apr_tables.c 40.3 KB
Newer Older
powelld's avatar
powelld committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Resource allocation code... the code here is responsible for making
 * sure that nothing leaks.
 *
 * rst --- 4/95 --- 6/95
 */

#include "apr_private.h"

#include "apr_general.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_STRINGS_H
#include <strings.h>
#endif

#if (APR_POOL_DEBUG || defined(MAKE_TABLE_PROFILE)) && APR_HAVE_STDIO_H
#include <stdio.h>
#endif

/*****************************************************************
 * This file contains array and apr_table_t functions only.
 */

/*****************************************************************
 *
 * The 'array' functions...
 */

static void make_array_core(apr_array_header_t *res, apr_pool_t *p,
			    int nelts, int elt_size, int clear)
{
    /*
     * Assure sanity if someone asks for
     * array of zero elts.
     */
    if (nelts < 1) {
        nelts = 1;
    }

    if (clear) {
        res->elts = apr_pcalloc(p, nelts * elt_size);
    }
    else {
        res->elts = apr_palloc(p, nelts * elt_size);
    }

    res->pool = p;
    res->elt_size = elt_size;
    res->nelts = 0;		/* No active elements yet... */
    res->nalloc = nelts;	/* ...but this many allocated */
}

APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a)
{
    return ((a == NULL) || (a->nelts == 0));
}

APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
						int nelts, int elt_size)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, nelts, elt_size, 1);
    return res;
}

APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr)
{
    arr->nelts = 0;
}

APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr)
{
    if (apr_is_empty_array(arr)) {
        return NULL;
    }
   
    return arr->elts + (arr->elt_size * (--arr->nelts));
}

APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        memset(new_data + arr->nalloc * arr->elt_size, 0,
               arr->elt_size * (new_size - arr->nalloc));
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

static void *apr_array_push_noclear(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
			       const apr_array_header_t *src)
{
    int elt_size = dst->elt_size;

    if (dst->nelts + src->nelts > dst->nalloc) {
	int new_size = (dst->nalloc <= 0) ? 1 : dst->nalloc * 2;
	char *new_data;

	while (dst->nelts + src->nelts > new_size) {
	    new_size *= 2;
	}

	new_data = apr_pcalloc(dst->pool, elt_size * new_size);
	memcpy(new_data, dst->elts, dst->nalloc * elt_size);

	dst->elts = new_data;
	dst->nalloc = new_size;
    }

    memcpy(dst->elts + dst->nelts * elt_size, src->elts,
	   elt_size * src->nelts);
    dst->nelts += src->nelts;
}

APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
						const apr_array_header_t *arr)
{
    apr_array_header_t *res =
        (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, arr->nalloc, arr->elt_size, 0);

    memcpy(res->elts, arr->elts, arr->elt_size * arr->nelts);
    res->nelts = arr->nelts;
    memset(res->elts + res->elt_size * res->nelts, 0,
           res->elt_size * (res->nalloc - res->nelts));
    return res;
}

/* This cute function copies the array header *only*, but arranges
 * for the data section to be copied on the first push or arraycat.
 * It's useful when the elements of the array being copied are
 * read only, but new stuff *might* get added on the end; we have the
 * overhead of the full copy only where it is really needed.
 */

static APR_INLINE void copy_array_hdr_core(apr_array_header_t *res,
					   const apr_array_header_t *arr)
{
    res->elts = arr->elts;
    res->elt_size = arr->elt_size;
    res->nelts = arr->nelts;
    res->nalloc = arr->nelts;	/* Force overflow on push */
}

APR_DECLARE(apr_array_header_t *)
    apr_array_copy_hdr(apr_pool_t *p,
		       const apr_array_header_t *arr)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    res->pool = p;
    copy_array_hdr_core(res, arr);
    return res;
}

/* The above is used here to avoid consing multiple new array bodies... */

APR_DECLARE(apr_array_header_t *)
    apr_array_append(apr_pool_t *p,
		      const apr_array_header_t *first,
		      const apr_array_header_t *second)
{
    apr_array_header_t *res = apr_array_copy_hdr(p, first);

    apr_array_cat(res, second);
    return res;
}

/* apr_array_pstrcat generates a new string from the apr_pool_t containing
 * the concatenated sequence of substrings referenced as elements within
 * the array.  The string will be empty if all substrings are empty or null,
 * or if there are no elements in the array.
 * If sep is non-NUL, it will be inserted between elements as a separator.
 */
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
				     const apr_array_header_t *arr,
				     const char sep)
{
    char *cp, *res, **strpp;
    apr_size_t len;
    int i;

    if (arr->nelts <= 0 || arr->elts == NULL) {    /* Empty table? */
        return (char *) apr_pcalloc(p, 1);
    }

    /* Pass one --- find length of required string */

    len = 0;
    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len += strlen(*strpp);
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            ++len;
	}
    }

    /* Allocate the required string */

    res = (char *) apr_palloc(p, len + 1);
    cp = res;

    /* Pass two --- copy the argument strings into the result space */

    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len = strlen(*strpp);
            memcpy(cp, *strpp, len);
            cp += len;
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            *cp++ = sep;
	}
    }

    *cp = '\0';

    /* Return the result string */

    return res;
}


/*****************************************************************
 *
 * The "table" functions.
 */

#if APR_CHARSET_EBCDIC
#define CASE_MASK 0xbfbfbfbf
#else
#define CASE_MASK 0xdfdfdfdf
#endif

#define TABLE_HASH_SIZE 32
#define TABLE_INDEX_MASK 0x1f
#define TABLE_HASH(key)  (TABLE_INDEX_MASK & *(unsigned char *)(key))
#define TABLE_INDEX_IS_INITIALIZED(t, i) ((t)->index_initialized & (1 << (i)))
#define TABLE_SET_INDEX_INITIALIZED(t, i) ((t)->index_initialized |= (1 << (i)))

/* Compute the "checksum" for a key, consisting of the first
 * 4 bytes, normalized for case-insensitivity and packed into
 * an int...this checksum allows us to do a single integer
 * comparison as a fast check to determine whether we can
 * skip a strcasecmp
 */
#define COMPUTE_KEY_CHECKSUM(key, checksum)    \
{                                              \
    const char *k = (key);                     \
    apr_uint32_t c = (apr_uint32_t)*k;         \
    (checksum) = c;                            \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    checksum &= CASE_MASK;                     \
}

/** The opaque string-content table type */
struct apr_table_t {
    /* This has to be first to promote backwards compatibility with
     * older modules which cast a apr_table_t * to an apr_array_header_t *...
     * they should use the apr_table_elts() function for most of the
     * cases they do this for.
     */
    /** The underlying array for the table */
    apr_array_header_t a;
#ifdef MAKE_TABLE_PROFILE
    /** Who created the array. */
    void *creator;
#endif
    /* An index to speed up table lookups.  The way this works is:
     *   - Hash the key into the index:
     *     - index_first[TABLE_HASH(key)] is the offset within
     *       the table of the first entry with that key
     *     - index_last[TABLE_HASH(key)] is the offset within
     *       the table of the last entry with that key
     *   - If (and only if) there is no entry in the table whose
     *     key hashes to index element i, then the i'th bit
     *     of index_initialized will be zero.  (Check this before
     *     trying to use index_first[i] or index_last[i]!)
     */
    apr_uint32_t index_initialized;
    int index_first[TABLE_HASH_SIZE];
    int index_last[TABLE_HASH_SIZE];
};

/* keep state for apr_table_getm() */
typedef struct
{
    apr_pool_t *p;
    const char *first;
    apr_array_header_t *merged;
} table_getm_t;

/*
 * NOTICE: if you tweak this you should look at is_empty_table() 
 * and table_elts() in alloc.h
 */
#ifdef MAKE_TABLE_PROFILE
static apr_table_entry_t *do_table_push(const char *func, apr_table_t *t)
{
    if (t->a.nelts == t->a.nalloc) {
        fprintf(stderr, "%s: table created by %p hit limit of %u\n",
                func ? func : "table_push", t->creator, t->a.nalloc);
    }
    return (apr_table_entry_t *) apr_array_push_noclear(&t->a);
}
#if defined(__GNUC__) && __GNUC__ >= 2
#define table_push(t) do_table_push(__FUNCTION__, t)
#else
#define table_push(t) do_table_push(NULL, t)
#endif
#else /* MAKE_TABLE_PROFILE */
#define table_push(t)	((apr_table_entry_t *) apr_array_push_noclear(&(t)->a))
#endif /* MAKE_TABLE_PROFILE */

APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t)
{
    return (const apr_array_header_t *)t;
}

APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t)
{
    return ((t == NULL) || (t->a.nelts == 0));
}

APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts)
{
    apr_table_t *t = apr_palloc(p, sizeof(apr_table_t));

    make_array_core(&t->a, p, nelts, sizeof(apr_table_entry_t), 0);
#ifdef MAKE_TABLE_PROFILE
    t->creator = __builtin_return_address(0);
#endif
    t->index_initialized = 0;
    return t;
}

APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p, const apr_table_t *t)
{
    apr_table_t *new = apr_palloc(p, sizeof(apr_table_t));

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that t->a.pool
     * have a life span at least as long as p
     */
    if (!apr_pool_is_ancestor(t->a.pool, p)) {
	fprintf(stderr, "apr_table_copy: t's pool is not an ancestor of p\n");
	abort();
    }
#endif
    make_array_core(&new->a, p, t->a.nalloc, sizeof(apr_table_entry_t), 0);
    memcpy(new->a.elts, t->a.elts, t->a.nelts * sizeof(apr_table_entry_t));
    new->a.nelts = t->a.nelts;
    memcpy(new->index_first, t->index_first, sizeof(int) * TABLE_HASH_SIZE);
    memcpy(new->index_last, t->index_last, sizeof(int) * TABLE_HASH_SIZE);
    new->index_initialized = t->index_initialized;
    return new;
}

APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p, const apr_table_t *t)
{
    const apr_array_header_t *array = apr_table_elts(t);
    apr_table_entry_t *elts = (apr_table_entry_t *) array->elts;
    apr_table_t *new = apr_table_make(p, array->nelts);
    int i;

    for (i = 0; i < array->nelts; i++) {
        apr_table_add(new, elts[i].key, elts[i].val);
    }

    return new;
}

static void table_reindex(apr_table_t *t)
{
    int i;
    int hash;
    apr_table_entry_t *next_elt = (apr_table_entry_t *) t->a.elts;

    t->index_initialized = 0;
    for (i = 0; i < t->a.nelts; i++, next_elt++) {
        hash = TABLE_HASH(next_elt->key);
        t->index_last[hash] = i;
        if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
            t->index_first[hash] = i;
            TABLE_SET_INDEX_INITIALIZED(t, hash);
        }
    }
}

APR_DECLARE(void) apr_table_clear(apr_table_t *t)
{
    t->a.nelts = 0;
    t->index_initialized = 0;
}

APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    if (key == NULL) {
	return NULL;
    }

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return NULL;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {
	    return next_elt->val;
	}
    }

    return NULL;
}

APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
                                const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = apr_pstrdup(t->a.pool, val);

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
                                 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = (char *)val;

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *dst_elt;
    apr_uint32_t checksum;
    int hash;
    int must_reindex;

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    must_reindex = 0;
    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found a match: remove this entry, plus any additional
             * matches for the same key that might follow
             */
            apr_table_entry_t *table_end = ((apr_table_entry_t *) t->a.elts) +
                t->a.nelts;
            t->a.nelts--;
            dst_elt = next_elt;
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                }
                else {
                    *dst_elt++ = *next_elt;
                }
            }

            /* Shift over the remainder of the table (note that
             * the previous loop didn't run to the end of the table,
             * just to the last match for the index)
             */
            for (; next_elt < table_end; next_elt++) {
                *dst_elt++ = *next_elt;
            }
            must_reindex = 1;
            break;
        }
    }
    if (must_reindex) {
        table_reindex(t);
    }
}

APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
				 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
				  const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	apr_pool_t *pool;
	pool = apr_pool_find(key);
	if ((pool != (apr_pool_t *)key)
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
	    fprintf(stderr, "apr_table_mergen: key not in ancestor pool of t\n");
	    abort();
	}
	pool = apr_pool_find(val);
	if ((pool != (apr_pool_t *)val)
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
	    fprintf(stderr, "apr_table_mergen: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
			       const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = apr_pstrdup(t->a.pool, key);
    elts->val = apr_pstrdup(t->a.pool, val);
    elts->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
				const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: key not in ancestor pool of t\n");
	    abort();
	}
	if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = (char *)key;
    elts->val = (char *)val;
    elts->key_checksum = checksum;
}

APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
					     const apr_table_t *overlay,
					     const apr_table_t *base)
{
    apr_table_t *res;

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that
     * overlay->a.pool and base->a.pool have a life span at least
     * as long as p
     */
    if (!apr_pool_is_ancestor(overlay->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: overlay's pool is not an ancestor of p\n");
	abort();
    }
    if (!apr_pool_is_ancestor(base->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: base's pool is not an ancestor of p\n");
	abort();
    }
#endif

    res = apr_palloc(p, sizeof(apr_table_t));
    /* behave like append_arrays */
    res->a.pool = p;
    copy_array_hdr_core(&res->a, &overlay->a);
    apr_array_cat(&res->a, &base->a);
    table_reindex(res);
    return res;
}

/* And now for something completely abstract ...

 * For each key value given as a vararg:
 *   run the function pointed to as
 *     int comp(void *r, char *key, char *value);
 *   on each valid key-value pair in the apr_table_t t that matches the vararg key,
 *   or once for every valid key-value pair if the vararg list is empty,
 *   until the function returns false (0) or we finish the table.
 *
 * Note that we restart the traversal for each vararg, which means that
 * duplicate varargs will result in multiple executions of the function
 * for each matching key.  Note also that if the vararg list is empty,
 * only one traversal will be made and will cut short if comp returns 0.
 *
 * Note that the table_get and table_merge functions assume that each key in
 * the apr_table_t is unique (i.e., no multiple entries with the same key).  This
 * function does not make that assumption, since it (unfortunately) isn't
 * true for some of Apache's tables.
 *
 * Note that rec is simply passed-on to the comp function, so that the
 * caller can pass additional info for the task.
 *
 * ADDENDUM for apr_table_vdo():
 * 
 * The caching api will allow a user to walk the header values:
 *
 * apr_status_t apr_cache_el_header_walk(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, ...);
 *
 * So it can be ..., however from there I use a  callback that use a va_list:
 *
 * apr_status_t (*cache_el_header_walk)(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, va_list);
 *
 * To pass those ...'s on down to the actual module that will handle walking
 * their headers, in the file case this is actually just an apr_table - and
 * rather than reimplementing apr_table_do (which IMHO would be bad) I just
 * called it with the va_list. For mod_shmem_cache I don't need it since I
 * can't use apr_table's, but mod_file_cache should (though a good hash would
 * be better, but that's a different issue :). 
 *
 * So to make mod_file_cache easier to maintain, it's a good thing
 */
APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
                                     void *rec, const apr_table_t *t, ...)
{
    int rv;

    va_list vp;
    va_start(vp, t);
    rv = apr_table_vdo(comp, rec, t, vp);
    va_end(vp);

    return rv;
} 

/* XXX: do the semantics of this routine make any sense?  Right now,
 * if the caller passed in a non-empty va_list of keys to search for,
 * the "early termination" facility only terminates on *that* key; other
 * keys will continue to process.  Note that this only has any effect
 * at all if there are multiple entries in the table with the same key,
 * otherwise the called function can never effectively early-terminate
 * this function, as the zero return value is effectively ignored.
 *
 * Note also that this behavior is at odds with the behavior seen if an
 * empty va_list is passed in -- in that case, a zero return value terminates
 * the entire apr_table_vdo (which is what I think should happen in
 * both cases).
 *
 * If nobody objects soon, I'm going to change the order of the nested
 * loops in this function so that any zero return value from the (*comp)
 * function will cause a full termination of apr_table_vdo.  I'm hesitant
 * at the moment because these (funky) semantics have been around for a
 * very long time, and although Apache doesn't seem to use them at all,
 * some third-party vendor might.  I can only think of one possible reason
 * the existing semantics would make any sense, and it's very Apache-centric,
 * which is this: if (*comp) is looking for matches of a particular
 * substring in request headers (let's say it's looking for a particular
 * cookie name in the Set-Cookie headers), then maybe it wants to be
 * able to stop searching early as soon as it finds that one and move
 * on to the next key.  That's only an optimization of course, but changing
 * the behavior of this function would mean that any code that tried
 * to do that would stop working right.
 *
 * Sigh.  --JCW, 06/28/02
 */
APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
                               void *rec, const apr_table_t *t, va_list vp)
{
    char *argp;
    apr_table_entry_t *elts = (apr_table_entry_t *) t->a.elts;
    int vdorv = 1;

    argp = va_arg(vp, char *);
    do {
        int rv = 1, i;
        if (argp) {
            /* Scan for entries that match the next key */
            int hash = TABLE_HASH(argp);
            if (TABLE_INDEX_IS_INITIALIZED(t, hash)) {
                apr_uint32_t checksum;
                COMPUTE_KEY_CHECKSUM(argp, checksum);
                for (i = t->index_first[hash];
                     rv && (i <= t->index_last[hash]); ++i) {
                    if (elts[i].key && (checksum == elts[i].key_checksum) &&
                                        !strcasecmp(elts[i].key, argp)) {
                        rv = (*comp) (rec, elts[i].key, elts[i].val);
                    }
                }
            }
        }
        else {
            /* Scan the entire table */
            for (i = 0; rv && (i < t->a.nelts); ++i) {
                if (elts[i].key) {
                    rv = (*comp) (rec, elts[i].key, elts[i].val);
                }
            }
        }
        if (rv == 0) {
            vdorv = 0;
        }
    } while (argp && ((argp = va_arg(vp, char *)) != NULL));

    return vdorv;
}