Skip to content
bsaes-x86_64.pl 27.9 KiB
Newer Older
#!/usr/bin/env perl

###################################################################
### AES-128 [originally in CTR mode]				###
### bitsliced implementation for Intel Core 2 processors	###
### requires support of SSE extensions up to SSSE3		###
### Author: Emilia Käsper and Peter Schwabe			###
### Date: 2009-03-19						###
### Public domain						###
###								###
### See http://homes.esat.kuleuven.be/~ekasper/#software for	###
### further information.					###
###################################################################
#
# September 2011.
#
# Started as transliteration to "perlasm" the original code has
# undergone following changes:
#
# - code was made position-independent;
# - rounds were folded into a loop resulting in >5x size reduction
#   from 12.5KB to 2.2KB;
# - above was possibile thanks to mixcolumns() modification that
#   allowed to feed its output back to aesenc[last], this was
#   achieved at cost of two additional inter-registers moves;
# - some instruction reordering and interleaving;
# - this module doesn't implement key setup subroutine, instead it
#   relies on conversion of "conventional" key schedule as returned
#   by AES_set_encrypt_key (see discussion below);
# - first and last round keys are treated differently, which allowed
#   to skip one shiftrows(), reduce bit-sliced key schedule and
#   speed-up conversion by 22%;
# - support for 192- and 256-bit keys was added;
#
# Resulting performance in CPU cycles spent to encrypt one byte out
# of 4096-byte buffer with 128-bit key is:
#
#		Emilia's	this(*)		difference
#
# Core 2    	9.30		8.69		+7%
# Nehalem(**) 	7.63		6.98		+9%
# Atom	    	17.1		17.4		-2%(***)
#
# (*)	Comparison is not completely fair, because "this" is ECB,
#	i.e. no extra processing such as counter values calculation
#	and xor-ing input as in Emilia's CTR implementation is
#	performed. However, the CTR calculations stand for not more
#	than 1% of total time, so comparison is *rather* fair.
#
# (**)	Results were collected on Westmere, which is considered to
#	be equivalent to Nehalem for this code.
#
# (***)	Slowdown on Atom is rather strange per se, because original
#	implementation has a number of 9+-bytes instructions, which
#	are bad for Atom front-end, and which I eliminated completely.
#	In attempt to address deterioration sbox() was tested in FP
#	SIMD "domain" (movaps instead of movdqa, xorps instead of
#	pxor, etc.). While it resulted in nominal 4% improvement on
#	Atom, it hurted Westmere by more than 2x factor.
#
# As for key schedule conversion subroutine. Interface to OpenSSL
# relies on per-invocation on-the-fly conversion. This naturally
# has impact on performance, especially for short inputs. Conversion
# time in CPU cycles and its ratio to CPU cycles spent in 8x block
# function is:
#
# 		conversion	conversion/8x block
# Core 2	410		0.37
# Nehalem	310		0.35
# Atom		570		0.26
#
# The ratio values mean that 128-byte blocks will be processed
# 21-27% slower, 256-byte blocks - 12-16%, 384-byte blocks - 8-11%,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
# etc. Then keep in mind that input sizes not divisible by 128 are
# *effectively* slower, especially shortest ones, e.g. consecutive
# 144-byte blocks are processed 44% slower than one would expect,
# 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings"
# it's still faster than ["hyper-threading-safe" code path in]
# aes-x86_64.pl on all lengths above 64 bytes...
#
#						<appro@openssl.org>

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

open STDOUT,"| $^X $xlate $flavour $output";

my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx");
my @XMM=map("%xmm$_",(15,0..14));	# best on Atom, +10% over (0..15)

{
my ($key,$rounds,$const)=("%rax","%r10d","%r11");

sub sbox {
# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
	&InBasisChange	(@b);
	&Inv_GF256	(@b[6,5,0,3,7,1,4,2],@t,@s);
	&OutBasisChange	(@b[7,1,4,2,6,5,0,3]);
}

sub InBasisChange {
# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb 
my @b=@_[0..7];
$code.=<<___;
	pxor	@b[6], @b[5]
	pxor	@b[1], @b[2]
	pxor 	@b[0], @b[5]
	pxor	@b[2], @b[6]
	pxor 	@b[0], @b[3]

	pxor	@b[3], @b[6]
	pxor	@b[7], @b[3]
	pxor	@b[5], @b[7]
	pxor	@b[4], @b[3]
	pxor	@b[5], @b[4]
	pxor	@b[1], @b[3]

	pxor	@b[7], @b[2]
	pxor	@b[5], @b[1]
___
}

sub OutBasisChange {
# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb
my @b=@_[0..7];
$code.=<<___;
	pxor	@b[6], @b[0]
	pxor	@b[4], @b[1]
	pxor	@b[0], @b[2]
	pxor	@b[6], @b[4]
	pxor	@b[1], @b[6]

	pxor	@b[5], @b[1]
	pxor	@b[3], @b[5]
	pxor	@b[7], @b[3]
	pxor	@b[5], @b[7]
	pxor	@b[5], @b[2]

	pxor	@b[7], @b[4]
___
}

sub Mul_GF4 {
#;*************************************************************
#;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
#;*************************************************************
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	pxor 	$y1, $t0
	pand	$x0, $t0
	pxor	$x1, $x0
	pand	$y0, $x1
	pand	$y1, $x0
	pxor	$x1, $x0
	pxor	$t0, $x1
___
}

sub Mul_GF4_N {				# not used, see next subroutine
# multiply and scale by N
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	pxor	$y1, $t0
	pand	$x0, $t0
	pxor	$x1, $x0
	pand	$y0, $x1
	pand	$y1, $x0
	pxor	$x0, $x1
	pxor	$t0, $x0
___
}

sub Mul_GF4_N_GF4 {
# interleaved Mul_GF4_N and Mul_GF4
my ($x0,$x1,$y0,$y1,$t0,
    $x2,$x3,$y2,$y3,$t1)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	 movdqa	$y2, $t1
	pxor	$y1, $t0
	 pxor 	$y3, $t1
	pand	$x0, $t0
	 pand	$x2, $t1
	pxor	$x1, $x0
	 pxor	$x3, $x2
	pand	$y0, $x1
	 pand	$y2, $x3
	pand	$y1, $x0
	 pand	$y3, $x2
	pxor	$x0, $x1
	 pxor	$x3, $x2
	pxor	$t0, $x0
	 pxor	$t1, $x3
___
}
sub Mul_GF16_2 {
my @x=@_[0..7];
my @y=@_[8..11];
my @t=@_[12..15];
$code.=<<___;
	movdqa	@x[0], @t[0]
	movdqa	@x[1], @t[1]
___
	&Mul_GF4  	(@x[0], @x[1], @y[0], @y[1], @t[2]);
$code.=<<___;
	pxor	@x[2], @t[0]
	pxor	@x[3], @t[1]
	pxor	@y[2], @y[0]
	pxor	@y[3], @y[1]
___
	Mul_GF4_N_GF4	(@t[0], @t[1], @y[0], @y[1], @t[3],
			 @x[2], @x[3], @y[2], @y[3], @t[2]);
$code.=<<___;
	pxor	@t[0], @x[0]
	pxor	@t[0], @x[2]
	pxor	@t[1], @x[1]
	pxor	@t[1], @x[3]

	movdqa	@x[4], @t[0]
	movdqa	@x[5], @t[1]
	pxor	@x[6], @t[0]
	pxor	@x[7], @t[1]
___
	&Mul_GF4_N_GF4	(@t[0], @t[1], @y[0], @y[1], @t[3],
			 @x[6], @x[7], @y[2], @y[3], @t[2]);
$code.=<<___;
	pxor	@y[2], @y[0]
	pxor	@y[3], @y[1]
___
	&Mul_GF4  	(@x[4], @x[5], @y[0], @y[1], @t[3]);
$code.=<<___;
	pxor	@t[0], @x[4]
	pxor	@t[0], @x[6]
	pxor	@t[1], @x[5]
	pxor	@t[1], @x[7]
___
}
sub Inv_GF256 {
#;********************************************************************
#;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144)       *
#;********************************************************************
my @x=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
# direct optimizations from hardware
$code.=<<___;
	movdqa	@x[4], @t[3]
	movdqa	@x[5], @t[2]
	movdqa	@x[1], @t[1]
	movdqa	@x[7], @s[1]
	movdqa	@x[0], @s[0]

	pxor	@x[6], @t[3]
	pxor	@x[7], @t[2]
	pxor	@x[3], @t[1]
	 movdqa	@t[3], @s[2]
	pxor	@x[6], @s[1]
	 movdqa	@t[2], @t[0]
	pxor	@x[2], @s[0]
	 movdqa	@t[3], @s[3]

	por	@t[1], @t[2]
	por	@s[0], @t[3]
	pxor	@t[0], @s[3]
	pand	@s[0], @s[2]
	pxor	@t[1], @s[0]
	pand	@t[1], @t[0]
	pand	@s[0], @s[3]
	movdqa	@x[3], @s[0]
	pxor	@x[2], @s[0]
	pand	@s[0], @s[1]
	pxor	@s[1], @t[3]
	pxor	@s[1], @t[2]
	movdqa	@x[4], @s[1]
	movdqa	@x[1], @s[0]
	pxor	@x[5], @s[1]
	pxor	@x[0], @s[0]
	movdqa	@s[1], @t[1]
	pand	@s[0], @s[1]
	por	@s[0], @t[1]
	pxor	@s[1], @t[0]
	pxor	@s[3], @t[3]
	pxor	@s[2], @t[2]
	pxor	@s[3], @t[1]
	movdqa	@x[7], @s[0]
	pxor	@s[2], @t[0]
	movdqa	@x[6], @s[1]
	pxor	@s[2], @t[1]
	movdqa	@x[5], @s[2]
	pand	@x[3], @s[0]
	movdqa	@x[4], @s[3]
	pand	@x[2], @s[1]
	pand	@x[1], @s[2]
	por	@x[0], @s[3]
	pxor	@s[0], @t[3]
	pxor	@s[1], @t[2]
	pxor	@s[2], @t[1]
	pxor	@s[3], @t[0] 

	#Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3

	# new smaller inversion

	movdqa	@t[3], @s[0]
	pand	@t[1], @t[3]
	pxor	@t[2], @s[0]

	movdqa	@t[0], @s[2]
	movdqa	@s[0], @s[3]
	pxor	@t[3], @s[2]
	pand	@s[2], @s[3]

	movdqa	@t[1], @s[1]
	pxor	@t[2], @s[3]
	pxor	@t[0], @s[1]

	pxor	@t[2], @t[3]

	pand	@t[3], @s[1]

	movdqa	@s[2], @t[2]
	pxor	@t[0], @s[1]

	pxor	@s[1], @t[2]
	pxor	@s[1], @t[1]

	pand	@t[0], @t[2]

	pxor	@t[2], @s[2]
	pxor	@t[2], @t[1]

	pand	@s[3], @s[2]

	pxor	@s[0], @s[2]
___
# output in s3, s2, s1, t1

# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3

# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3
	&Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]);

### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb
}

# AES linear components

sub shiftrows {
my @x=@_[0..7];
my $mask=pop;
$code.=<<___;
	pxor	0x00($key),@x[0]
	pxor	0x10($key),@x[1]
	pshufb	$mask,@x[0]
	pxor	0x20($key),@x[2]
	pshufb	$mask,@x[1]
	pxor	0x30($key),@x[3]
	pshufb	$mask,@x[2]
	pxor	0x40($key),@x[4]
	pshufb	$mask,@x[3]
	pxor	0x50($key),@x[5]
	pshufb	$mask,@x[4]
	pxor	0x60($key),@x[6]
	pshufb	$mask,@x[5]
	pxor	0x70($key),@x[7]
	pshufb	$mask,@x[6]
	lea	0x80($key),$key
	pshufb	$mask,@x[7]
___
}

sub mixcolumns {
# modified to emit output in order suitable for feeding back to aesenc[last]
my @x=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
	pshufd	\$0x93, @x[0], @t[0]	# x0 <<< 32
	pshufd	\$0x93, @x[1], @t[1]
	 pxor	@t[0], @x[0]		# x0 ^ (x0 <<< 32)
	pshufd	\$0x93, @x[2], @t[2]
	 pxor	@t[1], @x[1]
	pshufd	\$0x93, @x[3], @t[3]
	 pxor	@t[2], @x[2]
	pshufd	\$0x93, @x[4], @t[4]
	 pxor	@t[3], @x[3]
	pshufd	\$0x93, @x[5], @t[5]
	 pxor	@t[4], @x[4]
	pshufd	\$0x93, @x[6], @t[6]
	 pxor	@t[5], @x[5]
	pshufd	\$0x93, @x[7], @t[7]
	 pxor	@t[6], @x[6]
	 pxor	@t[7], @x[7]

	pxor	@x[0], @t[1]
	pxor	@x[7], @t[0]
	pxor	@x[7], @t[1]
	 pshufd	\$0x4E, @x[0], @x[0] 	# (x0 ^ (x0 <<< 32)) <<< 64)
	pxor	@x[1], @t[2]
	 pshufd	\$0x4E, @x[1], @x[1]
	pxor	@x[4], @t[5]
	 pxor	@t[0], @x[0]
	pxor	@x[5], @t[6]
	 pxor	@t[1], @x[1]
	pxor	@x[3], @t[4]
	 pshufd	\$0x4E, @x[4], @t[0]
	pxor	@x[6], @t[7]
	 pshufd	\$0x4E, @x[5], @t[1]
	pxor	@x[2], @t[3]
	 pshufd	\$0x4E, @x[3], @x[4]
	pxor	@x[7], @t[3]
	 pshufd	\$0x4E, @x[7], @x[5]
	pxor	@x[7], @t[4]
	 pshufd	\$0x4E, @x[6], @x[3]
	pxor	@t[4], @t[0]
	 pshufd	\$0x4E, @x[2], @x[6]
	pxor	@t[5], @t[1]

	pxor	@t[3], @x[4]
	pxor	@t[7], @x[5]
	pxor	@t[6], @x[3]
	 movdqa	@t[0], @x[2]
	pxor	@t[2], @x[6]
	 movdqa	@t[1], @x[7]
___
}

sub aesenc {				# not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
	movdqa	0x30($const),@t[0]	# .LSR
___
	&shiftrows	(@b,@t[0]);
	&sbox		(@b,@t);
	&mixcolumns	(@b[0,1,4,6,3,7,2,5],@t);
}

sub aesenclast {			# not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
	movdqa	0x40($const),@t[0]	# .LSRM0
___
	&shiftrows	(@b,@t[0]);
	&sbox		(@b,@t);
$code.=<<___
	pxor	0x00($key),@b[0]
	pxor	0x10($key),@b[1]
	pxor	0x20($key),@b[4]
	pxor	0x30($key),@b[6]
	pxor	0x40($key),@b[3]
	pxor	0x50($key),@b[7]
	pxor	0x60($key),@b[2]
	pxor	0x70($key),@b[5]
___
}

sub swapmove {
my ($a,$b,$n,$mask,$t)=@_;
$code.=<<___;
	movdqa	$b,$t
	psrlq	\$$n,$b
	pxor  	$a,$b
	pand	$mask,$b
	pxor	$b,$a
	psllq	\$$n,$b
	pxor	$t,$b
___
}
sub swapmove2x {
my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_;
$code.=<<___;
	movdqa	$b0,$t0
	psrlq	\$$n,$b0
	 movdqa	$b1,$t1
	 psrlq	\$$n,$b1
	pxor  	$a0,$b0
	 pxor  	$a1,$b1
	pand	$mask,$b0
	 pand	$mask,$b1
	pxor	$b0,$a0
	psllq	\$$n,$b0
	 pxor	$b1,$a1
	 psllq	\$$n,$b1
	pxor	$t0,$b0
	 pxor	$t1,$b1
___
}

sub bitslice {
my @x=reverse(@_[0..7]);
my ($t0,$t1,$t2,$t3)=@_[8..11];
$code.=<<___;
	movdqa	0x00($const),$t0	# .LBS0
	movdqa	0x10($const),$t1	# .LBS1
___
	&swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3);
	&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
$code.=<<___;
	movdqa	0x20($const),$t0	# .LBS2
___
	&swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3);
	&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);

	&swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3);
	&swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3);
}

$code.=<<___;
.text

.extern	AES_encrypt

.type	_bsaes_encrypt8,\@abi-omnipotent
.align	64
_bsaes_encrypt8:
	lea	.LBS0(%rip), $const	# constants table

	movdqa	($key), @XMM[9]		# round 0 key
	lea	0x10($key), $key
	movdqa	0x60($const), @XMM[8]	# .LM0SR
	pxor	@XMM[9], @XMM[0]	# xor with round0 key
	pxor	@XMM[9], @XMM[1]
	 pshufb	@XMM[8], @XMM[0]
	pxor	@XMM[9], @XMM[2]
	 pshufb	@XMM[8], @XMM[1]
	pxor	@XMM[9], @XMM[3]
	 pshufb	@XMM[8], @XMM[2]
	pxor	@XMM[9], @XMM[4]
	 pshufb	@XMM[8], @XMM[3]
	pxor	@XMM[9], @XMM[5]
	 pshufb	@XMM[8], @XMM[4]
	pxor	@XMM[9], @XMM[6]
	 pshufb	@XMM[8], @XMM[5]
	pxor	@XMM[9], @XMM[7]
	 pshufb	@XMM[8], @XMM[6]
	 pshufb	@XMM[8], @XMM[7]
_bsaes_encrypt8_bitslice:
___
	&bitslice	(@XMM[0..7, 8..11]);
$code.=<<___;
	dec	$rounds
	jmp	.Lenc_sbox
.align	16
.Lenc_loop:
___
	&shiftrows	(@XMM[0..7, 8]);
$code.=".Lenc_sbox:\n";
	&sbox		(@XMM[0..7, 8..15]);
$code.=<<___;
	dec	$rounds
	jl	.Lenc_done
___
	&mixcolumns	(@XMM[0,1,4,6,3,7,2,5, 8..15]);
$code.=<<___;
	movdqa	0x30($const), @XMM[8]	# .LSR
	jnz	.Lenc_loop
	movdqa	0x40($const), @XMM[8]	# .LSRM0
	jmp	.Lenc_loop
.align	16
.Lenc_done:
___
	# output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb
	&bitslice	(@XMM[0,1,4,6,3,7,2,5, 8..11]);
$code.=<<___;
	movdqa	($key), @XMM[8]		# last round key
	pxor	@XMM[8], @XMM[0]
	pxor	@XMM[8], @XMM[1]
	pxor	@XMM[8], @XMM[4]
	pxor	@XMM[8], @XMM[6]
	pxor	@XMM[8], @XMM[3]
	pxor	@XMM[8], @XMM[7]
	pxor	@XMM[8], @XMM[2]
	pxor	@XMM[8], @XMM[5]
	ret
.size	_bsaes_encrypt8,.-_bsaes_encrypt8
___
}
{
my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11");

sub bitslice_key {
my @x=reverse(@_[0..7]);
my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12];

	&swapmove	(@x[0,1],1,$bs0,$t2,$t3);
$code.=<<___;
	#&swapmove(@x[2,3],1,$t0,$t2,$t3);
	movdqa	@x[0], @x[2]
	movdqa	@x[1], @x[3]
___
	#&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);

	&swapmove2x	(@x[0,2,1,3],2,$bs1,$t2,$t3);
$code.=<<___;
	#&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
	movdqa	@x[0], @x[4]
	movdqa	@x[2], @x[6]
	movdqa	@x[1], @x[5]
	movdqa	@x[3], @x[7]
___
	&swapmove2x	(@x[0,4,1,5],4,$bs2,$t2,$t3);
	&swapmove2x	(@x[2,6,3,7],4,$bs2,$t2,$t3);
}

$code.=<<___;
.type	_bsaes_enc_key_convert,\@abi-omnipotent
.align	16
_bsaes_enc_key_convert:
	lea	.LBS1(%rip), $const
	movdqu	($inp), %xmm7		# load round 0 key
	movdqa	-0x10($const), %xmm8	# .LBS0
	movdqa	0x00($const), %xmm9	# .LBS1
	movdqa	0x10($const), %xmm10	# .LBS2
	movdqa	0x40($const), %xmm13	# .LM0
	movdqa	0x60($const),%xmm14	# .LNOT

	movdqu	0x10($inp), %xmm6	# load round 1 key
	lea	0x10($inp), $inp
	movdqa	%xmm7, ($out)		# save round 0 key
	lea	0x10($out), $out
	dec	$rounds
	jmp	.Lkey_loop
.align	16
.Lkey_loop:
	pshufb	%xmm13, %xmm6
	movdqa	%xmm6, %xmm7
___
	&bitslice_key	(map("%xmm$_",(0..7, 8..12)));
$code.=<<___;
	pxor	%xmm14, %xmm5		# "pnot"
	pxor	%xmm14, %xmm6
	pxor	%xmm14, %xmm0
	pxor	%xmm14, %xmm1
	lea	0x10($inp), $inp
	movdqa	%xmm0, 0x00($out)	# write bit-sliced round key
	movdqa	%xmm1, 0x10($out)
	movdqa	%xmm2, 0x20($out)
	movdqa	%xmm3, 0x30($out)
	movdqa	%xmm4, 0x40($out)
	movdqa	%xmm5, 0x50($out)
	movdqa	%xmm6, 0x60($out)
	movdqa	%xmm7, 0x70($out)
	lea	0x80($out),$out
	movdqu	($inp), %xmm6		# load next round key
	dec	$rounds
	jnz	.Lkey_loop

	pxor	0x70($const), %xmm6	# .L63
	movdqa	%xmm6, ($out)		# save last round key
	ret
.size	_bsaes_enc_key_convert,.-_bsaes_enc_key_convert
___
}

if (1 && !$win64) {	# following two functions are unsupported interface
			# used for benchmarking...
$code.=<<___;
.globl	bsaes_enc_key_convert
.type	bsaes_enc_key_convert,\@function,2
.align	16
bsaes_enc_key_convert:
	mov	240($inp),%r10d		# pass rounds
	mov	$inp,%rcx		# pass key
	mov	$out,%rax		# pass key schedule
	call	_bsaes_enc_key_convert
	ret
.size	bsaes_enc_key_convert,.-bsaes_enc_key_convert

.globl	bsaes_encrypt_128
.type	bsaes_encrypt_128,\@function,4
.align	16
bsaes_encrypt_128:
.Lenc128_loop:
	movdqu	0x00($inp), @XMM[0]	# load input
	movdqu	0x10($inp), @XMM[1]
	movdqu	0x20($inp), @XMM[2]
	movdqu	0x30($inp), @XMM[3]
	movdqu	0x40($inp), @XMM[4]
	movdqu	0x50($inp), @XMM[5]
	movdqu	0x60($inp), @XMM[6]
	movdqu	0x70($inp), @XMM[7]
	mov	$key, %rax		# pass the $key
	lea	0x80($inp), $inp
	mov	\$10,%r10d

	call	_bsaes_encrypt8

	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	movdqu	@XMM[3], 0x40($out)
	movdqu	@XMM[7], 0x50($out)
	movdqu	@XMM[2], 0x60($out)
	movdqu	@XMM[5], 0x70($out)
	lea	0x80($out), $out
	sub	\$0x80,$len
	ja	.Lenc128_loop
	ret
.size	bsaes_encrypt_128,.-bsaes_encrypt_128
___
}
{
######################################################################
#
# OpenSSL interface
#
my ($arg1,$arg2,$arg3,$arg4,$arg5) = $win64	? ("%rcx","%rdx","%r8","%r9","%r10")
						: ("%rdi","%rsi","%rdx","%rcx","%r8");
my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15");

$code.=<<___;
.globl	bsaes_ecb_encrypt_blocks
.type	bsaes_ecb_encrypt_blocks,\@abi-omnipotent
.align	16
bsaes_ecb_encrypt_blocks:
	push	%rbp
	push	%rbx
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	lea	-0x48(%rsp),%rsp
___
$code.=<<___ if ($win64);
	lea	-0xa0(%rsp), %rsp
	movaps	%xmm6, 0x40(%rsp)
	movaps	%xmm7, 0x50(%rsp)
	movaps	%xmm8, 0x60(%rsp)
	movaps	%xmm9, 0x70(%rsp)
	movaps	%xmm10, 0x80(%rsp)
	movaps	%xmm11, 0x90(%rsp)
	movaps	%xmm12, 0xa0(%rsp)
	movaps	%xmm13, 0xb0(%rsp)
	movaps	%xmm14, 0xc0(%rsp)
	movaps	%xmm15, 0xd0(%rsp)
.Lecb_enc_body:
___
$code.=<<___;
	mov	%rsp,%rbp		# backup %rsp
	mov	240($arg4),%eax		# rounds
	mov	$arg1,$inp		# backup arguments
	mov	$arg2,$out
	mov	$arg3,$len
	mov	$arg4,$key
	cmp	\$8,$arg3
	jb	.Lecb_enc_short

	mov	%eax,%ebx		# backup rounds
	shl	\$7,%rax		# 128 bytes per inner round key
	sub	\$`128-32`,%rax		# size of bit-sliced key schedule
	sub	%rax,%rsp
	mov	%rsp,%rax		# pass key schedule
	mov	$key,%rcx		# pass key
	mov	%ebx,%r10d		# pass rounds
	call	_bsaes_enc_key_convert

	sub	\$8,$len
.Lecb_enc_loop:
	movdqu	0x00($inp), @XMM[0]	# load input
	movdqu	0x10($inp), @XMM[1]
	movdqu	0x20($inp), @XMM[2]
	movdqu	0x30($inp), @XMM[3]
	movdqu	0x40($inp), @XMM[4]
	movdqu	0x50($inp), @XMM[5]
	mov	%rsp, %rax		# pass key schedule
	movdqu	0x60($inp), @XMM[6]
	mov	%ebx,%r10d		# pass rounds
	movdqu	0x70($inp), @XMM[7]
	lea	0x80($inp), $inp

	call	_bsaes_encrypt8

	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	movdqu	@XMM[3], 0x40($out)
	movdqu	@XMM[7], 0x50($out)
	movdqu	@XMM[2], 0x60($out)
	movdqu	@XMM[5], 0x70($out)
	lea	0x80($out), $out
	sub	\$8,$len
	jnc	.Lecb_enc_loop

	add	\$8,$len
	jz	.Lecb_enc_done

	movdqu	0x00($inp), @XMM[0]	# load input
	mov	%rsp, %rax		# pass key schedule
	mov	%ebx,%r10d		# pass rounds
	cmp	\$2,$len
	jb	.Lecb_enc_one
	movdqu	0x10($inp), @XMM[1]
	je	.Lecb_enc_two
	movdqu	0x20($inp), @XMM[2]
	cmp	\$4,$len
	jb	.Lecb_enc_three
	movdqu	0x30($inp), @XMM[3]
	je	.Lecb_enc_four
	movdqu	0x40($inp), @XMM[4]
	cmp	\$6,$len
	jb	.Lecb_enc_five
	movdqu	0x50($inp), @XMM[5]
	je	.Lecb_enc_six
	movdqu	0x60($inp), @XMM[6]
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	movdqu	@XMM[3], 0x40($out)
	movdqu	@XMM[7], 0x50($out)
	movdqu	@XMM[2], 0x60($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_six:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	movdqu	@XMM[3], 0x40($out)
	movdqu	@XMM[7], 0x50($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_five:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	movdqu	@XMM[3], 0x40($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_four:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	movdqu	@XMM[6], 0x30($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_three:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	movdqu	@XMM[4], 0x20($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_two:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	movdqu	@XMM[1], 0x10($out)
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_one:
	call	_bsaes_encrypt8
	movdqu	@XMM[0], 0x00($out)	# write output
	jmp	.Lecb_enc_done
.align	16
.Lecb_enc_short:
	lea	($inp), $arg1
	lea	($out), $arg2
	lea	($key), $arg3
	call	AES_encrypt
	lea	16($inp), $inp
	lea	16($out), $out
	dec	$len
	jnz	.Lecb_enc_short

.Lecb_enc_done:
	lea	(%rsp),%rax
	pxor	%xmm0, %xmm0
.Lecb_enc_bzero:			# wipe key schedule [if any]
	movdqa	%xmm0, 0x00(%rax)
	movdqa	%xmm0, 0x10(%rax)
	lea	0x20(%rax), %rax
	cmp	%rax, %rbp
	jb	.Lecb_enc_bzero

	lea	(%rbp),%rsp		# restore %rsp
___
$code.=<<___ if ($win64);
	movaps	0x40(%rbp), %xmm6
	movaps	0x50(%rbp), %xmm7
	movaps	0x60(%rbp), %xmm8
	movaps	0x70(%rbp), %xmm9
	movaps	0x80(%rbp), %xmm10
	movaps	0x90(%rbp), %xmm11
	movaps	0xa0(%rbp), %xmm12
	movaps	0xb0(%rbp), %xmm13
	movaps	0xc0(%rbp), %xmm14
	movaps	0xd0(%rbp), %xmm15
	lea	0xa0(%rbp), %rsp
___
$code.=<<___;
	mov	0x48(%rsp), %r15
	mov	0x50(%rsp), %r14
	mov	0x58(%rsp), %r13
	mov	0x60(%rsp), %r12
	mov	0x68(%rsp), %rbx
	mov	0x70(%rsp), %rbp
	lea	0x78(%rsp), %rsp
.Lecb_enc_epilogue:
	ret
.size	bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks

.globl	bsaes_ctr32_encrypt_blocks
.type	bsaes_ctr32_encrypt_blocks,\@abi-omnipotent
.align	16
bsaes_ctr32_encrypt_blocks:
	push	%rbp
	push	%rbx
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	lea	-0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
	mov	0xa0(%rsp),$arg5	# pull ivp
	lea	-0xa0(%rsp), %rsp
	movaps	%xmm6, 0x40(%rsp)
	movaps	%xmm7, 0x50(%rsp)
	movaps	%xmm8, 0x60(%rsp)
	movaps	%xmm9, 0x70(%rsp)
	movaps	%xmm10, 0x80(%rsp)
	movaps	%xmm11, 0x90(%rsp)
	movaps	%xmm12, 0xa0(%rsp)
	movaps	%xmm13, 0xb0(%rsp)
	movaps	%xmm14, 0xc0(%rsp)
	movaps	%xmm15, 0xd0(%rsp)
.Lctr_enc_body:
___
$code.=<<___;
	mov	%rsp, %rbp		# backup %rsp
	movdqu	($arg5), %xmm0		# load counter
	mov	240($arg4), %eax	# rounds
	mov	$arg1, $inp		# backup arguments
	mov	$arg2, $out
	mov	$arg3, $len
	mov	$arg4, $key
	movdqa	%xmm0, 0x20(%rbp)	# copy counter
	cmp	\$8, $arg3
	jb	.Lctr_enc_short

	mov	%eax, %ebx		# rounds
	shl	\$7, %rax		# 128 bytes per inner round key
	sub	\$`128-32`, %rax	# size of bit-sliced key schedule
	sub	%rax, %rsp

	mov	%rsp, %rax		# pass key schedule
	mov	$key, %rcx		# pass key
	mov	%ebx, %r10d		# pass rounds
	call	_bsaes_enc_key_convert

	movdqa	(%rsp), @XMM[9]		# load round0 key
	lea	.LADD1(%rip), %r11
	movdqa	0x20(%rbp), @XMM[0]	# counter copy
	movdqa	-0x20(%r11), @XMM[8]	# .LSWPUP
	pshufb	@XMM[8], @XMM[9]	# byte swap upper part
	pshufb	@XMM[8], @XMM[0]
	movdqa	@XMM[9], (%rsp)		# save adjusted round0 key
	jmp	.Lctr_enc_loop
.align	16
.Lctr_enc_loop:
	movdqa	@XMM[0], 0x20(%rbp)	# save counter
	movdqa	@XMM[0], @XMM[1]	# prepare 8 counter values
	movdqa	@XMM[0], @XMM[2]
	paddd	0x00(%r11), @XMM[1]	# .LADD1
	movdqa	@XMM[0], @XMM[3]
	paddd	0x10(%r11), @XMM[2]	# .LADD2
	movdqa	@XMM[0], @XMM[4]
	paddd	0x20(%r11), @XMM[3]	# .LADD3
	movdqa	@XMM[0], @XMM[5]
	paddd	0x30(%r11), @XMM[4]	# .LADD4
	movdqa	@XMM[0], @XMM[6]
	paddd	0x40(%r11), @XMM[5]	# .LADD5
	movdqa	@XMM[0], @XMM[7]
	paddd	0x50(%r11), @XMM[6]	# .LADD6
	paddd	0x60(%r11), @XMM[7]	# .LADD7