand	("mm6","mm3");
		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
		&pxor	("mm1","mm2");		&pxor	("mm5","mm6");	# tp2
		&movq	("mm3","mm1");		&movq	("mm7","mm5");
		&movq	("mm2","mm1");		&movq	("mm6","mm5");
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp2
		&pslld	("mm3",24);		&pslld	("mm7",24);
		&psrld	("mm2",8);		&psrld	("mm6",8);
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp2<<24
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp2>>8

		&movq	("mm2",&QWP(8,"esp"));
		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
		&pand	("mm3","mm2");		&pand	("mm7","mm2");
		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp4
		&pshufw	("mm3","mm1",0xb1);	&pshufw	("mm7","mm5",0xb1);
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp4
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= ROTATE(tp4,16)	

		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
		&pand	("mm3","mm2");		&pand	("mm7","mm2");
		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp8
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8
		&movq	("mm3","mm1");		&movq	("mm7","mm5");
		&pshufw	("mm2","mm1",0xb1);	&pshufw	("mm6","mm5",0xb1);
		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(tp8,16)
		&pslld	("mm1",8);		&pslld	("mm5",8);
		&psrld	("mm3",8);		&psrld	("mm7",8);
		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<8
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>8
		&mov	($s0,&DWP(0-128,$tbl));
		&pslld	("mm1",16);		&pslld	("mm5",16);
		&mov	($s1,&DWP(64-128,$tbl));
		&psrld	("mm3",16);		&psrld	("mm7",16);
		&mov	($s2,&DWP(128-128,$tbl));
		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<24
		&mov	($s3,&DWP(192-128,$tbl));
		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>24

		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
	&jmp	(&label("loop"));

	&set_label("out",16);
	&pxor	("mm0",&QWP(0,$key));
	&pxor	("mm4",&QWP(8,$key));

	&ret	();
&function_end_B("_sse_AES_decrypt_compact");
					}

######################################################################
# Vanilla block function.
######################################################################

sub decstep()
{ my ($i,$td,@s) = @_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	# no instructions are reordered, as performance appears
	# optimal... or rather that all attempts to reorder didn't
	# result in better performance [which by the way is not a
	# bit lower than ecryption].
	if($i==3)   {	&mov	($key,$__key);			}
	else        {	&mov	($out,$s[0]);			}
			&and	($out,0xFF);
			&mov	($out,&DWP(0,$td,$out,8));

	if ($i==3)  {	$tmp=$s[1];				}
			&movz	($tmp,&HB($s[1]));
			&xor	($out,&DWP(3,$td,$tmp,8));

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
	else        {	&mov	($tmp,$s[2]);			}
			&shr	($tmp,16);
			&and	($tmp,0xFF);
			&xor	($out,&DWP(2,$td,$tmp,8));

	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
	else        {	&mov	($tmp,$s[3]);			}
			&shr	($tmp,24);
			&xor	($out,&DWP(1,$td,$tmp,8));
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&mov	($s[3],$__s0);			}
			&comment();
}

sub declast()
{ my ($i,$td,@s)=@_;
  my $tmp = $key;
  my $out = $i==3?$s[0]:$acc;

	if($i==0)   {	&lea	($td,&DWP(2048+128,$td));
			&mov	($tmp,&DWP(0-128,$td));
			&mov	($acc,&DWP(32-128,$td));
			&mov	($tmp,&DWP(64-128,$td));
			&mov	($acc,&DWP(96-128,$td));
			&mov	($tmp,&DWP(128-128,$td));
			&mov	($acc,&DWP(160-128,$td));
			&mov	($tmp,&DWP(192-128,$td));
			&mov	($acc,&DWP(224-128,$td));
			&lea	($td,&DWP(-128,$td));		}
	if($i==3)   {	&mov	($key,$__key);			}
	else        {	&mov	($out,$s[0]);			}
			&and	($out,0xFF);
			&movz	($out,&BP(0,$td,$out,1));

	if ($i==3)  {	$tmp=$s[1];				}
			&movz	($tmp,&HB($s[1]));
			&movz	($tmp,&BP(0,$td,$tmp,1));
			&shl	($tmp,8);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
	else        {	mov	($tmp,$s[2]);			}
			&shr	($tmp,16);
			&and	($tmp,0xFF);
			&movz	($tmp,&BP(0,$td,$tmp,1));
			&shl	($tmp,16);
			&xor	($out,$tmp);

	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
	else        {	&mov	($tmp,$s[3]);			}
			&shr	($tmp,24);
			&movz	($tmp,&BP(0,$td,$tmp,1));
			&shl	($tmp,24);
			&xor	($out,$tmp);
	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
	if ($i==3)  {	&mov	($s[3],$__s0);
			&lea	($td,&DWP(-2048,$td));		}
}

&function_begin_B("_x86_AES_decrypt");
	# note that caller is expected to allocate stack frame for me!
	&mov	($__key,$key);			# save key

	&xor	($s0,&DWP(0,$key));		# xor with key
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&mov	($acc,&DWP(240,$key));		# load key->rounds

	if ($small_footprint) {
	    &lea	($acc,&DWP(-2,$acc,$acc));
	    &lea	($acc,&DWP(0,$key,$acc,8));
	    &mov	($__end,$acc);		# end of key schedule
	    &set_label("loop",16);
		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
		&add	($key,16);		# advance rd_key
		&xor	($s0,&DWP(0,$key));
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));
	    &cmp	($key,$__end);
	    &mov	($__key,$key);
	    &jb		(&label("loop"));
	}
	else {
	    &cmp	($acc,10);
	    &jle	(&label("10rounds"));
	    &cmp	($acc,12);
	    &jle	(&label("12rounds"));

	&set_label("14rounds",4);
	    for ($i=1;$i<3;$i++) {
		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	    &add	($key,32);
	    &mov	($__key,$key);		# advance rd_key
	&set_label("12rounds",4);
	    for ($i=1;$i<3;$i++) {
		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	    &add	($key,32);
	    &mov	($__key,$key);		# advance rd_key
	&set_label("10rounds",4);
	    for ($i=1;$i<10;$i++) {
		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
		&xor	($s0,&DWP(16*$i+0,$key));
		&xor	($s1,&DWP(16*$i+4,$key));
		&xor	($s2,&DWP(16*$i+8,$key));
		&xor	($s3,&DWP(16*$i+12,$key));
	    }
	}

	&declast(0,$tbl,$s0,$s3,$s2,$s1);
	&declast(1,$tbl,$s1,$s0,$s3,$s2);
	&declast(2,$tbl,$s2,$s1,$s0,$s3);
	&declast(3,$tbl,$s3,$s2,$s1,$s0);

	&add	($key,$small_footprint?16:160);
	&xor	($s0,&DWP(0,$key));
	&xor	($s1,&DWP(4,$key));
	&xor	($s2,&DWP(8,$key));
	&xor	($s3,&DWP(12,$key));

	&ret	();

&set_label("AES_Td",64);	# Yes! I keep it in the code segment!
	&_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
	&_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
	&_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
	&_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
	&_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
	&_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
	&_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
	&_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
	&_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
	&_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
	&_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
	&_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
	&_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
	&_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
	&_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
	&_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
	&_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
	&_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
	&_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
	&_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
	&_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
	&_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
	&_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
	&_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
	&_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
	&_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
	&_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
	&_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
	&_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
	&_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
	&_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
	&_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
	&_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
	&_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
	&_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
	&_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
	&_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
	&_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
	&_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
	&_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
	&_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
	&_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
	&_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
	&_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
	&_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
	&_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
	&_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
	&_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
	&_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
	&_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
	&_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
	&_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
	&_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
	&_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
	&_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
	&_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
	&_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
	&_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
	&_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
	&_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
	&_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
	&_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
	&_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
	&_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);

#Td4:	# four copies of Td4 to choose from to avoid L1 aliasing
	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
&function_end_B("_x86_AES_decrypt");

# void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
&function_begin("AES_decrypt");
	&mov	($acc,&wparam(0));		# load inp
	&mov	($key,&wparam(2));		# load key

	&mov	($s0,"esp");
	&sub	("esp",36);
	&and	("esp",-64);			# align to cache-line

	# place stack frame just "above" the key schedule
	&lea	($s1,&DWP(-64-63,$key));
	&sub	($s1,"esp");
	&neg	($s1);
	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
	&sub	("esp",$s1);
	&add	("esp",4);	# 4 is reserved for caller's return address
	&mov	($_esp,$s0);	# save stack pointer

	&call   (&label("pic_point"));          # make it PIC!
	&set_label("pic_point");
	&blindpop($tbl);
	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
	&lea    ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));

	# pick Td4 copy which can't "overlap" with stack frame or key schedule
	&lea	($s1,&DWP(768-4,"esp"));
	&sub	($s1,$tbl);
	&and	($s1,0x300);
	&lea	($tbl,&DWP(2048+128,$tbl,$s1));

					if (!$x86only) {
	&bt	(&DWP(0,$s0),25);	# check for SSE bit
	&jnc	(&label("x86"));

	&movq	("mm0",&QWP(0,$acc));
	&movq	("mm4",&QWP(8,$acc));
	&call	("_sse_AES_decrypt_compact");
	&mov	("esp",$_esp);			# restore stack pointer
	&mov	($acc,&wparam(1));		# load out
	&movq	(&QWP(0,$acc),"mm0");		# write output data
	&movq	(&QWP(8,$acc),"mm4");
	&emms	();
	&function_end_A();
					}
	&set_label("x86",16);
	&mov	($_tbl,$tbl);
	&mov	($s0,&DWP(0,$acc));		# load input data
	&mov	($s1,&DWP(4,$acc));
	&mov	($s2,&DWP(8,$acc));
	&mov	($s3,&DWP(12,$acc));
	&call	("_x86_AES_decrypt_compact");
	&mov	("esp",$_esp);			# restore stack pointer
	&mov	($acc,&wparam(1));		# load out
	&mov	(&DWP(0,$acc),$s0);		# write output data
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);
&function_end("AES_decrypt");

# void AES_cbc_encrypt (const void char *inp, unsigned char *out,
#			size_t length, const AES_KEY *key,
#			unsigned char *ivp,const int enc);
{
# stack frame layout
#             -4(%esp)		# return address	 0(%esp)
#              0(%esp)		# s0 backing store	 4(%esp)	
#              4(%esp)		# s1 backing store	 8(%esp)
#              8(%esp)		# s2 backing store	12(%esp)
#             12(%esp)		# s3 backing store	16(%esp)
#             16(%esp)		# key backup		20(%esp)
#             20(%esp)		# end of key schedule	24(%esp)
#             24(%esp)		# %ebp backup		28(%esp)
#             28(%esp)		# %esp backup
my $_inp=&DWP(32,"esp");	# copy of wparam(0)
my $_out=&DWP(36,"esp");	# copy of wparam(1)
my $_len=&DWP(40,"esp");	# copy of wparam(2)
my $_key=&DWP(44,"esp");	# copy of wparam(3)
my $_ivp=&DWP(48,"esp");	# copy of wparam(4)
my $_tmp=&DWP(52,"esp");	# volatile variable
#
my $ivec=&DWP(60,"esp");	# ivec[16]
my $aes_key=&DWP(76,"esp");	# copy of aes_key
my $mark=&DWP(76+240,"esp");	# copy of aes_key->rounds

&function_begin("AES_cbc_encrypt");
	&mov	($s2 eq "ecx"? $s2 : "",&wparam(2));	# load len
	&cmp	($s2,0);
	&je	(&label("drop_out"));

	&call   (&label("pic_point"));		# make it PIC!
	&set_label("pic_point");
	&blindpop($tbl);
	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);

	&cmp	(&wparam(5),0);
	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
	&jne	(&label("picked_te"));
	&lea	($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
	&set_label("picked_te");

	# one can argue if this is required
	&pushf	();
	&cld	();

	&cmp	($s2,$speed_limit);
	&jb	(&label("slow_way"));
	&test	($s2,15);
	&jnz	(&label("slow_way"));
					if (!$x86only) {
	&bt	(&DWP(0,$s0),28);	# check for hyper-threading bit
	&jc	(&label("slow_way"));
					}
	# pre-allocate aligned stack frame...
	&lea	($acc,&DWP(-80-244,"esp"));
	&and	($acc,-64);

	# ... and make sure it doesn't alias with $tbl modulo 4096
	&mov	($s0,$tbl);
	&lea	($s1,&DWP(2048+256,$tbl));
	&mov	($s3,$acc);
	&and	($s0,0xfff);		# s = %ebp&0xfff
	&and	($s1,0xfff);		# e = (%ebp+2048+256)&0xfff
	&and	($s3,0xfff);		# p = %esp&0xfff

	&cmp	($s3,$s1);		# if (p>=e) %esp =- (p-e);
	&jb	(&label("tbl_break_out"));
	&sub	($s3,$s1);
	&sub	($acc,$s3);
	&jmp	(&label("tbl_ok"));
	&set_label("tbl_break_out",4);	# else %esp -= (p-s)&0xfff + framesz;
	&sub	($s3,$s0);
	&and	($s3,0xfff);
	&add	($s3,384);
	&sub	($acc,$s3);
	&set_label("tbl_ok",4);

	&lea	($s3,&wparam(0));	# obtain pointer to parameter block
	&exch	("esp",$acc);		# allocate stack frame
	&add	("esp",4);		# reserve for return address!
	&mov	($_tbl,$tbl);		# save %ebp
	&mov	($_esp,$acc);		# save %esp

	&mov	($s0,&DWP(0,$s3));	# load inp
	&mov	($s1,&DWP(4,$s3));	# load out
	#&mov	($s2,&DWP(8,$s3));	# load len
	&mov	($key,&DWP(12,$s3));	# load key
	&mov	($acc,&DWP(16,$s3));	# load ivp
	&mov	($s3,&DWP(20,$s3));	# load enc flag

	&mov	($_inp,$s0);		# save copy of inp
	&mov	($_out,$s1);		# save copy of out
	&mov	($_len,$s2);		# save copy of len
	&mov	($_key,$key);		# save copy of key
	&mov	($_ivp,$acc);		# save copy of ivp

	&mov	($mark,0);		# copy of aes_key->rounds = 0;
	# do we copy key schedule to stack?
	&mov	($s1 eq "ebx" ? $s1 : "",$key);
	&mov	($s2 eq "ecx" ? $s2 : "",244/4);
	&sub	($s1,$tbl);
	&mov	("esi",$key);
	&and	($s1,0xfff);
	&lea	("edi",$aes_key);
	&cmp	($s1,2048+256);
	&jb	(&label("do_copy"));
	&cmp	($s1,4096-244);
	&jb	(&label("skip_copy"));
	&set_label("do_copy",4);
		&mov	($_key,"edi");
		&data_word(0xA5F3F689);	# rep movsd
	&set_label("skip_copy");

	&mov	($key,16);
	&set_label("prefetch_tbl",4);
		&mov	($s0,&DWP(0,$tbl));
		&mov	($s1,&DWP(32,$tbl));
		&mov	($s2,&DWP(64,$tbl));
		&mov	($acc,&DWP(96,$tbl));
		&lea	($tbl,&DWP(128,$tbl));
		&sub	($key,1);
	&jnz	(&label("prefetch_tbl"));
	&sub	($tbl,2048);

	&mov	($acc,$_inp);
	&mov	($key,$_ivp);

	&cmp	($s3,0);
	&je	(&label("fast_decrypt"));

#----------------------------- ENCRYPT -----------------------------#
	&mov	($s0,&DWP(0,$key));		# load iv
	&mov	($s1,&DWP(4,$key));

	&set_label("fast_enc_loop",16);
		&mov	($s2,&DWP(8,$key));
		&mov	($s3,&DWP(12,$key));

		&xor	($s0,&DWP(0,$acc));	# xor input data
		&xor	($s1,&DWP(4,$acc));
		&xor	($s2,&DWP(8,$acc));
		&xor	($s3,&DWP(12,$acc));

		&mov	($key,$_key);		# load key
		&call	("_x86_AES_encrypt");

		&mov	($acc,$_inp);		# load inp
		&mov	($key,$_out);		# load out

		&mov	(&DWP(0,$key),$s0);	# save output data
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($s2,$_len);		# load len
		&mov	($_inp,$acc);		# save inp
		&lea	($s3,&DWP(16,$key));	# advance out
		&mov	($_out,$s3);		# save out
		&sub	($s2,16);		# decrease len
		&mov	($_len,$s2);		# save len
	&jnz	(&label("fast_enc_loop"));
	&mov	($acc,$_ivp);		# load ivp
	&mov	($s2,&DWP(8,$key));	# restore last 2 dwords
	&mov	($s3,&DWP(12,$key));
	&mov	(&DWP(0,$acc),$s0);	# save ivec
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);

	&cmp	($mark,0);		# was the key schedule copied?
	&mov	("edi",$_key);
	&je	(&label("skip_ezero"));
	# zero copy of key schedule
	&mov	("ecx",240/4);
	&xor	("eax","eax");
	&align	(4);
	&data_word(0xABF3F689);	# rep stosd
	&set_label("skip_ezero")
	&mov	("esp",$_esp);
	&popf	();
    &set_label("drop_out");
	&function_end_A();
	&pushf	();			# kludge, never executed

#----------------------------- DECRYPT -----------------------------#
&set_label("fast_decrypt",16);

	&cmp	($acc,$_out);
	&je	(&label("fast_dec_in_place"));	# in-place processing...

	&mov	($_tmp,$key);

	&align	(4);
	&set_label("fast_dec_loop",16);
		&mov	($s0,&DWP(0,$acc));	# read input
		&mov	($s1,&DWP(4,$acc));
		&mov	($s2,&DWP(8,$acc));
		&mov	($s3,&DWP(12,$acc));

		&mov	($key,$_key);		# load key
		&call	("_x86_AES_decrypt");

		&mov	($key,$_tmp);		# load ivp
		&mov	($acc,$_len);		# load len
		&xor	($s0,&DWP(0,$key));	# xor iv
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));

		&mov	($key,$_out);		# load out
		&mov	($acc,$_inp);		# load inp

		&mov	(&DWP(0,$key),$s0);	# write output
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($s2,$_len);		# load len
		&mov	($_tmp,$acc);		# save ivp
		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
		&lea	($key,&DWP(16,$key));	# advance out
		&mov	($_out,$key);		# save out
		&sub	($s2,16);		# decrease len
		&mov	($_len,$s2);		# save len
	&jnz	(&label("fast_dec_loop"));
	&mov	($key,$_tmp);		# load temp ivp
	&mov	($acc,$_ivp);		# load user ivp
	&mov	($s0,&DWP(0,$key));	# load iv
	&mov	($s1,&DWP(4,$key));
	&mov	($s2,&DWP(8,$key));
	&mov	($s3,&DWP(12,$key));
	&mov	(&DWP(0,$acc),$s0);	# copy back to user
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);
	&jmp	(&label("fast_dec_out"));

    &set_label("fast_dec_in_place",16);
	&set_label("fast_dec_in_place_loop");
		&mov	($s0,&DWP(0,$acc));	# read input
		&mov	($s1,&DWP(4,$acc));
		&mov	($s2,&DWP(8,$acc));
		&mov	($s3,&DWP(12,$acc));

		&lea	($key,$ivec);
		&mov	(&DWP(0,$key),$s0);	# copy to temp
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($key,$_key);		# load key
		&call	("_x86_AES_decrypt");

		&mov	($key,$_ivp);		# load ivp
		&mov	($acc,$_out);		# load out
		&xor	($s0,&DWP(0,$key));	# xor iv
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));

		&mov	(&DWP(0,$acc),$s0);	# write output
		&mov	(&DWP(4,$acc),$s1);
		&mov	(&DWP(8,$acc),$s2);
		&mov	(&DWP(12,$acc),$s3);

		&lea	($acc,&DWP(16,$acc));	# advance out
		&mov	($_out,$acc);		# save out

		&lea	($acc,$ivec);
		&mov	($s0,&DWP(0,$acc));	# read temp
		&mov	($s1,&DWP(4,$acc));
		&mov	($s2,&DWP(8,$acc));
		&mov	($s3,&DWP(12,$acc));

		&mov	(&DWP(0,$key),$s0);	# copy iv
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($acc,$_inp);		# load inp
		&mov	($s2,$_len);		# load len
		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
		&sub	($s2,16);		# decrease len
		&mov	($_len,$s2);		# save len
	&jnz	(&label("fast_dec_in_place_loop"));

    &set_label("fast_dec_out",4);
	&cmp	($mark,0);		# was the key schedule copied?
	&mov	("edi",$_key);
	&je	(&label("skip_dzero"));
	# zero copy of key schedule
	&mov	("ecx",240/4);
	&xor	("eax","eax");
	&align	(4);
	&data_word(0xABF3F689);	# rep stosd
	&set_label("skip_dzero")
	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed

#--------------------------- SLOW ROUTINE ---------------------------#
&set_label("slow_way",16);

	&mov	($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
	&mov	($key,&wparam(3));	# load key

	# pre-allocate aligned stack frame...
	&lea	($acc,&DWP(-80,"esp"));
	&and	($acc,-64);

	# ... and make sure it doesn't alias with $key modulo 1024
	&lea	($s1,&DWP(-80-63,$key));
	&sub	($s1,$acc);
	&neg	($s1);
	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
	&sub	($acc,$s1);

	# pick S-box copy which can't overlap with stack frame or $key
	&lea	($s1,&DWP(768,$acc));
	&sub	($s1,$tbl);
	&and	($s1,0x300);
	&lea	($tbl,&DWP(2048+128,$tbl,$s1));

	&lea	($s3,&wparam(0));	# pointer to parameter block

	&exch	("esp",$acc);
	&add	("esp",4);		# reserve for return address!
	&mov	($_tbl,$tbl);		# save %ebp
	&mov	($_esp,$acc);		# save %esp
	&mov	($_tmp,$s0);		# save OPENSSL_ia32cap

	&mov	($s0,&DWP(0,$s3));	# load inp
	&mov	($s1,&DWP(4,$s3));	# load out
	#&mov	($s2,&DWP(8,$s3));	# load len
	#&mov	($key,&DWP(12,$s3));	# load key
	&mov	($acc,&DWP(16,$s3));	# load ivp
	&mov	($s3,&DWP(20,$s3));	# load enc flag

	&mov	($_inp,$s0);		# save copy of inp
	&mov	($_out,$s1);		# save copy of out
	&mov	($_len,$s2);		# save copy of len
	&mov	($_key,$key);		# save copy of key
	&mov	($_ivp,$acc);		# save copy of ivp

	&mov	($key,$acc);
	&mov	($acc,$s0);

	&cmp	($s3,0);
	&je	(&label("slow_decrypt"));

#--------------------------- SLOW ENCRYPT ---------------------------#
	&cmp	($s2,16);
	&mov	($s3,$s1);
	&jb	(&label("slow_enc_tail"));

					if (!$x86only) {
	&bt	($_tmp,25);		# check for SSE bit
	&jnc	(&label("slow_enc_x86"));

	&movq	("mm0",&QWP(0,$key));	# load iv
	&movq	("mm4",&QWP(8,$key));

	&set_label("slow_enc_loop_sse",16);
		&pxor	("mm0",&QWP(0,$acc));	# xor input data
		&pxor	("mm4",&QWP(8,$acc));

		&mov	($key,$_key);
		&call	("_sse_AES_encrypt_compact");

		&mov	($acc,$_inp);		# load inp
		&mov	($key,$_out);		# load out
		&mov	($s2,$_len);		# load len

		&movq	(&QWP(0,$key),"mm0");	# save output data
		&movq	(&QWP(8,$key),"mm4");

		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
		&lea	($s3,&DWP(16,$key));	# advance out
		&mov	($_out,$s3);		# save out
		&sub	($s2,16);		# decrease len
		&cmp	($s2,16);
		&mov	($_len,$s2);		# save len
	&jae	(&label("slow_enc_loop_sse"));
	&test	($s2,15);
	&jnz	(&label("slow_enc_tail"));
	&mov	($acc,$_ivp);		# load ivp
	&movq	(&QWP(0,$acc),"mm0");	# save ivec
	&movq	(&QWP(8,$acc),"mm4");
	&emms	();
	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed
					}
    &set_label("slow_enc_x86",16);
	&mov	($s0,&DWP(0,$key));	# load iv
	&mov	($s1,&DWP(4,$key));

	&set_label("slow_enc_loop_x86",4);
		&mov	($s2,&DWP(8,$key));
		&mov	($s3,&DWP(12,$key));

		&xor	($s0,&DWP(0,$acc));	# xor input data
		&xor	($s1,&DWP(4,$acc));
		&xor	($s2,&DWP(8,$acc));
		&xor	($s3,&DWP(12,$acc));

		&mov	($key,$_key);		# load key
		&call	("_x86_AES_encrypt_compact");

		&mov	($acc,$_inp);		# load inp
		&mov	($key,$_out);		# load out

		&mov	(&DWP(0,$key),$s0);	# save output data
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($s2,$_len);		# load len
		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
		&lea	($s3,&DWP(16,$key));	# advance out
		&mov	($_out,$s3);		# save out
		&sub	($s2,16);		# decrease len
		&cmp	($s2,16);
		&mov	($_len,$s2);		# save len
	&jae	(&label("slow_enc_loop_x86"));
	&test	($s2,15);
	&jnz	(&label("slow_enc_tail"));
	&mov	($acc,$_ivp);		# load ivp
	&mov	($s2,&DWP(8,$key));	# restore last dwords
	&mov	($s3,&DWP(12,$key));
	&mov	(&DWP(0,$acc),$s0);	# save ivec
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);

	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed

    &set_label("slow_enc_tail",16);
	&emms	()	if (!$x86only);
	&mov	($key eq "edi"? $key:"",$s3);	# load out to edi
	&mov	($s1,16);
	&sub	($s1,$s2);
	&cmp	($key,$acc eq "esi"? $acc:"");	# compare with inp
	&je	(&label("enc_in_place"));
	&align	(4);
	&data_word(0xA4F3F689);	# rep movsb	# copy input
	&jmp	(&label("enc_skip_in_place"));
    &set_label("enc_in_place");
	&lea	($key,&DWP(0,$key,$s2));
    &set_label("enc_skip_in_place");
	&mov	($s2,$s1);
	&xor	($s0,$s0);
	&align	(4);
	&data_word(0xAAF3F689);	# rep stosb	# zero tail

	&mov	($key,$_ivp);			# restore ivp
	&mov	($acc,$s3);			# output as input
	&mov	($s0,&DWP(0,$key));
	&mov	($s1,&DWP(4,$key));
	&mov	($_len,16);			# len=16
	&jmp	(&label("slow_enc_loop_x86"));	# one more spin...

#--------------------------- SLOW DECRYPT ---------------------------#
&set_label("slow_decrypt",16);
					if (!$x86only) {
	&bt	($_tmp,25);		# check for SSE bit
	&jnc	(&label("slow_dec_loop_x86"));

	&set_label("slow_dec_loop_sse",4);
		&movq	("mm0",&QWP(0,$acc));	# read input
		&movq	("mm4",&QWP(8,$acc));

		&mov	($key,$_key);
		&call	("_sse_AES_decrypt_compact");

		&mov	($acc,$_inp);		# load inp
		&lea	($s0,$ivec);
		&mov	($s1,$_out);		# load out
		&mov	($s2,$_len);		# load len
		&mov	($key,$_ivp);		# load ivp

		&movq	("mm1",&QWP(0,$acc));	# re-read input
		&movq	("mm5",&QWP(8,$acc));

		&pxor	("mm0",&QWP(0,$key));	# xor iv
		&pxor	("mm4",&QWP(8,$key));

		&movq	(&QWP(0,$key),"mm1");	# copy input to iv
		&movq	(&QWP(8,$key),"mm5");

		&sub	($s2,16);		# decrease len
		&jc	(&label("slow_dec_partial_sse"));

		&movq	(&QWP(0,$s1),"mm0");	# write output
		&movq	(&QWP(8,$s1),"mm4");

		&lea	($s1,&DWP(16,$s1));	# advance out
		&mov	($_out,$s1);		# save out
		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
		&mov	($_len,$s2);		# save len
	&jnz	(&label("slow_dec_loop_sse"));
	&emms	();
	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed

    &set_label("slow_dec_partial_sse",16);
	&movq	(&QWP(0,$s0),"mm0");	# save output to temp
	&movq	(&QWP(8,$s0),"mm4");
	&emms	();

	&add	($s2 eq "ecx" ? "ecx":"",16);
	&mov	("edi",$s1);		# out
	&mov	("esi",$s0);		# temp
	&align	(4);
	&data_word(0xA4F3F689);		# rep movsb # copy partial output

	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed
					}
	&set_label("slow_dec_loop_x86",16);
		&mov	($s0,&DWP(0,$acc));	# read input
		&mov	($s1,&DWP(4,$acc));
		&mov	($s2,&DWP(8,$acc));
		&mov	($s3,&DWP(12,$acc));

		&lea	($key,$ivec);
		&mov	(&DWP(0,$key),$s0);	# copy to temp
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($key,$_key);		# load key
		&call	("_x86_AES_decrypt_compact");

		&mov	($key,$_ivp);		# load ivp
		&mov	($acc,$_len);		# load len
		&xor	($s0,&DWP(0,$key));	# xor iv
		&xor	($s1,&DWP(4,$key));
		&xor	($s2,&DWP(8,$key));
		&xor	($s3,&DWP(12,$key));

		&sub	($acc,16);
		&jc	(&label("slow_dec_partial_x86"));

		&mov	($_len,$acc);		# save len
		&mov	($acc,$_out);		# load out

		&mov	(&DWP(0,$acc),$s0);	# write output
		&mov	(&DWP(4,$acc),$s1);
		&mov	(&DWP(8,$acc),$s2);
		&mov	(&DWP(12,$acc),$s3);

		&lea	($acc,&DWP(16,$acc));	# advance out
		&mov	($_out,$acc);		# save out

		&lea	($acc,$ivec);
		&mov	($s0,&DWP(0,$acc));	# read temp
		&mov	($s1,&DWP(4,$acc));
		&mov	($s2,&DWP(8,$acc));
		&mov	($s3,&DWP(12,$acc));

		&mov	(&DWP(0,$key),$s0);	# copy it to iv
		&mov	(&DWP(4,$key),$s1);
		&mov	(&DWP(8,$key),$s2);
		&mov	(&DWP(12,$key),$s3);

		&mov	($acc,$_inp);		# load inp
		&lea	($acc,&DWP(16,$acc));	# advance inp
		&mov	($_inp,$acc);		# save inp
	&jnz	(&label("slow_dec_loop_x86"));
	&mov	("esp",$_esp);
	&popf	();
	&function_end_A();
	&pushf	();			# kludge, never executed

    &set_label("slow_dec_partial_x86",16);
	&lea	($acc,$ivec);
	&mov	(&DWP(0,$acc),$s0);	# save output to temp
	&mov	(&DWP(4,$acc),$s1);
	&mov	(&DWP(8,$acc),$s2);
	&mov	(&DWP(12,$acc),$s3);

	&mov	($acc,$_inp);
	&mov	($s0,&DWP(0,$acc));	# re-read input
	&mov	($s1,&DWP(4,$acc));
	&mov	($s2,&DWP(8,$acc));
	&mov	($s3,&DWP(12,$acc));

	&mov	(&DWP(0,$key),$s0);	# copy it to iv
	&mov	(&DWP(4,$key),$s1);
	&mov	(&DWP(8,$key),$s2);
	&mov	(&DWP(12,$key),$s3);

	&mov	("ecx",$_len);
	&mov	("edi",$_out);
	&lea	("esi",$ivec);
	&align	(4);
	&data_word(0xA4F3F689);		# rep movsb # copy partial output

	&mov	("esp",$_esp);
	&popf	();
&function_end("AES_cbc_encrypt");
}

#------------------------------------------------------------------#

sub enckey()
{
	&movz	("esi",&LB("edx"));		# rk[i]>>0
	&movz	("ebx",&BP(-128,$tbl,"esi",1));
	&movz	("esi",&HB("edx"));		# rk[i]>>8
	&shl	("ebx",24);
	&xor	("eax","ebx");

	&movz	("ebx",&BP(-128,$tbl,"esi",1));
	&shr	("edx",16);
	&movz	("esi",&LB("edx"));		# rk[i]>>16
	&xor	("eax","ebx");

	&movz	("ebx",&BP(-128,$tbl,"esi",1));
	&movz	("esi",&HB("edx"));		# rk[i]>>24
	&shl	("ebx",8);
	&xor	("eax","ebx");

	&movz	("ebx",&BP(-128,$tbl,"esi",1));
	&shl	("ebx",16);
	&xor	("eax","ebx");

	&xor	("eax",&DWP(1024-128,$tbl,"ecx",4));	# rcon
}

&function_begin("_x86_AES_set_encrypt_key");
	&mov	("esi",&wparam(1));		# user supplied key
	&mov	("edi",&wparam(3));		# private key schedule

	&test	("esi",-1);
	&jz	(&label("badpointer"));
	&test	("edi",-1);
	&jz	(&label("badpointer"));

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop($tbl);
	&lea	($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
	&lea	($tbl,&DWP(2048+128,$tbl));

	# prefetch Te4
	&mov	("eax",&DWP(0-128,$tbl));
	&mov	("ebx",&DWP(32-128,$tbl));
	&mov	("ecx",&DWP(64-128,$tbl));
	&mov	("edx",&DWP(96-128,$tbl));
	&mov	("eax",&DWP(128-128,$tbl));
	&mov	("ebx",&DWP(160-128,$tbl));
	&mov	("ecx",&DWP(192-128,$tbl));
	&mov	("edx",&DWP(224-128,$tbl));

	&mov	("ecx",&wparam(2));		# number of bits in key
	&cmp	("ecx",128);
	&je	(&label("10rounds"));
	&cmp	("ecx",192);
	&je	(&label("12rounds"));
	&cmp	("ecx",256);
	&je	(&label("14rounds"));
	&mov	("eax",-2);			# invalid number of bits
	&jmp	(&label("exit"));

    &set_label("10rounds");
	&mov	("eax",&DWP(0,"esi"));		# copy first 4 dwords
	&mov	("ebx",&DWP(4,"esi"));
	&mov	("ecx",&DWP(8,"esi"));
	&mov	("edx",&DWP(12,"esi"));
	&mov	(&DWP(0,"edi"),"eax");
	&mov	(&DWP(4,"edi"),"ebx");
	&mov	(&DWP(8,"edi"),"ecx");
	&mov	(&DWP(12,"edi"),"edx");

	&xor	("ecx","ecx");
	&jmp	(&label("10shortcut"));

	&align	(4);
	&set_label("10loop");
		&mov	("eax",&DWP(0,"edi"));		# rk[0]
		&mov	("edx",&DWP(12,"edi"));		# rk[3]
	&set_label("10shortcut");
		&enckey	();

		&mov	(&DWP(16,"edi"),"eax");		# rk[4]
		&xor	("eax",&DWP(4,"edi"));
		&mov	(&DWP(20,"edi"),"eax");		# rk[5]
		&xor	("eax",&DWP(8,"edi"));
		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
		&xor	("eax",&DWP(12,"edi"));
		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
		&inc	("ecx");
		&add	("edi",16);
		&cmp	("ecx",10);
	&jl	(&label("10loop"));

	&mov	(&DWP(80,"edi"),10);		# setup number of rounds
	&xor	("eax","eax");
	&jmp	(&label("exit"));
		
    &set_label("12rounds");
	&mov	("eax",&DWP(0,"esi"));		# copy first 6 dwords
	&mov	("ebx",&DWP(4,"esi"));
	&mov	("ecx",&DWP(8,"esi"));
	&mov	("edx",&DWP(12,"esi"));
	&mov	(&DWP(0,"edi"),"eax");
	&mov	(&DWP(4,"edi"),"ebx");
	&mov	(&DWP(8,"edi"),"ecx");
	&mov	(&DWP(12,"edi"),"edx");
	&mov	("ecx",&DWP(16,"esi"));
	&mov	("edx",&DWP(20,"esi"));
	&mov	(&DWP(16,"edi"),"ecx");
	&mov	(&DWP(20,"edi"),"edx");

	&xor	("ecx","ecx");
	&jmp	(&label("12shortcut"));

	&align	(4);
	&set_label("12loop");
		&mov	("eax",&DWP(0,"edi"));		# rk[0]
		&mov	("edx",&DWP(20,"edi"));		# rk[5]
	&set_label("12shortcut");
		&enckey	();

		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
		&xor	("eax",&DWP(4,"edi"));
		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
		&xor	("eax",&DWP(8,"edi"));
		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
		&xor	("eax",&DWP(12,"edi"));
		&mov	(&DWP(36,"edi"),"eax");		# rk[9]

		&cmp	("ecx",7);
		&je	(&label("12break"));
		&inc	("ecx");

		&xor	("eax",&DWP(16,"edi"));
		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
		&xor	("eax",&DWP(20,"edi"));
		&mov	(&DWP(44,"edi"),"eax");		# rk[11]

		&add	("edi",24);
	&jmp	(&label("12loop"));

	&set_label("12break");
	&mov	(&DWP(72,"edi"),12);		# setup number of rounds
	&xor	("eax","eax");
	&jmp	(&label("exit"));

    &set_label("14rounds");
	&mov	("eax",&DWP(0,"esi"));		# copy first 8 dwords
	&mov	("ebx",&DWP(4,"esi"));
	&mov	("ecx",&DWP(8,"esi"));
	&mov	("edx",&DWP(12,"esi"));
	&mov	(&DWP(0,"edi"),"eax");
	&mov	(&DWP(4,"edi"),"ebx");
	&mov	(&DWP(8,"edi"),"ecx");
	&mov	(&DWP(12,"edi"),"edx");
	&mov	("eax",&DWP(16,"esi"));
	&mov	("ebx",&DWP(20,"esi"));
	&mov	("ecx",&DWP(24,"esi"));
	&mov	("edx",&DWP(28,"esi"));
	&mov	(&DWP(16,"edi"),"eax");
	&mov	(&DWP(20,"edi"),"ebx");
	&mov	(&DWP(24,"edi"),"ecx");
	&mov	(&DWP(28,"edi"),"edx");

	&xor	("ecx","ecx");
	&jmp	(&label("14shortcut"));

	&align	(4);
	&set_label("14loop");
		&mov	("edx",&DWP(28,"edi"));		# rk[7]
	&set_label("14shortcut");
		&mov	("eax",&DWP(0,"edi"));		# rk[0]

		&enckey	();

		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
		&xor	("eax",&DWP(4,"edi"));
		&mov	(&DWP(36,"edi"),"eax");		# rk[9]
		&xor	("eax",&DWP(8,"edi"));
		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
		&xor	("eax",&DWP(12,"edi"));
		&mov	(&DWP(44,"edi"),"eax");		# rk[11]

		&cmp	("ecx",6);
		&je	(&label("14break"));
		&inc	("ecx");

		&mov	("edx","eax");
		&mov	("eax",&DWP(16,"edi"));		# rk[4]
		&movz	("esi",&LB("edx"));		# rk[11]>>0
		&movz	("ebx",&BP(-128,$tbl,"esi",1));
		&movz	("esi",&HB("edx"));		# rk[11]>>8
		&xor	("eax","ebx");

		&movz	("ebx",&BP(-128,$tbl,"esi",1));
		&shr	("edx",16);
		&shl	("ebx",8);
		&movz	("esi",&LB("edx"));		# rk[11]>>16
		&xor	("eax","ebx");

		&movz	("ebx",&BP(-128,$tbl,"esi",1));
		&movz	("esi",&HB("edx"));		# rk[11]>>24
		&shl	("ebx",16);
		&xor	("eax","ebx");

		&movz	("ebx",&BP(-128,$tbl,"esi",1));
		&shl	("ebx",24);
		&xor	("eax","ebx");

		&mov	(&DWP(48,"edi"),"eax");		# rk[12]
		&xor	("eax",&DWP(20,"edi"));
		&mov	(&DWP(52,"edi"),"eax");		# rk[13]
		&xor	("eax",&DWP(24,"edi"));
		&mov	(&DWP(56,"edi"),"eax");		# rk[14]
		&xor	("eax",&DWP(28,"edi"));
		&mov	(&DWP(60,"edi"),"eax");		# rk[15]

		&add	("edi",32);
	&jmp	(&label("14loop"));

	&set_label("14break");
	&mov	(&DWP(48,"edi"),14);		# setup number of rounds
	&xor	("eax","eax");
	&jmp	(&label("exit"));

    &set_label("badpointer");
	&mov	("eax",-1);
    &set_label("exit");
&function_end("_x86_AES_set_encrypt_key");

# int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
#                        AES_KEY *key)
&function_begin_B("private_AES_set_encrypt_key");
	&call	("_x86_AES_set_encrypt_key");
	&ret	();
&function_end_B("private_AES_set_encrypt_key");

sub deckey()
{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
  my $tmp = $tbl;

	&mov	($acc,$tp1);
	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp2,&DWP(0,$tp1,$tp1));
	&sub	($acc,$tmp);
	&and	($tp2,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	&xor	($acc,$tp2);
	&mov	($tp2,$acc);

	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp4,&DWP(0,$tp2,$tp2));
	&sub	($acc,$tmp);
	&and	($tp4,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	 &xor	($tp2,$tp1);	# tp2^tp1
	&xor	($acc,$tp4);
	&mov	($tp4,$acc);

	&and	($acc,0x80808080);
	&mov	($tmp,$acc);
	&shr	($tmp,7);
	&lea	($tp8,&DWP(0,$tp4,$tp4));
	 &xor	($tp4,$tp1);	# tp4^tp1
	&sub	($acc,$tmp);
	&and	($tp8,0xfefefefe);
	&and	($acc,0x1b1b1b1b);
	 &rotl	($tp1,8);	# = ROTATE(tp1,8)
	&xor	($tp8,$acc);

	&mov	($tmp,&DWP(4*($i+1),$key));	# modulo-scheduled load

	&xor	($tp1,$tp2);
	&xor	($tp2,$tp8);
	&xor	($tp1,$tp4);
	&rotl	($tp2,24);
	&xor	($tp4,$tp8);
	&xor	($tp1,$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
	&rotl	($tp4,16);
	&xor	($tp1,$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
	&rotl	($tp8,8);
	&xor	($tp1,$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
	&mov	($tp2,$tmp);
	&xor	($tp1,$tp8);	# ^= ROTATE(tp8,8)

	&mov	(&DWP(4*$i,$key),$tp1);
}

# int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
#                        AES_KEY *key)
&function_begin_B("private_AES_set_decrypt_key");
	&call	("_x86_AES_set_encrypt_key");
	&cmp	("eax",0);
	&je	(&label("proceed"));
	&ret	();

    &set_label("proceed");
	&push	("ebp");
	&push	("ebx");
	&push	("esi");
	&push	("edi");

	&mov	("esi",&wparam(2));
	&mov	("ecx",&DWP(240,"esi"));	# pull number of rounds
	&lea	("ecx",&DWP(0,"","ecx",4));
	&lea	("edi",&DWP(0,"esi","ecx",4));	# pointer to last chunk

	&set_label("invert",4);			# invert order of chunks
		&mov	("eax",&DWP(0,"esi"));
		&mov	("ebx",&DWP(4,"esi"));
		&mov	("ecx",&DWP(0,"edi"));
		&mov	("edx",&DWP(4,"edi"));
		&mov	(&DWP(0,"edi"),"eax");
		&mov	(&DWP(4,"edi"),"ebx");
		&mov	(&DWP(0,"esi"),"ecx");
		&mov	(&DWP(4,"esi"),"edx");
		&mov	("eax",&DWP(8,"esi"));
		&mov	("ebx",&DWP(12,"esi"));
		&mov	("ecx",&DWP(8,"edi"));
		&mov	("edx",&DWP(12,"edi"));
		&mov	(&DWP(8,"edi"),"eax");
		&mov	(&DWP(12,"edi"),"ebx");
		&mov	(&DWP(8,"esi"),"ecx");
		&mov	(&DWP(12,"esi"),"edx");
		&add	("esi",16);
		&sub	("edi",16);
		&cmp	("esi","edi");
	&jne	(&label("invert"));

	&mov	($key,&wparam(2));
	&mov	($acc,&DWP(240,$key));		# pull number of rounds
	&lea	($acc,&DWP(-2,$acc,$acc));
	&lea	($acc,&DWP(0,$key,$acc,8));
	&mov	(&wparam(2),$acc);

	&mov	($s0,&DWP(16,$key));		# modulo-scheduled load
	&set_label("permute",4);		# permute the key schedule
		&add	($key,16);
		&deckey	(0,$key,$s0,$s1,$s2,$s3);
		&deckey	(1,$key,$s1,$s2,$s3,$s0);
		&deckey	(2,$key,$s2,$s3,$s0,$s1);
		&deckey	(3,$key,$s3,$s0,$s1,$s2);
		&cmp	($key,&wparam(2));
	&jb	(&label("permute"));

	&xor	("eax","eax");			# return success
&function_end("private_AES_set_decrypt_key");
&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");

&asm_finish();