sha2.c 19.2 KB
Newer Older
powelld's avatar
powelld committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * FILE:        sha2.c
 * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
 *
 * A licence was granted to the ASF by Aaron on 4 November 2003.
 */

#include <string.h>     /* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h>     /* assert() */
#include "sha2.h"

/*
 * ASSERT NOTE:
 * Some sanity checking code is included using assert().  On my FreeBSD
 * system, this additional code can be removed by compiling with NDEBUG
 * defined.  Check your own systems manpage on assert() to see how to
 * compile WITHOUT the sanity checking code on your system.
 *
 * UNROLLED TRANSFORM LOOP NOTE:
 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
 * loop version for the hash transform rounds (defined using macros
 * later in this file).  Either define on the command line, for example:
 *
 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
 *
 * or define below:
 *
 *   #define SHA2_UNROLL_TRANSFORM
 *
 */

/*** SHA-256/384/512 Machine Architecture Definitions *****************/
typedef apr_byte_t   sha2_byte;         /* Exactly 1 byte */
typedef apr_uint32_t sha2_word32;       /* Exactly 4 bytes */
typedef apr_uint64_t sha2_word64;       /* Exactly 8 bytes */

/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)


/*** ENDIAN REVERSAL MACROS *******************************************/
#if !APR_IS_BIGENDIAN
#define REVERSE32(w,x)  { \
        sha2_word32 tmp = (w); \
        tmp = (tmp >> 16) | (tmp << 16); \
        (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x)  { \
        sha2_word64 tmp = (w); \
        tmp = (tmp >> 32) | (tmp << 32); \
        tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
              ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
        (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)) >> 16) | \
              ((tmp & APR_UINT64_C(0x0000ffff0000ffff)) << 16); \
}
#endif /* !APR_IS_BIGENDIAN */

/*
 * Macro for incrementally adding the unsigned 64-bit integer n to the
 * unsigned 128-bit integer (represented using a two-element array of
 * 64-bit words):
 */
#define ADDINC128(w,n)  { \
        (w)[0] += (sha2_word64)(n); \
        if ((w)[0] < (n)) { \
                (w)[1]++; \
        } \
}

/*
 * Macros for copying blocks of memory and for zeroing out ranges
 * of memory.  Using these macros makes it easy to switch from
 * using memset()/memcpy() and using bzero()/bcopy().
 *
 * Please define either SHA2_USE_MEMSET_MEMCPY or define
 * SHA2_USE_BZERO_BCOPY depending on which function set you
 * choose to use:
 */
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define SHA2_USE_MEMSET_MEMCPY  1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif

#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l)       memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l)     memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l)       bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l)     bcopy((s), (d), (l))
#endif


/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
 *
 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
 *   S is a ROTATION) because the SHA-256/384/512 description document
 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
 *   same "backwards" definition.
 */
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x)          ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))

/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))

/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
#define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))

/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
 * library -- they are intended for private internal visibility/use
 * only.
 */
void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*);


/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
        0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
        0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
        0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
        0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
        0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
        0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
        0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
        0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
        0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
        0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
        0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
        0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
        0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
        0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
        0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
        0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

/* Initial hash value H for SHA-256: */
static const sha2_word32 sha256_initial_hash_value[8] = {
        0x6a09e667UL,
        0xbb67ae85UL,
        0x3c6ef372UL,
        0xa54ff53aUL,
        0x510e527fUL,
        0x9b05688cUL,
        0x1f83d9abUL,
        0x5be0cd19UL
};

/*
 * Constant used by SHA256/384/512_End() functions for converting the
 * digest to a readable hexadecimal character string:
 */
static const char *sha2_hex_digits = "0123456789abcdef";


/*** SHA-256: *********************************************************/
void apr__SHA256_Init(SHA256_CTX* context) {
        if (context == (SHA256_CTX*)0) {
                return;
        }
        MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
        MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
        context->bitcount = 0;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-256 round macros: */

#if !APR_IS_BIGENDIAN

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
        REVERSE32(*data++, W256[j]); \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
             K256[j] + W256[j]; \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++


#else /* APR_IS_BIGENDIAN */

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
             K256[j] + (W256[j] = *data++); \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++

#endif /* APR_IS_BIGENDIAN */

#define ROUND256(a,b,c,d,e,f,g,h)       \
        s0 = W256[(j+1)&0x0f]; \
        s0 = sigma0_256(s0); \
        s1 = W256[(j+14)&0x0f]; \
        s1 = sigma1_256(s1); \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
             (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++

void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
        sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
        sha2_word32     T1, *W256;
        int             j;

        W256 = (sha2_word32*)context->buffer;

        /* Initialize registers with the prev. intermediate value */
        a = context->state[0];
        b = context->state[1];
        c = context->state[2];
        d = context->state[3];
        e = context->state[4];
        f = context->state[5];
        g = context->state[6];
        h = context->state[7];

        j = 0;
        do {
                /* Rounds 0 to 15 (unrolled): */
                ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
                ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
                ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
                ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
                ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
                ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
                ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
                ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
        } while (j < 16);

        /* Now for the remaining rounds to 64: */
        do {
                ROUND256(a,b,c,d,e,f,g,h);
                ROUND256(h,a,b,c,d,e,f,g);
                ROUND256(g,h,a,b,c,d,e,f);
                ROUND256(f,g,h,a,b,c,d,e);
                ROUND256(e,f,g,h,a,b,c,d);
                ROUND256(d,e,f,g,h,a,b,c);
                ROUND256(c,d,e,f,g,h,a,b);
                ROUND256(b,c,d,e,f,g,h,a);
        } while (j < 64);

        /* Compute the current intermediate hash value */
        context->state[0] += a;
        context->state[1] += b;
        context->state[2] += c;
        context->state[3] += d;
        context->state[4] += e;
        context->state[5] += f;
        context->state[6] += g;
        context->state[7] += h;

        /* Clean up */
        a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
        sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
        sha2_word32     T1, T2, *W256;
        int             j;

        W256 = (sha2_word32*)context->buffer;

        /* Initialize registers with the prev. intermediate value */
        a = context->state[0];
        b = context->state[1];
        c = context->state[2];
        d = context->state[3];
        e = context->state[4];
        f = context->state[5];
        g = context->state[6];
        h = context->state[7];

        j = 0;
        do {
#if !APR_IS_BIGENDIAN
                /* Copy data while converting to host byte order */
                REVERSE32(*data++,W256[j]);
                /* Apply the SHA-256 compression function to update a..h */
                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* APR_IS_BIGENDIAN */
                /* Apply the SHA-256 compression function to update a..h with copy */
                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* APR_IS_BIGENDIAN */
                T2 = Sigma0_256(a) + Maj(a, b, c);
                h = g;
                g = f;
                f = e;
                e = d + T1;
                d = c;
                c = b;
                b = a;
                a = T1 + T2;

                j++;
        } while (j < 16);

        do {
                /* Part of the message block expansion: */
                s0 = W256[(j+1)&0x0f];
                s0 = sigma0_256(s0);
                s1 = W256[(j+14)&0x0f]; 
                s1 = sigma1_256(s1);

                /* Apply the SHA-256 compression function to update a..h */
                T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
                     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
                T2 = Sigma0_256(a) + Maj(a, b, c);
                h = g;
                g = f;
                f = e;
                e = d + T1;
                d = c;
                c = b;
                b = a;
                a = T1 + T2;

                j++;
        } while (j < 64);

        /* Compute the current intermediate hash value */
        context->state[0] += a;
        context->state[1] += b;
        context->state[2] += c;
        context->state[3] += d;
        context->state[4] += e;
        context->state[5] += f;
        context->state[6] += g;
        context->state[7] += h;

        /* Clean up */
        a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
        unsigned int    freespace, usedspace;

        if (len == 0) {
                /* Calling with no data is valid - we do nothing */
                return;
        }

        /* Sanity check: */
        assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);

        usedspace = (unsigned int)((context->bitcount >> 3) 
                                 % SHA256_BLOCK_LENGTH);
        if (usedspace > 0) {
                /* Calculate how much free space is available in the buffer */
                freespace = SHA256_BLOCK_LENGTH - usedspace;

                if (len >= freespace) {
                        /* Fill the buffer completely and process it */
                        MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
                        context->bitcount += freespace << 3;
                        len -= freespace;
                        data += freespace;
                        apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
                } else {
                        /* The buffer is not yet full */
                        MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
                        context->bitcount += len << 3;
                        /* Clean up: */
                        usedspace = freespace = 0;
                        return;
                }
        }
        while (len >= SHA256_BLOCK_LENGTH) {
                /* Process as many complete blocks as we can */
                apr__SHA256_Transform(context, (sha2_word32*)data);
                context->bitcount += SHA256_BLOCK_LENGTH << 3;
                len -= SHA256_BLOCK_LENGTH;
                data += SHA256_BLOCK_LENGTH;
        }
        if (len > 0) {
                /* There's left-overs, so save 'em */
                MEMCPY_BCOPY(context->buffer, data, len);
                context->bitcount += len << 3;
        }
        /* Clean up: */
        usedspace = freespace = 0;
}

void apr__SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
        sha2_word32     *d = (sha2_word32*)digest;
        unsigned int    usedspace;

        /* Sanity check: */
        assert(context != (SHA256_CTX*)0);

        /* If no digest buffer is passed, we don't bother doing this: */
        if (digest != (sha2_byte*)0) {
                usedspace = (unsigned int)((context->bitcount >> 3) 
                                         % SHA256_BLOCK_LENGTH);
#if !APR_IS_BIGENDIAN
                /* Convert FROM host byte order */
                REVERSE64(context->bitcount,context->bitcount);
#endif
                if (usedspace > 0) {
                        /* Begin padding with a 1 bit: */
                        context->buffer[usedspace++] = 0x80;

                        if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
                                /* Set-up for the last transform: */
                                MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
                        } else {
                                if (usedspace < SHA256_BLOCK_LENGTH) {
                                        MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
                                }
                                /* Do second-to-last transform: */
                                apr__SHA256_Transform(context, (sha2_word32*)context->buffer);

                                /* And set-up for the last transform: */
                                MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
                        }
                } else {
                        /* Set-up for the last transform: */
                        MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);

                        /* Begin padding with a 1 bit: */
                        *context->buffer = 0x80;
                }
                /* Set the bit count: */
                {
                        union dummy {
                                apr_uint64_t bitcount;
                                apr_byte_t bytes[8];
                        } bitcount;
                        bitcount.bitcount = context->bitcount;
                        MEMCPY_BCOPY(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], bitcount.bytes, 8);
                }

                /* Final transform: */
                apr__SHA256_Transform(context, (sha2_word32*)context->buffer);

#if !APR_IS_BIGENDIAN
                {
                        /* Convert TO host byte order */
                        int     j;
                        for (j = 0; j < 8; j++) {
                                REVERSE32(context->state[j],context->state[j]);
                                *d++ = context->state[j];
                        }
                }
#else
                MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
        }

        /* Clean up state data: */
        MEMSET_BZERO(context, sizeof(*context));
        usedspace = 0;
}

char *apr__SHA256_End(SHA256_CTX* context, char buffer[]) {
        sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
        int             i;

        /* Sanity check: */
        assert(context != (SHA256_CTX*)0);

        if (buffer != (char*)0) {
                apr__SHA256_Final(digest, context);

                for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
                        *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
                        *buffer++ = sha2_hex_digits[*d & 0x0f];
                        d++;
                }
                *buffer = (char)0;
        } else {
                MEMSET_BZERO(context, sizeof(*context));
        }
        MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
        return buffer;
}

char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
        SHA256_CTX      context;

        apr__SHA256_Init(&context);
        apr__SHA256_Update(&context, data, len);
        return apr__SHA256_End(&context, digest);
}