Skip to content
bsaes-x86_64.pl 73.9 KiB
Newer Older
#! /usr/bin/env perl
# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


###################################################################
### AES-128 [originally in CTR mode]				###
### bitsliced implementation for Intel Core 2 processors	###
### requires support of SSE extensions up to SSSE3		###
### Author: Emilia Käsper and Peter Schwabe			###
### Date: 2009-03-19						###
### Public domain						###
###								###
### See http://homes.esat.kuleuven.be/~ekasper/#software for	###
### further information.					###
###################################################################
#
# September 2011.
#
# Started as transliteration to "perlasm" the original code has
# undergone following changes:
#
# - code was made position-independent;
# - rounds were folded into a loop resulting in >5x size reduction
#   from 12.5KB to 2.2KB;
# - above was possibile thanks to mixcolumns() modification that
#   allowed to feed its output back to aesenc[last], this was
#   achieved at cost of two additional inter-registers moves;
# - some instruction reordering and interleaving;
# - this module doesn't implement key setup subroutine, instead it
#   relies on conversion of "conventional" key schedule as returned
#   by AES_set_encrypt_key (see discussion below);
# - first and last round keys are treated differently, which allowed
#   to skip one shiftrows(), reduce bit-sliced key schedule and
#   speed-up conversion by 22%;
# - support for 192- and 256-bit keys was added;
#
# Resulting performance in CPU cycles spent to encrypt one byte out
# of 4096-byte buffer with 128-bit key is:
#
#		Emilia's	this(*)		difference
#
# Core 2    	9.30		8.69		+7%
# Nehalem(**) 	7.63		6.88		+11%
# Atom	    	17.1		16.4		+4%
#
# (*)	Comparison is not completely fair, because "this" is ECB,
#	i.e. no extra processing such as counter values calculation
#	and xor-ing input as in Emilia's CTR implementation is
#	performed. However, the CTR calculations stand for not more
#	than 1% of total time, so comparison is *rather* fair.
#
# (**)	Results were collected on Westmere, which is considered to
#	be equivalent to Nehalem for this code.
#
# As for key schedule conversion subroutine. Interface to OpenSSL
# relies on per-invocation on-the-fly conversion. This naturally
# has impact on performance, especially for short inputs. Conversion
# time in CPU cycles and its ratio to CPU cycles spent in 8x block
# function is:
#
# 		conversion	conversion/8x block
# Core 2	240		0.22
# Nehalem	180		0.20
#
# The ratio values mean that 128-byte blocks will be processed
# 16-18% slower, 256-byte blocks - 9-10%, 384-byte blocks - 6-7%,
# etc. Then keep in mind that input sizes not divisible by 128 are
# *effectively* slower, especially shortest ones, e.g. consecutive
# 144-byte blocks are processed 44% slower than one would expect,
# 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings"
# it's still faster than ["hyper-threading-safe" code path in]
# aes-x86_64.pl on all lengths above 64 bytes...
#
# Add decryption procedure. Performance in CPU cycles spent to decrypt
# one byte out of 4096-byte buffer with 128-bit key is:
#
# Core 2	9.98
# Nehalem	7.80
# Atom		17.9
# Add bsaes_xts_[en|de]crypt. Less-than-80-bytes-block performance is
# suboptimal, but XTS is meant to be used with larger blocks...
#						<appro@openssl.org>

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";

my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx");
my @XMM=map("%xmm$_",(15,0..14));	# best on Atom, +10% over (0..15)
my $ecb=0;	# suppress unreferenced ECB subroutines, spare some space...

{
my ($key,$rounds,$const)=("%rax","%r10d","%r11");

# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
	&InBasisChange	(@b);
	&Inv_GF256	(@b[6,5,0,3,7,1,4,2],@t,@s);
	&OutBasisChange	(@b[7,1,4,2,6,5,0,3]);
}

sub InBasisChange {
# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb
my @b=@_[0..7];
$code.=<<___;
	pxor	@b[6], @b[5]
	pxor	@b[1], @b[2]
	pxor	@b[2], @b[6]

	pxor	@b[3], @b[6]
	pxor	@b[7], @b[3]
	pxor	@b[5], @b[7]
	pxor	@b[4], @b[3]
	pxor	@b[5], @b[4]
	pxor	@b[1], @b[3]

	pxor	@b[7], @b[2]
	pxor	@b[5], @b[1]
___
}

sub OutBasisChange {
# input in  lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb
my @b=@_[0..7];
$code.=<<___;
	pxor	@b[6], @b[0]
	pxor	@b[4], @b[1]
	pxor	@b[0], @b[2]
	pxor	@b[6], @b[4]
	pxor	@b[1], @b[6]

	pxor	@b[5], @b[1]
	pxor	@b[3], @b[5]
	pxor	@b[7], @b[3]
	pxor	@b[5], @b[7]
	pxor	@b[5], @b[2]

	pxor	@b[7], @b[4]
___
}

sub InvSbox {
# input in lsb 	> [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb	> [b0, b1, b6, b4, b2, b7, b3, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
	&InvInBasisChange	(@b);
	&Inv_GF256		(@b[5,1,2,6,3,7,0,4],@t,@s);
	&InvOutBasisChange	(@b[3,7,0,4,5,1,2,6]);
}

sub InvInBasisChange {		# OutBasisChange in reverse
my @b=@_[5,1,2,6,3,7,0,4];
$code.=<<___
	pxor	@b[7], @b[4]

	pxor	@b[5], @b[7]
	pxor	@b[5], @b[2]
	pxor	@b[7], @b[3]
	pxor	@b[3], @b[5]
	pxor	@b[5], @b[1]

	pxor	@b[1], @b[6]
	pxor	@b[0], @b[2]
	pxor	@b[6], @b[4]
	pxor	@b[6], @b[0]
	pxor	@b[4], @b[1]
___
}

sub InvOutBasisChange {		# InBasisChange in reverse
my @b=@_[2,5,7,3,6,1,0,4];
$code.=<<___;
	pxor	@b[5], @b[1]
	pxor	@b[7], @b[2]

	pxor	@b[1], @b[3]
	pxor	@b[5], @b[4]
	pxor	@b[5], @b[7]
	pxor	@b[4], @b[3]
	 pxor 	@b[0], @b[5]
	pxor	@b[7], @b[3]
	 pxor	@b[2], @b[6]
	 pxor	@b[1], @b[2]
	pxor	@b[3], @b[6]

	pxor	@b[0], @b[3]
	pxor	@b[6], @b[5]
___
}

sub Mul_GF4 {
#;*************************************************************
#;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
#;*************************************************************
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	pxor 	$y1, $t0
	pand	$x0, $t0
	pxor	$x1, $x0
	pand	$y0, $x1
	pand	$y1, $x0
	pxor	$x1, $x0
	pxor	$t0, $x1
___
}

sub Mul_GF4_N {				# not used, see next subroutine
# multiply and scale by N
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	pxor	$y1, $t0
	pand	$x0, $t0
	pxor	$x1, $x0
	pand	$y0, $x1
	pand	$y1, $x0
	pxor	$x0, $x1
	pxor	$t0, $x0
___
}

sub Mul_GF4_N_GF4 {
# interleaved Mul_GF4_N and Mul_GF4
my ($x0,$x1,$y0,$y1,$t0,
    $x2,$x3,$y2,$y3,$t1)=@_;
$code.=<<___;
	movdqa	$y0, $t0
	 movdqa	$y2, $t1
	pxor	$y1, $t0
	 pxor 	$y3, $t1
	pand	$x0, $t0
	 pand	$x2, $t1
	pxor	$x1, $x0
	 pxor	$x3, $x2
	pand	$y0, $x1
	 pand	$y2, $x3
	pand	$y1, $x0
	 pand	$y3, $x2
	pxor	$x0, $x1
	 pxor	$x3, $x2
	pxor	$t0, $x0
	 pxor	$t1, $x3
___
}
sub Mul_GF16_2 {
my @x=@_[0..7];
my @y=@_[8..11];
my @t=@_[12..15];
$code.=<<___;
	movdqa	@x[0], @t[0]
	movdqa	@x[1], @t[1]
___
	&Mul_GF4  	(@x[0], @x[1], @y[0], @y[1], @t[2]);
$code.=<<___;
	pxor	@x[2], @t[0]
	pxor	@x[3], @t[1]
	pxor	@y[2], @y[0]
	pxor	@y[3], @y[1]
___
	Mul_GF4_N_GF4	(@t[0], @t[1], @y[0], @y[1], @t[3],
			 @x[2], @x[3], @y[2], @y[3], @t[2]);
$code.=<<___;
	pxor	@t[0], @x[0]
	pxor	@t[0], @x[2]
	pxor	@t[1], @x[1]
	pxor	@t[1], @x[3]

	movdqa	@x[4], @t[0]
	movdqa	@x[5], @t[1]
	pxor	@x[6], @t[0]
	pxor	@x[7], @t[1]
___
	&Mul_GF4_N_GF4	(@t[0], @t[1], @y[0], @y[1], @t[3],
			 @x[6], @x[7], @y[2], @y[3], @t[2]);
$code.=<<___;
	pxor	@y[2], @y[0]
	pxor	@y[3], @y[1]
___
	&Mul_GF4  	(@x[4], @x[5], @y[0], @y[1], @t[3]);
$code.=<<___;
	pxor	@t[0], @x[4]
	pxor	@t[0], @x[6]
	pxor	@t[1], @x[5]
	pxor	@t[1], @x[7]
___
}
sub Inv_GF256 {
#;********************************************************************
#;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144)       *
#;********************************************************************
my @x=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
# direct optimizations from hardware
$code.=<<___;
	movdqa	@x[4], @t[3]
	movdqa	@x[5], @t[2]
	movdqa	@x[1], @t[1]
	movdqa	@x[7], @s[1]
	movdqa	@x[0], @s[0]

	pxor	@x[6], @t[3]
	pxor	@x[7], @t[2]
	pxor	@x[3], @t[1]
	 movdqa	@t[3], @s[2]
	pxor	@x[6], @s[1]
	 movdqa	@t[2], @t[0]
	pxor	@x[2], @s[0]
	 movdqa	@t[3], @s[3]

	por	@t[1], @t[2]
	por	@s[0], @t[3]
	pxor	@t[0], @s[3]
	pand	@s[0], @s[2]
	pxor	@t[1], @s[0]
	pand	@t[1], @t[0]
	pand	@s[0], @s[3]
	movdqa	@x[3], @s[0]
	pxor	@x[2], @s[0]
	pand	@s[0], @s[1]
	pxor	@s[1], @t[3]
	pxor	@s[1], @t[2]
	movdqa	@x[4], @s[1]
	movdqa	@x[1], @s[0]
	pxor	@x[5], @s[1]
	pxor	@x[0], @s[0]
	movdqa	@s[1], @t[1]
	pand	@s[0], @s[1]
	por	@s[0], @t[1]
	pxor	@s[1], @t[0]
	pxor	@s[3], @t[3]
	pxor	@s[2], @t[2]
	pxor	@s[3], @t[1]
	movdqa	@x[7], @s[0]
	pxor	@s[2], @t[0]
	movdqa	@x[6], @s[1]
	pxor	@s[2], @t[1]
	movdqa	@x[5], @s[2]
	pand	@x[3], @s[0]
	movdqa	@x[4], @s[3]
	pand	@x[2], @s[1]
	pand	@x[1], @s[2]
	por	@x[0], @s[3]
	pxor	@s[0], @t[3]
	pxor	@s[1], @t[2]
	pxor	@s[2], @t[1]
	pxor	@s[3], @t[0]

	#Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3

	# new smaller inversion

	movdqa	@t[3], @s[0]
	pand	@t[1], @t[3]
	pxor	@t[2], @s[0]

	movdqa	@t[0], @s[2]
	movdqa	@s[0], @s[3]
	pxor	@t[3], @s[2]
	pand	@s[2], @s[3]

	movdqa	@t[1], @s[1]
	pxor	@t[2], @s[3]
	pxor	@t[0], @s[1]

	pxor	@t[2], @t[3]

	pand	@t[3], @s[1]

	movdqa	@s[2], @t[2]
	pxor	@t[0], @s[1]

	pxor	@s[1], @t[2]
	pxor	@s[1], @t[1]

	pand	@t[0], @t[2]

	pxor	@t[2], @s[2]
	pxor	@t[2], @t[1]

	pand	@s[3], @s[2]

	pxor	@s[0], @s[2]
___
# output in s3, s2, s1, t1

# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3

# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3
	&Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]);

### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb
}

# AES linear components

my @x=@_[0..7];
my $mask=pop;
$code.=<<___;
	pxor	0x00($key),@x[0]
	pxor	0x10($key),@x[1]
	pxor	0x20($key),@x[2]
	pxor	0x30($key),@x[3]
	pshufb	$mask,@x[0]
	pshufb	$mask,@x[1]
	pxor	0x40($key),@x[4]
	pxor	0x50($key),@x[5]
	pshufb	$mask,@x[2]
	pshufb	$mask,@x[3]
	pxor	0x60($key),@x[6]
	pxor	0x70($key),@x[7]
	pshufb	$mask,@x[4]
	pshufb	$mask,@x[5]
	pshufb	$mask,@x[6]
	pshufb	$mask,@x[7]
# modified to emit output in order suitable for feeding back to aesenc[last]
my @x=@_[0..7];
my @t=@_[8..15];
my $inv=@_[16];	# optional
$code.=<<___;
	pshufd	\$0x93, @x[0], @t[0]	# x0 <<< 32
	pshufd	\$0x93, @x[1], @t[1]
	 pxor	@t[0], @x[0]		# x0 ^ (x0 <<< 32)
	pshufd	\$0x93, @x[2], @t[2]
	 pxor	@t[1], @x[1]
	pshufd	\$0x93, @x[3], @t[3]
	 pxor	@t[2], @x[2]
	pshufd	\$0x93, @x[4], @t[4]
	 pxor	@t[3], @x[3]
	pshufd	\$0x93, @x[5], @t[5]
	 pxor	@t[4], @x[4]
	pshufd	\$0x93, @x[6], @t[6]
	 pxor	@t[5], @x[5]
	pshufd	\$0x93, @x[7], @t[7]
	 pxor	@t[6], @x[6]
	 pxor	@t[7], @x[7]

	pxor	@x[0], @t[1]
	pxor	@x[7], @t[0]
	pxor	@x[7], @t[1]
	 pshufd	\$0x4E, @x[0], @x[0] 	# (x0 ^ (x0 <<< 32)) <<< 64)
	pxor	@x[1], @t[2]
	 pshufd	\$0x4E, @x[1], @x[1]
	pxor	@x[4], @t[5]
	 pxor	@t[0], @x[0]
	pxor	@x[5], @t[6]
	 pxor	@t[1], @x[1]
	pxor	@x[3], @t[4]
	 pshufd	\$0x4E, @x[4], @t[0]
	pxor	@x[6], @t[7]
	 pshufd	\$0x4E, @x[5], @t[1]
	pxor	@x[2], @t[3]
	 pshufd	\$0x4E, @x[3], @x[4]
	pxor	@x[7], @t[3]
	 pshufd	\$0x4E, @x[7], @x[5]
	pxor	@x[7], @t[4]
	 pshufd	\$0x4E, @x[6], @x[3]
	pxor	@t[4], @t[0]
	 pshufd	\$0x4E, @x[2], @x[6]
	pxor	@t[5], @t[1]
___
$code.=<<___ if (!$inv);
	pxor	@t[3], @x[4]
	pxor	@t[7], @x[5]
	pxor	@t[6], @x[3]
	 movdqa	@t[0], @x[2]
	pxor	@t[2], @x[6]
	 movdqa	@t[1], @x[7]
___
$code.=<<___ if ($inv);
	pxor	@x[4], @t[3]
	pxor	@t[7], @x[5]
	pxor	@x[3], @t[6]
	 movdqa	@t[0], @x[3]
	pxor	@t[2], @x[6]
	 movdqa	@t[6], @x[2]
	 movdqa	@t[1], @x[7]
	 movdqa	@x[6], @x[4]
	 movdqa	@t[3], @x[6]
___
sub InvMixColumns_orig {
my @x=@_[0..7];
my @t=@_[8..15];

$code.=<<___;
	# multiplication by 0x0e
	pshufd	\$0x93, @x[7], @t[7]
	movdqa	@x[2], @t[2]
	pxor	@x[5], @x[7]		# 7 5
	pxor	@x[5], @x[2]		# 2 5
	pshufd	\$0x93, @x[0], @t[0]
	movdqa	@x[5], @t[5]
	pxor	@x[0], @x[5]		# 5 0		[1]
	pxor	@x[1], @x[0]		# 0 1
	pshufd	\$0x93, @x[1], @t[1]
	pxor	@x[2], @x[1]		# 1 25
	pxor	@x[6], @x[0]		# 01 6		[2]
	pxor	@x[3], @x[1]		# 125 3		[4]
	pshufd	\$0x93, @x[3], @t[3]
	pxor	@x[0], @x[2]		# 25 016	[3]
	pxor	@x[7], @x[3]		# 3 75
	pxor	@x[6], @x[7]		# 75 6		[0]
	pshufd	\$0x93, @x[6], @t[6]
	movdqa	@x[4], @t[4]
	pxor	@x[4], @x[6]		# 6 4
	pxor	@x[3], @x[4]		# 4 375		[6]
	pxor	@x[7], @x[3]		# 375 756=36
	pxor	@t[5], @x[6]		# 64 5		[7]
	pxor	@t[2], @x[3]		# 36 2
	pxor	@t[4], @x[3]		# 362 4		[5]
	pshufd	\$0x93, @t[5], @t[5]
___
					my @y = @x[7,5,0,2,1,3,4,6];
$code.=<<___;
	# multiplication by 0x0b
	pxor	@y[0], @y[1]
	pxor	@t[0], @y[0]
	pxor	@t[1], @y[1]
	pshufd	\$0x93, @t[2], @t[2]
	pxor	@t[5], @y[0]
	pxor	@t[6], @y[1]
	pxor	@t[7], @y[0]
	pshufd	\$0x93, @t[4], @t[4]
	pxor	@y[0], @y[1]
	pxor	@t[0], @y[3]
	pshufd	\$0x93, @t[0], @t[0]
	pxor	@t[1], @y[4]
	pshufd	\$0x93, @t[1], @t[1]
	pxor	@t[2], @y[5]
	pxor	@t[7], @y[2]
	pshufd	\$0x93, @t[2], @t[2]
	pxor	@t[3], @y[6]
	pxor	@t[3], @y[4]
	pshufd	\$0x93, @t[3], @t[3]
	pxor	@t[4], @y[7]
	pxor	@t[4], @y[5]
	pxor	@t[5], @y[3]
	pxor	@t[4], @y[4]
	pxor	@t[5], @t[7]		# clobber t[7] even more

	pxor	@t[7], @y[5]
	pshufd	\$0x93, @t[4], @t[4]
	pxor	@t[7], @y[6]
	pxor	@t[7], @y[4]
	pshufd	\$0x93, @t[5], @t[5]
	# multiplication by 0x0d
	pxor	@y[7], @y[4]
	pxor	@t[4], @y[7]
	pxor	@t[0], @y[2]
	pxor	@t[5], @y[7]
	pxor	@t[2], @y[2]
	pshufd	\$0x93, @t[7], @t[7]

	pxor	@y[1], @y[3]
	pxor	@t[1], @y[1]
	pxor	@t[0], @y[0]
	pxor	@t[5], @y[1]
	pxor	@t[5], @y[0]
	pxor	@t[7], @y[1]
	pshufd	\$0x93, @t[0], @t[0]
	pxor	@t[6], @y[0]
	pxor	@y[1], @y[3]
	pshufd	\$0x93, @t[1], @t[1]
	pxor	@t[7], @y[7]
	pxor	@t[2], @y[4]
	pshufd	\$0x93, @t[2], @t[2]
	pxor	@t[6], @y[2]
	pxor	@t[3], @t[6]		# clobber t[6]
	pxor	@y[7], @y[4]
	pxor	@t[6], @y[3]
	pxor	@t[5], @y[5]
	pshufd	\$0x93, @t[4], @t[4]
	pxor	@t[6], @y[5]
	pxor	@t[7], @y[6]
	pxor	@t[3], @t[6]		# restore t[6]

	pshufd	\$0x93, @t[5], @t[5]
	pshufd	\$0x93, @t[6], @t[6]
	pshufd	\$0x93, @t[7], @t[7]
	pshufd	\$0x93, @t[3], @t[3]

	# multiplication by 0x09
	pxor	@y[1], @y[4]
	pxor	@y[1], @t[1]		# t[1]=y[1]
	pxor	@t[5], @t[1]
	pxor	@y[0], @t[0]		# t[0]=y[0]
	pxor	@t[6], @t[1]
	pxor	@t[7], @t[6]		# clobber t[6]
	pxor	@t[1], @y[4]
	pxor	@y[4], @t[4]		# t[4]=y[4]
	pxor	@t[3], @y[6]
	pxor	@y[3], @t[3]		# t[3]=y[3]
	pxor	@t[2], @y[5]
	pxor	@y[2], @t[2]		# t[2]=y[2]
	pxor	@t[7], @t[3]
	pxor	@y[5], @t[5]		# t[5]=y[5]
	pxor	@t[6], @t[2]
	pxor	@t[6], @t[5]
	pxor	@y[6], @t[6]		# t[6]=y[6]
	pxor	@y[7], @t[7]		# t[7]=y[7]

	movdqa	@t[0],@XMM[0]
	movdqa	@t[1],@XMM[1]
	movdqa	@t[2],@XMM[2]
	movdqa	@t[3],@XMM[3]
	movdqa	@t[4],@XMM[4]
	movdqa	@t[5],@XMM[5]
	movdqa	@t[6],@XMM[6]
	movdqa	@t[7],@XMM[7]
___
}

sub InvMixColumns {
my @x=@_[0..7];
my @t=@_[8..15];

# Thanks to Jussi Kivilinna for providing pointer to
#
# | 0e 0b 0d 09 |   | 02 03 01 01 |   | 05 00 04 00 |
# | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
# | 0d 09 0e 0b |   | 01 01 02 03 |   | 04 00 05 00 |
# | 0b 0d 09 0e |   | 03 01 01 02 |   | 00 04 00 05 |

$code.=<<___;
	# multiplication by 0x05-0x00-0x04-0x00
	pshufd	\$0x4E, @x[0], @t[0]
	pshufd	\$0x4E, @x[6], @t[6]
	pxor	@x[0], @t[0]
	pshufd	\$0x4E, @x[7], @t[7]
	pxor	@x[6], @t[6]
	pshufd	\$0x4E, @x[1], @t[1]
	pxor	@x[7], @t[7]
	pshufd	\$0x4E, @x[2], @t[2]
	pxor	@x[1], @t[1]
	pshufd	\$0x4E, @x[3], @t[3]
	pxor	@x[2], @t[2]
	 pxor	@t[6], @x[0]
	 pxor	@t[6], @x[1]
	pshufd	\$0x4E, @x[4], @t[4]
	pxor	@x[3], @t[3]
	 pxor	@t[0], @x[2]
	 pxor	@t[1], @x[3]
	pshufd	\$0x4E, @x[5], @t[5]
	pxor	@x[4], @t[4]
	 pxor	@t[7], @x[1]
	 pxor	@t[2], @x[4]
	pxor	@x[5], @t[5]

	 pxor	@t[7], @x[2]
	 pxor	@t[6], @x[3]
	 pxor	@t[6], @x[4]
	 pxor	@t[3], @x[5]
	 pxor	@t[4], @x[6]
	 pxor	@t[7], @x[4]
	 pxor	@t[7], @x[5]
	 pxor	@t[5], @x[7]
___
	&MixColumns	(@x,@t,1);	# flipped 2<->3 and 4<->6
}

sub aesenc {				# not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
	movdqa	0x30($const),@t[0]	# .LSR
___
	&ShiftRows	(@b,@t[0]);
	&Sbox		(@b,@t);
	&MixColumns	(@b[0,1,4,6,3,7,2,5],@t);
}

sub aesenclast {			# not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
	movdqa	0x40($const),@t[0]	# .LSRM0
___
	&ShiftRows	(@b,@t[0]);
	&Sbox		(@b,@t);
$code.=<<___
	pxor	0x00($key),@b[0]
	pxor	0x10($key),@b[1]
	pxor	0x20($key),@b[4]
	pxor	0x30($key),@b[6]
	pxor	0x40($key),@b[3]
	pxor	0x50($key),@b[7]
	pxor	0x60($key),@b[2]
	pxor	0x70($key),@b[5]
___
}

sub swapmove {
my ($a,$b,$n,$mask,$t)=@_;
$code.=<<___;
	movdqa	$b,$t
	psrlq	\$$n,$b
	pxor  	$a,$b
	pand	$mask,$b
	pxor	$b,$a
	psllq	\$$n,$b
	pxor	$t,$b
___
}
sub swapmove2x {
my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_;
$code.=<<___;
	movdqa	$b0,$t0
	psrlq	\$$n,$b0
	 movdqa	$b1,$t1
	 psrlq	\$$n,$b1
	pxor  	$a0,$b0
	 pxor  	$a1,$b1
	pand	$mask,$b0
	 pand	$mask,$b1
	pxor	$b0,$a0
	psllq	\$$n,$b0
	 pxor	$b1,$a1
	 psllq	\$$n,$b1
	pxor	$t0,$b0
	 pxor	$t1,$b1
___
}

sub bitslice {
my @x=reverse(@_[0..7]);
my ($t0,$t1,$t2,$t3)=@_[8..11];
$code.=<<___;
	movdqa	0x00($const),$t0	# .LBS0
	movdqa	0x10($const),$t1	# .LBS1
___
	&swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3);
	&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
$code.=<<___;
	movdqa	0x20($const),$t0	# .LBS2
___
	&swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3);
	&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);

	&swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3);
	&swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3);
}

$code.=<<___;
.text

.extern	asm_AES_encrypt
.extern	asm_AES_decrypt

.type	_bsaes_encrypt8,\@abi-omnipotent
.align	64
_bsaes_encrypt8:
.cfi_startproc
	lea	.LBS0(%rip), $const	# constants table

	movdqa	($key), @XMM[9]		# round 0 key
	lea	0x10($key), $key
	movdqa	0x50($const), @XMM[8]	# .LM0SR
	pxor	@XMM[9], @XMM[0]	# xor with round0 key
	pxor	@XMM[9], @XMM[1]
	pxor	@XMM[9], @XMM[2]
	pxor	@XMM[9], @XMM[3]
	 pshufb	@XMM[8], @XMM[0]
	 pshufb	@XMM[8], @XMM[1]
	pxor	@XMM[9], @XMM[4]
	pxor	@XMM[9], @XMM[5]
	 pshufb	@XMM[8], @XMM[2]
	 pshufb	@XMM[8], @XMM[3]
	pxor	@XMM[9], @XMM[6]
	pxor	@XMM[9], @XMM[7]
	 pshufb	@XMM[8], @XMM[4]
	 pshufb	@XMM[8], @XMM[5]
	 pshufb	@XMM[8], @XMM[6]
	 pshufb	@XMM[8], @XMM[7]
_bsaes_encrypt8_bitslice:
___
	&bitslice	(@XMM[0..7, 8..11]);
$code.=<<___;
	dec	$rounds
	jmp	.Lenc_sbox
.align	16
.Lenc_loop:
___
$code.=".Lenc_sbox:\n";
$code.=<<___;
	dec	$rounds
	jl	.Lenc_done
___
	&MixColumns	(@XMM[0,1,4,6,3,7,2,5, 8..15]);
$code.=<<___;
	movdqa	0x30($const), @XMM[8]	# .LSR
	jnz	.Lenc_loop
	movdqa	0x40($const), @XMM[8]	# .LSRM0
	jmp	.Lenc_loop
.align	16
.Lenc_done:
___
	# output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb
	&bitslice	(@XMM[0,1,4,6,3,7,2,5, 8..11]);
$code.=<<___;
	movdqa	($key), @XMM[8]		# last round key
	pxor	@XMM[8], @XMM[4]
	pxor	@XMM[8], @XMM[6]
	pxor	@XMM[8], @XMM[3]
	pxor	@XMM[8], @XMM[7]
	pxor	@XMM[8], @XMM[2]
	pxor	@XMM[8], @XMM[5]
	pxor	@XMM[8], @XMM[0]
	pxor	@XMM[8], @XMM[1]
.size	_bsaes_encrypt8,.-_bsaes_encrypt8

.type	_bsaes_decrypt8,\@abi-omnipotent
.align	64
_bsaes_decrypt8:
.cfi_startproc
	lea	.LBS0(%rip), $const	# constants table

	movdqa	($key), @XMM[9]		# round 0 key
	lea	0x10($key), $key
	movdqa	-0x30($const), @XMM[8]	# .LM0ISR
	pxor	@XMM[9], @XMM[0]	# xor with round0 key
	pxor	@XMM[9], @XMM[1]
	pxor	@XMM[9], @XMM[2]
	pxor	@XMM[9], @XMM[3]
	 pshufb	@XMM[8], @XMM[0]
	 pshufb	@XMM[8], @XMM[1]
	pxor	@XMM[9], @XMM[4]
	pxor	@XMM[9], @XMM[5]
	 pshufb	@XMM[8], @XMM[2]
	 pshufb	@XMM[8], @XMM[3]
	pxor	@XMM[9], @XMM[6]
	pxor	@XMM[9], @XMM[7]
	 pshufb	@XMM[8], @XMM[4]
	 pshufb	@XMM[8], @XMM[5]
	 pshufb	@XMM[8], @XMM[6]
	 pshufb	@XMM[8], @XMM[7]
___
	&bitslice	(@XMM[0..7, 8..11]);
$code.=<<___;
	dec	$rounds
	jmp	.Ldec_sbox
.align	16
.Ldec_loop:
___
	&ShiftRows	(@XMM[0..7, 8]);
$code.=".Ldec_sbox:\n";
	&InvSbox	(@XMM[0..7, 8..15]);
$code.=<<___;
	dec	$rounds
	jl	.Ldec_done
___
	&InvMixColumns	(@XMM[0,1,6,4,2,7,3,5, 8..15]);
$code.=<<___;
	movdqa	-0x10($const), @XMM[8]	# .LISR
	jnz	.Ldec_loop
	movdqa	-0x20($const), @XMM[8]	# .LISRM0
	jmp	.Ldec_loop
.align	16
.Ldec_done:
___
	&bitslice	(@XMM[0,1,6,4,2,7,3,5, 8..11]);
$code.=<<___;
	movdqa	($key), @XMM[8]		# last round key
	pxor	@XMM[8], @XMM[6]
	pxor	@XMM[8], @XMM[4]
	pxor	@XMM[8], @XMM[2]
	pxor	@XMM[8], @XMM[7]
	pxor	@XMM[8], @XMM[3]
	pxor	@XMM[8], @XMM[5]
	pxor	@XMM[8], @XMM[0]
	pxor	@XMM[8], @XMM[1]
	ret
.size	_bsaes_decrypt8,.-_bsaes_decrypt8
___
}
{
my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11");

sub bitslice_key {
my @x=reverse(@_[0..7]);
my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12];

	&swapmove	(@x[0,1],1,$bs0,$t2,$t3);
$code.=<<___;
	#&swapmove(@x[2,3],1,$t0,$t2,$t3);
	movdqa	@x[0], @x[2]
	movdqa	@x[1], @x[3]
___
	#&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);

	&swapmove2x	(@x[0,2,1,3],2,$bs1,$t2,$t3);
$code.=<<___;
	#&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
	movdqa	@x[0], @x[4]
	movdqa	@x[2], @x[6]
	movdqa	@x[1], @x[5]
	movdqa	@x[3], @x[7]
___
	&swapmove2x	(@x[0,4,1,5],4,$bs2,$t2,$t3);
	&swapmove2x	(@x[2,6,3,7],4,$bs2,$t2,$t3);
}

$code.=<<___;
.type	_bsaes_key_convert,\@abi-omnipotent
.cfi_startproc
	lea	.Lmasks(%rip), $const
	movdqu	($inp), %xmm7		# load round 0 key
	lea	0x10($inp), $inp
	movdqa	0x00($const), %xmm0	# 0x01...
	movdqa	0x10($const), %xmm1	# 0x02...
	movdqa	0x20($const), %xmm2	# 0x04...
	movdqa	0x30($const), %xmm3	# 0x08...
	movdqa	0x40($const), %xmm4	# .LM0
	pcmpeqd	%xmm5, %xmm5		# .LNOT

	movdqu	($inp), %xmm6		# load round 1 key
	movdqa	%xmm7, ($out)		# save round 0 key
	lea	0x10($out), $out
	dec	$rounds
	jmp	.Lkey_loop
.align	16
.Lkey_loop:
	pshufb	%xmm4, %xmm6		# .LM0

	movdqa	%xmm0,	%xmm8
	movdqa	%xmm1,	%xmm9