Newer
Older
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <string.h>
#include <assert.h>
#include <openssl/aes.h>
#include "internal/evp_int.h"
#include "modes_lcl.h"
#include <openssl/rand.h>
#include "evp_locl.h"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
block128_f block;
union {
cbc128_f cbc;
ctr128_f ctr;
} stream;
} EVP_AES_KEY;
typedef struct {
union {
double align;
AES_KEY ks;
} ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
GCM128_CONTEXT gcm;
unsigned char *iv; /* Temporary IV store */
int ivlen; /* IV length */
int taglen;
int iv_gen; /* It is OK to generate IVs */
int tls_aad_len; /* TLS AAD length */
ctr128_f ctr;
} EVP_AES_GCM_CTX;
typedef struct {
union {
double align;
AES_KEY ks;
} ks1, ks2; /* AES key schedules to use */
XTS128_CONTEXT xts;
void (*stream) (const unsigned char *in,
unsigned char *out, size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
} EVP_AES_XTS_CTX;
typedef struct {
union {
double align;
AES_KEY ks;
} ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
int tag_set; /* Set if tag is valid */
int len_set; /* Set if message length set */
int L, M; /* L and M parameters from RFC3610 */
CCM128_CONTEXT ccm;
ccm128_f str;
} EVP_AES_CCM_CTX;
union {
double align;
AES_KEY ks;
} ksenc; /* AES key schedule to use for encryption */
union {
double align;
AES_KEY ks;
} ksdec; /* AES key schedule to use for decryption */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
OCB128_CONTEXT ocb;
unsigned char *iv; /* Temporary IV store */
unsigned char tag[16];
unsigned char data_buf[16]; /* Store partial data blocks */
unsigned char aad_buf[16]; /* Store partial AAD blocks */
int data_buf_len;
int aad_buf_len;
int ivlen; /* IV length */
int taglen;
} EVP_AES_OCB_CTX;
#define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
Andy Polyakov
committed
int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
void vpaes_encrypt(const unsigned char *in, unsigned char *out,
void vpaes_decrypt(const unsigned char *in, unsigned char *out,
void vpaes_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key, unsigned char *ivec, int enc);
void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key,
unsigned char ivec[16], int enc);
void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
const unsigned char ivec[16]);
void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char iv[16]);
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[AES_BLOCK_SIZE]);
void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
/* increment counter (64-bit int) by 1 */
static void ctr64_inc(unsigned char *counter)
{
int n = 8;
unsigned char c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c)
return;
} while (n);
}
#if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
# include "ppc_arch.h"
# ifdef VPAES_ASM
# define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
# define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
# define HWAES_set_encrypt_key aes_p8_set_encrypt_key
# define HWAES_set_decrypt_key aes_p8_set_decrypt_key
# define HWAES_encrypt aes_p8_encrypt
# define HWAES_decrypt aes_p8_decrypt
# define HWAES_cbc_encrypt aes_p8_cbc_encrypt
# define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
# define HWAES_xts_encrypt aes_p8_xts_encrypt
# define HWAES_xts_decrypt aes_p8_xts_decrypt
#if !defined(OPENSSL_NO_ASM) && ( \
((defined(__i386) || defined(__i386__) || \
defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) )
# ifdef VPAES_ASM
# define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
# endif
# ifdef BSAES_ASM
# define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
# endif
Andy Polyakov
committed
/*
* AES-NI section
*/
# define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
void aesni_encrypt(const unsigned char *in, unsigned char *out,
void aesni_decrypt(const unsigned char *in, unsigned char *out,
void aesni_ecb_encrypt(const unsigned char *in,
unsigned char *out,
size_t length, const AES_KEY *key, int enc);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key, unsigned char *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key, const unsigned char *ivec);
Andy Polyakov
committed
void aesni_xts_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
Andy Polyakov
committed
void aesni_xts_decrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void aesni_ccm64_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key,
const unsigned char ivec[16],
unsigned char cmac[16]);
void aesni_ccm64_decrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key,
const unsigned char ivec[16],
unsigned char cmac[16]);
# if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
size_t aesni_gcm_encrypt(const unsigned char *in,
unsigned char *out,
size_t len,
const void *key, unsigned char ivec[16], u64 *Xi);
size_t aesni_gcm_decrypt(const unsigned char *in,
unsigned char *out,
size_t len,
const void *key, unsigned char ivec[16], u64 *Xi);
void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
size_t len);
# define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
# define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
# undef AES_GCM_ASM2 /* minor size optimization */
# endif
Andy Polyakov
committed
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
mode = EVP_CIPHER_CTX_mode(ctx);
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) {
ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aesni_cbc_encrypt : NULL;
} else {
ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&dat->ks.ks);
dat->block = (block128_f) aesni_encrypt;
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
else
dat->stream.cbc = NULL;
}
if (ret < 0) {
EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_encrypting(ctx));
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
size_t bl = EVP_CIPHER_CTX_block_size(ctx);
aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
EVP_CIPHER_CTX_encrypting(ctx));
static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
Andy Polyakov
committed
static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
Andy Polyakov
committed
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
/*
* If we have an iv can set it directly, otherwise use saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
Andy Polyakov
committed
static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
Andy Polyakov
committed
static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
/* The key is two half length keys in reality */
const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
/*
* Verify that the two keys are different.
*
* This addresses Rogaway's vulnerability.
* See comment in aes_xts_init_key() below.
*/
if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
return 0;
}
/* key_len is two AES keys */
if (enc) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aesni_encrypt;
xctx->stream = aesni_xts_encrypt;
} else {
aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aesni_decrypt;
xctx->stream = aesni_xts_decrypt;
}
aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) aesni_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
Andy Polyakov
committed
static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
Andy Polyakov
committed
static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aesni_encrypt);
cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
(ccm128_f) aesni_ccm64_decrypt_blocks;
cctx->key_set = 1;
}
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
Andy Polyakov
committed
static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
Andy Polyakov
committed
void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key,
size_t start_block_num,
unsigned char offset_i[16],
const unsigned char L_[][16],
unsigned char checksum[16]);
static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
/*
* We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation.
*/
aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aesni_decrypt,
enc ? aesni_ocb_encrypt
: aesni_ocb_decrypt))
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
return 0;
}
while (0);
/*
* If we have an iv we can set it directly, otherwise use saved IV.
*/
if (iv == NULL && octx->iv_set)
iv = octx->iv;
if (iv) {
if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
!= 1)
return 0;
octx->iv_set = 1;
}
octx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (octx->key_set)
CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
else
memcpy(octx->iv, iv, octx->ivlen);
octx->iv_set = 1;
}
return 1;
}
static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
Andy Polyakov
committed
static const EVP_CIPHER aesni_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aesni_init_key, \
aesni_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
Andy Polyakov
committed
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize, \
keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
Andy Polyakov
committed
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
Andy Polyakov
committed
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
Andy Polyakov
committed
static const EVP_CIPHER aesni_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aesni_##mode##_init_key, \
aesni_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
Andy Polyakov
committed
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
Andy Polyakov
committed
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
#elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
extern unsigned int OPENSSL_sparcv9cap_P[];
/*
* Initial Fujitsu SPARC64 X support
*/
# define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
# define HWAES_set_encrypt_key aes_fx_set_encrypt_key
# define HWAES_set_decrypt_key aes_fx_set_decrypt_key
# define HWAES_encrypt aes_fx_encrypt
# define HWAES_decrypt aes_fx_decrypt
# define HWAES_cbc_encrypt aes_fx_cbc_encrypt
# define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
# define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
/*
* Key-length specific subroutines were chosen for following reason.
* Each SPARC T4 core can execute up to 8 threads which share core's
* resources. Loading as much key material to registers allows to
* minimize references to shared memory interface, as well as amount
* of instructions in inner loops [much needed on T4]. But then having
* non-key-length specific routines would require conditional branches
* either in inner loops or on subroutines' entries. Former is hardly
* acceptable, while latter means code size increase to size occupied
* by multiple key-length specific subroutines, so why fight?
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
unsigned char *ivec);
void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key1,
const AES_KEY *key2, const unsigned char *ivec);
static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode, bits;
EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
mode = EVP_CIPHER_CTX_mode(ctx);
bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc) {
ret = 0;
aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
dat->block = (block128_f) aes_t4_decrypt;
switch (bits) {
case 128:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes128_t4_cbc_decrypt : NULL;
break;
case 192:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes192_t4_cbc_decrypt : NULL;
break;
case 256:
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f) aes256_t4_cbc_decrypt : NULL;
break;
default:
ret = -1;
}
} else {
ret = 0;
aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
dat->block = (block128_f) aes_t4_encrypt;
switch (bits) {
case 128:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
case 192:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
case 256:
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
else
dat->stream.cbc = NULL;
break;
default:
ret = -1;
}
}
if (ret < 0) {
EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f) aes_t4_encrypt);
switch (bits) {
case 128:
gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
break;
case 192:
gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
break;
case 256:
gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
break;
default:
return 0;
}
/*
* If we have an iv can set it directly, otherwise use saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
/* The key is two half length keys in reality */
const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
const int bits = bytes * 8;
/*
* Verify that the two keys are different.
*
* This addresses Rogaway's vulnerability.
* See comment in aes_xts_init_key() below.
*/
if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
return 0;
}
xctx->stream = NULL;
/* key_len is two AES keys */
if (enc) {
aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aes_t4_encrypt;
switch (bits) {
case 128:
xctx->stream = aes128_t4_xts_encrypt;
break;
case 256:
xctx->stream = aes256_t4_xts_encrypt;
break;
default:
return 0;
}
} else {
aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks1.ks);
xctx->xts.block1 = (block128_f) aes_t4_decrypt;
switch (bits) {
case 128:
xctx->stream = aes128_t4_xts_decrypt;
break;
case 256:
xctx->stream = aes256_t4_xts_decrypt;
break;
default:
return 0;
}
}
aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
EVP_CIPHER_CTX_key_length(ctx) * 4,
&xctx->ks2.ks);
xctx->xts.block2 = (block128_f) aes_t4_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f) aes_t4_encrypt);
cctx->key_set = 1;
}
if (iv) {
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
if (!iv && !key)
return 1;
if (key) {
do {
/*
* We set both the encrypt and decrypt key here because decrypt
* needs both. We could possibly optimise to remove setting the
* decrypt for an encryption operation.
*/
aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksenc.ks);
aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&octx->ksdec.ks);
if (!CRYPTO_ocb128_init(&octx->ocb,
&octx->ksenc.ks, &octx->ksdec.ks,
(block128_f) aes_t4_decrypt,
NULL))
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
return 0;
}
while (0);
/*
* If we have an iv we can set it directly, otherwise use saved IV.
*/
if (iv == NULL && octx->iv_set)
iv = octx->iv;
if (iv) {
if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
!= 1)
return 0;
octx->iv_set = 1;
}
octx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (octx->key_set)
CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
else
memcpy(octx->iv, iv, octx->ivlen);
octx->iv_set = 1;
}
return 1;
}
static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_t4_init_key, \
aes_t4_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize, \
keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key, \
aes_##mode##_cipher, \
NULL, \
sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_t4_##mode##_init_key, \
aes_t4_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##mode,blocksize, \
(EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_##mode##_init_key, \
aes_##mode##_cipher, \
aes_##mode##_cleanup, \
sizeof(EVP_AES_##MODE##_CTX), \
NULL,NULL,aes_##mode##_ctrl,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
#elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
/*