lib_its_security.c 107 KB
Newer Older
YannGarcia's avatar
YannGarcia committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*!
 * \File      lib_its_security.c
 * \brief     Source file for Security external functions.
 * \author    FSCOM
 * \copyright FSCOM Copyright Notification
 *            No part may be reproduced except as authorized by written permission.
 *            The copyright and the foregoing restriction extend to reproduction in all media.
 *            All rights reserved.
 * \version   0.1
 * \remark    gcc -Wall -Werror -O0 -ggdb -fstack-check -fstack-protector -fsanitize=leak -fsanitize=address -I. -D__MAIN__ ./lib_its_security.c -L/usr/lib -lssl -lcrypto -lm
 */
#include "lib_its_security.h"

#include <math.h>
#include <assert.h>
#include <arpa/inet.h>

#include <openssl/bio.h>

/**
 * Internal functions
 */

void show_ec_key(const int8_t* p_prefix, lib_its_security_context_t* p_lib_its_security_context) {
  fprintf(stderr, "%s: ", p_prefix);
  BIGNUM *x = BN_new();
  BIGNUM *y = BN_new();
  const EC_POINT *keys = EC_KEY_get0_public_key(p_lib_its_security_context->ec_key);
  if (EC_POINT_get_affine_coordinates_GFp(p_lib_its_security_context->ec_group, keys, x, y, NULL)) {
    BN_print_fp(stderr, x);
    fprintf(stderr, "\n");
    BN_print_fp(stderr, y);
    fprintf(stderr, "\n");
  }
  BN_free(x);
  BN_free(y);
}

void show_ec_point(const int8_t* p_prefix, lib_its_security_context_t* p_lib_its_security_context, EC_POINT* p_ec_point) {
  fprintf(stderr, "%s: ", p_prefix);
  char* result = EC_POINT_point2hex(p_lib_its_security_context->ec_group, p_ec_point, POINT_CONVERSION_UNCOMPRESSED, p_lib_its_security_context->bn_ctx);
  if (result != NULL) {
    fprintf(stderr, "%s\n", result);
    free(result);
  } else {
    fprintf(stderr, "(null)\n");
  }
}

void show_hex(const int8_t* p_prefix, const void* p_buffer, size_t p_buffer_length) {
  fprintf(stderr, "%s: ", p_prefix);
  for (uint8_t* p = (unsigned char*)p_buffer; p_buffer_length; p_buffer_length--, p++) {
    fprintf(stderr, "%02x", *p);
  }
  putc ('\n', stderr);
}

int8_t* bin_to_hex(const uint8_t* p_buffer, const size_t p_buffer_length) {
  int8_t* buf = NULL;
  size_t i = 0, j = 0;

  // Sanity check
  if (p_buffer_length == 0) {
    return NULL;
  }
  
  buf = (int8_t*)malloc(p_buffer_length << 1);
  do {
    *(buf + j) = "0123456789ABCDEF"[(*(p_buffer + i) >> 4) & 0x0F];
    *(buf + j + 1) = "0123456789ABCDEF"[*(p_buffer + i) & 0x0F];
    i += 1; j += 2;
  } while (i < p_buffer_length);

  return buf;
}

uint8_t* hex_to_bin(const int8_t* p_buffer, size_t* p_buffer_length) {
  int8_t a;
  size_t i, len;
  uint8_t* retval = NULL;

  // Sanity check
  if (p_buffer == NULL) {
    return NULL;
  }
  if ((len = strlen((const char*)p_buffer)) & 1) {
    return NULL;
  }

  retval = (uint8_t*)malloc(len >> 1);
  for ( i = 0; i < len; i ++) {
    a = toupper(*(p_buffer + i));
    if (!isxdigit(a)) {
      break;
    }
    if (isdigit(a)) {
      a -= '0';
    } else {
      a = a - 'A' + 0x0A;
    }
    if (i & 1) {
      retval[i >> 1] |= a;
    } else {
      retval[i >> 1] = a<<4;
    }
  } // End of 'for' statement
  if (i < len) {
    free(retval);
    retval = NULL;
  }
  *p_buffer_length = len >> 1;

  return retval;
}

int32_t sign(
             lib_its_security_context_t* p_lib_its_security_context,
             const uint8_t* p_data,
             const size_t p_data_length,
             uint8_t** p_sig_r,
             uint8_t** p_sig_s,
             size_t* p_sig_length
             ) {
  // Sanity checks
  if ((p_lib_its_security_context == NULL) || (p_data == NULL)) {
    return -1;
  }

  ECDSA_SIG *signature = ECDSA_do_sign(p_data, p_data_length, p_lib_its_security_context->ec_key);
  if (signature == NULL) {
    return -1;
  }

  if (ECDSA_do_verify(p_data, p_data_length, signature, p_lib_its_security_context->ec_key) != 1) {
    return -1;
  }

  const BIGNUM* r;
  const BIGNUM* s;
  ECDSA_SIG_get0(signature, &r, &s);
  *p_sig_length = BN_num_bytes(s);
  *p_sig_r = (uint8_t*)malloc(*p_sig_length);
  BN_bn2bin(r, (uint8_t*)(*p_sig_r));
  *p_sig_s = (uint8_t*)malloc(*p_sig_length);
  BN_bn2bin(s, (uint8_t*)(*p_sig_s));

  ECDSA_SIG_free(signature);

  return 0;
}

int32_t sign_verify(
                    lib_its_security_context_t* p_lib_its_security_context,
                    const uint8_t* p_data,
                    const size_t p_data_length,
                    const uint8_t* p_sig_r,
                    const uint8_t* p_sig_s,
                    const size_t p_sig_length
                   ) {
  // Sanity checks
  if ((p_lib_its_security_context == NULL) || (p_data == NULL) || (p_sig_r == NULL) || (p_sig_s == NULL)) {
    return -1;
  }

  // Build the signature
  BIGNUM* r = BN_bin2bn(p_sig_r, p_sig_length, NULL);
  BIGNUM* s = BN_bin2bn(p_sig_s, p_sig_length, NULL);
  ECDSA_SIG *signature = ECDSA_SIG_new();
  ECDSA_SIG_set0(signature, r, s);
  // Check the signature
  int32_t result = ECDSA_do_verify(p_data, p_data_length, signature, p_lib_its_security_context->ec_key);
  ECDSA_SIG_free(signature);

  return (result == 1) ? 0 : -1;
}

int bin_to_ec_point(
                    lib_its_security_context_t* p_lib_its_security_context,
                    const uint8_t* p_public_key_x,
                    const uint8_t* p_public_key_y, EC_POINT** p_ec_point
                    ) {
  BIGNUM* pubk_bn = NULL;
  size_t l = 2 * p_lib_its_security_context->key_length + 1;
  uint8_t* v = (uint8_t*)malloc(l);
  *v = 0x04;
  memcpy((void*)(v + 1), (const void*)p_public_key_x, p_lib_its_security_context->key_length);
  memcpy((void*)(v + 1 + p_lib_its_security_context->key_length), (const void*)p_public_key_y, p_lib_its_security_context->key_length);
  pubk_bn = BN_bin2bn(v, l, NULL);
  *p_ec_point = EC_POINT_new(p_lib_its_security_context->ec_group);
  EC_POINT_bn2point(p_lib_its_security_context->ec_group, pubk_bn, *p_ec_point, p_lib_its_security_context->bn_ctx);
  BN_clear_free(pubk_bn);
  free(v);

  return 0;
}

int public_key_to_bin(
                      lib_its_security_context_t* p_lib_its_security_context,
                      uint8_t** p_bin_key
                      ) {
  const EC_GROUP *ec_group   = EC_KEY_get0_group(p_lib_its_security_context->ec_key);
  const EC_POINT *pub        = EC_KEY_get0_public_key(p_lib_its_security_context->ec_key);
  BIGNUM         *pub_bn     = BN_new();

  EC_POINT_point2bn(ec_group, pub, POINT_CONVERSION_UNCOMPRESSED, pub_bn, p_lib_its_security_context->bn_ctx);
  *p_bin_key = (uint8_t*)malloc(BN_num_bytes(pub_bn));
  BN_bn2bin(pub_bn, *p_bin_key);

  BN_clear_free(pub_bn);

  return 0;
}

int kdf2_sha256(
                lib_its_security_context_t* p_lib_its_security_context,
                const uint8_t* p_salt,
                const int32_t p_salt_length,
                const int32_t p_key_length,
                uint8_t** p_digest, size_t* p_digest_length
                ) {
  // Sanity checks

  int sha256_blk_len = 32;
  int num_blk_out = (int)ceil(p_key_length/(float)sha256_blk_len);
  uint8_t* digest = (uint8_t*)malloc((num_blk_out + 1) * sha256_blk_len);
  int32_t digest_idx = 0;
  const size_t hash_input_length = p_lib_its_security_context->secret_key_length + sizeof(int32_t) + p_salt_length;
  uint8_t* hash_input = (uint8_t*)malloc(hash_input_length);
  int i_ntonl;
  for (int32_t i = 1; i < num_blk_out + 1; i++) {
    uint8_t* p = hash_input;
    memcpy((void*)p, (const void*)p_lib_its_security_context->secret_key, p_lib_its_security_context->secret_key_length);
    p += p_lib_its_security_context->secret_key_length;
    i_ntonl = htonl(i);
    memcpy((void*)p, (const void*)&i_ntonl, sizeof(int32_t));
    p += sizeof(int32_t);
    memcpy((void*)p, (const void*)p_salt, p_salt_length);
    //show_hex((const int8_t*)"hash_input", (const void*)hash_input, hash_input_length);
    uint8_t* h;
    hash_with_sha256(hash_input, hash_input_length, &h);
    //show_hex((const int8_t*)"h", (const void*)h, 32);
    memcpy((void*)digest + digest_idx, (const void*)h, sha256_blk_len);
    //show_hex((const int8_t*)"digest", (const void*)digest, digest_idx + sha256_blk_len);
    digest_idx += sha256_blk_len;
    free(h);
  } // End of 'for' statement
  free(hash_input);
  if (digest_idx > p_key_length * 2) {
    digest_idx = p_key_length * 2;
  }
  *p_digest = (uint8_t*)malloc(digest_idx);
  memcpy((void*)(*p_digest), (const void*)digest, digest_idx);
  *p_digest_length = digest_idx;
  free(digest);

  return 0;
}

int32_t kdf2(
             lib_its_security_context_t* p_lib_its_security_context,
             const uint8_t* p_salt,
             const int32_t p_salt_length,
             const int32_t p_key_length,
             const unsigned char p_hash_algorithm,
             uint8_t** p_digest,
             size_t* p_digest_length
             ) {
  // Sanity checks

  int result = -1;
  switch (p_hash_algorithm) {
  case 0x00: // SHA 256
    result = kdf2_sha256(p_lib_its_security_context, p_salt, p_salt_length, p_key_length, p_digest, p_digest_length);
    break;
  } // End of 'switch' statement

  return result;
}

int32_t generate_and_derive_ephemeral_key_for_encryption(
                                                         lib_its_security_context_t* p_ecdh_private_key,
                                                         const encryption_algorithm_t p_enc_algorithm,
                                                         lib_its_security_context_t* p_public_keys,
                                                         const uint8_t* p_salt,
                                                         const size_t p_salt_length
                                                         ) {
  // Sanity checks
  if (p_public_keys->private_key != NULL) {
    return -1;
  }
  if ((p_public_keys->public_key_x == NULL) || (p_public_keys->public_key_y == NULL)) {
    return -1;
  }

  // Set buffers size
  p_ecdh_private_key->encryption_algorithm = p_enc_algorithm;
  switch (p_ecdh_private_key->encryption_algorithm) {
  case aes_128_ccm:
    // No break;
  case aes_128_gcm:
    p_ecdh_private_key->nonce_length = 12;
    p_ecdh_private_key->sym_key_length = 16;
    p_ecdh_private_key->tag_length = 16;
    break;
  default:
    return -1;
  } // End of 'switch' statement
  uint8_t k_enc;
  uint8_t k_mac;
  switch (p_ecdh_private_key->elliptic_curve) {
  case nist_p_256: // Use the ANSI X9.62 Prime 256v1 curve 
    // No break;
  case brainpool_p_256_r1:
    k_enc = 16;
    k_mac = 32;
    break;
  case brainpool_p_384_r1:
    k_enc = 24; // TODO To be checked
    k_mac = 48;
    break;
  default:
    return -1;
  } // End of 'switch' statement

  /* Convert the ephemeral public encryption keys to an EC point */
  EC_POINT *ec_point = NULL;
  bin_to_ec_point(p_public_keys, p_public_keys->public_key_x, p_public_keys->public_key_y, &ec_point);
  show_ec_point((const int8_t *)"ec_point", p_public_keys, ec_point);
  /* Generate the shared secret key (Key Agreement) */
  p_ecdh_private_key->secret_key_length = (EC_GROUP_get_degree(p_ecdh_private_key->ec_group) + 7) / 8;
  p_ecdh_private_key->secret_key = (uint8_t*)malloc(p_ecdh_private_key->secret_key_length);
  int32_t result = ECDH_compute_key(
                                    p_ecdh_private_key->secret_key,
                                    p_ecdh_private_key->secret_key_length,
                                    ec_point, // From recipient's public keys
                                    p_ecdh_private_key->ec_key,  // From ephemeral's private key
                                    NULL);
  if (result != p_ecdh_private_key->secret_key_length) {
    free(p_ecdh_private_key->secret_key);
    p_ecdh_private_key->secret_key = NULL;
    EC_POINT_free(ec_point);
    return -1;
  }
  EC_POINT_free(ec_point);
  show_hex((const int8_t*)"secret", p_ecdh_private_key->secret_key, p_ecdh_private_key->secret_key_length);

  /* Derive the shared secret key */
  uint8_t* digest;
  size_t digest_length;
  if (kdf2(p_ecdh_private_key, p_salt, p_salt_length, k_enc + k_mac, 0x00/*sha256*/, &digest, &digest_length) != 0) {
    free(p_ecdh_private_key->secret_key);
    p_ecdh_private_key->secret_key = NULL;
    return -1;
  }
  show_hex((const int8_t*)"digest", digest, digest_length);

  /* Extract K1 and generate encrypted symmetric key */
  uint8_t* k1 = (uint8_t*)malloc(k_enc);
  memcpy((void*)k1, (const void*)digest, k_enc);
  show_hex((const int8_t*)"k1", k1, k_enc);
  BIGNUM* r = BN_new();
  BN_pseudo_rand(r, k_enc * 8, -1, 0);
  p_ecdh_private_key->sym_key = (uint8_t*)malloc(k_enc);
  p_ecdh_private_key->sym_key_length = k_enc;
  BN_bn2bin(r, p_ecdh_private_key->sym_key);
  BN_free(r);
  show_hex((const int8_t*)"sym_key", p_ecdh_private_key->sym_key, p_ecdh_private_key->sym_key_length);
  p_ecdh_private_key->enc_sym_key = (uint8_t*)malloc(k_enc);
  for (int i = 0; i < k_enc; *(p_ecdh_private_key->enc_sym_key + i) = *(k1 + i) ^ *(p_ecdh_private_key->sym_key + i), i++);
  show_hex((const int8_t*)"enc_sym_key", p_ecdh_private_key->enc_sym_key, p_ecdh_private_key->sym_key_length);

  // Extract K2 and generate Tag vector
  int32_t k2_length = k_enc * 2;
  uint8_t* k2 = (uint8_t*)malloc(k2_length);
  memcpy((void*)k2, (const void*)(k_enc + digest), k2_length);
  show_hex((const int8_t*)"k2", k2, k2_length);
  hmac_sha256(p_ecdh_private_key->enc_sym_key, p_ecdh_private_key->sym_key_length, k2, k2_length, &p_ecdh_private_key->tag);
  show_hex((const int8_t*)"tag", p_ecdh_private_key->tag, p_ecdh_private_key->tag_length);

  /* Generate random IV (nonce) */
  r = BN_new();
  BN_pseudo_rand(r, p_ecdh_private_key->nonce_length * 8, -1, 0);
  p_ecdh_private_key->nonce = (uint8_t*)malloc(p_ecdh_private_key->nonce_length);
  BN_bn2bin(r, p_ecdh_private_key->nonce);
  BN_free(r);
  show_hex((const int8_t*)"nonce", p_ecdh_private_key->nonce, p_ecdh_private_key->nonce_length);

  free(digest);
  free(k1);
  free(k2);
  return 0;
}

int32_t encrypt(
                lib_its_security_context_t* lib_its_security_context,
                const uint8_t* p_plain_text_message,
                const size_t p_plain_text_message_length,
                uint8_t** p_cipher_message,
                size_t *p_cipher_message_length
                ) {
  /* Sanity checks */

  /* Initialize the context and encryption operation */
  EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
  /* Allocate buffers size */
  switch (lib_its_security_context->encryption_algorithm) {
  case aes_128_ccm:
    EVP_EncryptInit_ex(ctx, EVP_aes_128_ccm(), NULL, NULL, NULL);
    if (lib_its_security_context->tag != NULL) {
      free(lib_its_security_context->tag);
    }
    lib_its_security_context->tag_length = 16;
    lib_its_security_context->tag = (uint8_t*)malloc(lib_its_security_context->tag_length);
    *p_cipher_message = (uint8_t*)malloc(p_plain_text_message_length);
    break;
  case aes_256_ccm:
    EVP_EncryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL);
    break;
  case aes_128_gcm:
    EVP_EncryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
    if (lib_its_security_context->tag != NULL) {
      free(lib_its_security_context->tag);
    }
    lib_its_security_context->tag_length = 16;
    lib_its_security_context->tag = (uint8_t*)malloc(lib_its_security_context->tag_length);
    *p_cipher_message = (uint8_t*)malloc(p_plain_text_message_length);
    break;
  case aes_256_gcm:
    EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
    break;
  } /* End of 'switch' statement */
  *p_cipher_message_length = p_plain_text_message_length;
  /* Set nonce length */
  EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, lib_its_security_context->nonce_length, NULL);
  /* Set tag length */
  EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, lib_its_security_context->tag_length, NULL);
  /* Prime the key and nonce */
  EVP_EncryptInit_ex(ctx, NULL, NULL, lib_its_security_context->sym_key, lib_its_security_context->nonce);
  // No authentication data
  // Encrypt the data
  int len = 0;
  EVP_EncryptUpdate(ctx, *p_cipher_message, &len, p_plain_text_message, p_plain_text_message_length);
  // Finalize the encryption session
  EVP_EncryptFinal_ex(ctx, (*p_cipher_message) + len, &len);
  /* Get the authentication tag */
  EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, lib_its_security_context->tag_length, lib_its_security_context->tag);

  EVP_CIPHER_CTX_free(ctx);

  return 0;
}

int32_t generate_and_derive_ephemeral_key_for_decryption(
                                                         lib_its_security_context_t* p_lib_its_security_context,
                                                         const encryption_algorithm_t p_enc_algorithm,
                                                         lib_its_security_context_t* p_ephemeral_keys,
                                                         const uint8_t* p_enc_sym_key,
                                                         const uint8_t* p_nonce,
                                                         const uint8_t* p_authentication_vector,
                                                         const uint8_t* p_salt,
                                                         const size_t p_salt_length
                                                         ) {
  /* Sanity checks */
  if ((p_lib_its_security_context->public_key_x == NULL) || (p_lib_its_security_context->public_key_y == NULL)) {
    return -1;
  }

  /* Set buffers size */
  p_lib_its_security_context->encryption_algorithm = p_enc_algorithm;
  switch (p_lib_its_security_context->encryption_algorithm) {
  case aes_128_ccm:
    // No break;
  case aes_128_gcm:
    p_lib_its_security_context->nonce_length = 12;
    p_lib_its_security_context->sym_key_length = 16;
    p_lib_its_security_context->tag_length = 16;
    break;
  default:
    return -1;
  } // End of 'switch' statement
  unsigned int k_enc;
  unsigned int k_mac;
  switch (p_lib_its_security_context->elliptic_curve) {
  case nist_p_256: // Use the ANSI X9.62 Prime 256v1 curve 
    // No break;
  case brainpool_p_256_r1:
    k_enc = 16;
    k_mac = 32;
    break;
  case brainpool_p_384_r1:
    break;
  default:
    return -1;
  } // End of 'switch' statement

  /* Fill context buffer */
  p_lib_its_security_context->nonce = (uint8_t*)malloc(p_lib_its_security_context->nonce_length);
  memcpy((void*)p_lib_its_security_context->nonce, (const void*)p_nonce, p_lib_its_security_context->nonce_length);
  p_lib_its_security_context->enc_sym_key = (uint8_t*)malloc(p_lib_its_security_context->sym_key_length);
  memcpy((void*)p_lib_its_security_context->enc_sym_key, (const void*)p_enc_sym_key, p_lib_its_security_context->sym_key_length);
  p_lib_its_security_context->tag = (uint8_t*)malloc(p_lib_its_security_context->tag_length);
  memcpy((void*)p_lib_its_security_context->tag, (const void*)p_authentication_vector, p_lib_its_security_context->tag_length);

  /* Convert the ephemeral key to an EC point */
  EC_POINT *ec_point = NULL;
  bin_to_ec_point(p_ephemeral_keys, p_ephemeral_keys->public_key_x, p_ephemeral_keys->public_key_y, &ec_point); // EC_POINT from ephemeral keys
  // Generate the shared secret key (Key Agreement)
  p_lib_its_security_context->secret_key_length = (EC_GROUP_get_degree(p_lib_its_security_context->ec_group) + 7) / 8;
  p_lib_its_security_context->secret_key = (uint8_t*)malloc(p_lib_its_security_context->secret_key_length);
  int32_t result = ECDH_compute_key(
                                    p_lib_its_security_context->secret_key,
                                    p_lib_its_security_context->secret_key_length,
                                    ec_point, // From ephemeral keys
                                    p_lib_its_security_context->ec_key,  // From recipient's private key
                                    NULL);
  if (result != p_lib_its_security_context->secret_key_length) {
    free(p_lib_its_security_context->secret_key);
    p_lib_its_security_context->secret_key = NULL;
    EC_POINT_free(ec_point);
    return -1;
  }
  EC_POINT_free(ec_point);
  show_hex((const int8_t*)"secret", p_lib_its_security_context->secret_key, p_lib_its_security_context->secret_key_length);

  /* Derive the shared secret key */
  uint8_t* digest;
  size_t digest_length;
  if (kdf2(p_lib_its_security_context, p_salt, p_salt_length, k_enc + k_mac, 0x00/*sha256*/, &digest, &digest_length) != 0) {
    free(p_lib_its_security_context->secret_key);
    p_lib_its_security_context->secret_key = NULL;
    return -1;
  }
  show_hex((const int8_t*)"digest", digest, digest_length);

  /* Extract K2 and generate Tag vector */
  int32_t k2_length = k_enc * 2;
  uint8_t* k2 = (uint8_t*)malloc(k2_length);
  memcpy((void*)k2, (const void*)(k_enc + digest), k2_length);
  show_hex((const int8_t*)"k2", k2, k2_length);
  hmac_sha256(p_lib_its_security_context->enc_sym_key, p_lib_its_security_context->sym_key_length, k2, k2_length, &p_lib_its_security_context->tag);
  show_hex((const int8_t*)"authentication vector", p_lib_its_security_context->tag, p_lib_its_security_context->tag_length);

  /* Extract K1 and generate encrypted symmetric key */
  uint8_t* k1 = (uint8_t*)malloc(k_enc);
  memcpy((void*)k1, (const void*)digest, k_enc);
  show_hex((const int8_t*)"k1", k1, k_enc);
  p_lib_its_security_context->sym_key = (uint8_t*)malloc(k_enc);
  for (int i = 0; i < k_enc; *(p_lib_its_security_context->sym_key + i) = *(k1 + i) ^ *(p_lib_its_security_context->enc_sym_key + i), i++);
  show_hex((const int8_t*)"sym_key", p_lib_its_security_context->sym_key, p_lib_its_security_context->sym_key_length);
  free(k1);
  free(k2);
  free(digest);

  return 0;
}

int32_t decrypt(
                lib_its_security_context_t* p_lib_its_security_context,
                const uint8_t* p_cipher_message,
                const size_t p_cipher_message_length,
                uint8_t**p_plain_text_message,
                size_t* p_plain_text_message_length
                ) {
  /* Sanity checks */

  /* Initialize the context and decryption operation */
  EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
  switch (p_lib_its_security_context->encryption_algorithm) {
  case aes_128_ccm:
    EVP_DecryptInit_ex(ctx, EVP_aes_128_ccm(), NULL, NULL, NULL);
    break;
  case aes_256_ccm:
    EVP_DecryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL);
    break;
  case aes_128_gcm:
    EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
    break;
  case aes_256_gcm:
    EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
    break;
  } // End of 'switch' statement
  /* Set nonce length */
  EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, p_lib_its_security_context->nonce_length, NULL);
  /* Set expected tag value */
  EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, p_lib_its_security_context->tag_length, p_lib_its_security_context->tag);
  /* Specify key and IV */
  EVP_DecryptInit_ex(ctx, NULL, NULL, p_lib_its_security_context->sym_key, p_lib_its_security_context->nonce);
  /* Decrypt plaintext, verify tag: can only be called once */
  *p_plain_text_message = (uint8_t*)malloc(p_cipher_message_length);
  *p_plain_text_message_length = p_cipher_message_length;
  int len = 0;
  int result = EVP_DecryptUpdate(ctx, *p_plain_text_message, &len, p_cipher_message, p_cipher_message_length);
  EVP_CIPHER_CTX_free(ctx);
  if (result != 1) {
    free(*p_plain_text_message);
    *p_plain_text_message = NULL;
  }

  return (result > 0) ? 0 : -1;
}

/**
 * Public functions
 */

int32_t initialize(
                   const ecc_elliptic_curves_t p_elliptic_curve,
                   lib_its_security_context_t** p_lib_its_security_context
                   ) {
  // Sanity checks
  if (p_lib_its_security_context == NULL) {
    return -1;
  }

  OpenSSL_add_all_algorithms();
  ERR_load_crypto_strings();
  ERR_clear_error();

  *p_lib_its_security_context = (lib_its_security_context_t*)malloc(sizeof(lib_its_security_context_t));
  if (*p_lib_its_security_context == NULL) {
    return -1;
  }
  (*p_lib_its_security_context)->elliptic_curve = p_elliptic_curve;
  (*p_lib_its_security_context)->ec_key = NULL;
  (*p_lib_its_security_context)->ec_group = NULL;
  (*p_lib_its_security_context)->bn_ctx = NULL;
  (*p_lib_its_security_context)->key_length = -1;
  (*p_lib_its_security_context)->private_key = NULL;
  (*p_lib_its_security_context)->public_key_x = NULL;
  (*p_lib_its_security_context)->public_key_y = NULL;
  (*p_lib_its_security_context)->public_key_c = NULL;
  (*p_lib_its_security_context)->secret_key = NULL;
  (*p_lib_its_security_context)->sym_key = NULL;
  (*p_lib_its_security_context)->enc_sym_key = NULL;
  (*p_lib_its_security_context)->tag = NULL;
  (*p_lib_its_security_context)->nonce = NULL;
  (*p_lib_its_security_context)->secret_key_length = -1;
  (*p_lib_its_security_context)->sym_key_length = -1;
  (*p_lib_its_security_context)->nonce_length = -1;
  (*p_lib_its_security_context)->tag_length = -1;
  
  int32_t result = -1;
  switch (p_elliptic_curve) {
  case nist_p_256: // Use the ANSI X9.62 Prime 256v1 curve
    (*p_lib_its_security_context)->key_length = 32;
    result = OBJ_txt2nid("prime256v1");
    break;
  case brainpool_p_256_r1:
    (*p_lib_its_security_context)->key_length = 32;
    result = OBJ_txt2nid("brainpoolP256r1");
    break;
  case brainpool_p_384_r1:
    (*p_lib_its_security_context)->key_length = 48;
    result = OBJ_txt2nid("brainpoolP384r1");
    break;
  default:
    fprintf(stderr, "lib_its_security::initialize: Unsupported EC elliptic_curve\n");
  } // End of 'switch' statement
  if (result < 0) {
    return -1;
  }

  (*p_lib_its_security_context)->ec_key = EC_KEY_new_by_curve_name(result); /* Set the elliptic curve */
  EC_KEY_set_asn1_flag((*p_lib_its_security_context)->ec_key, OPENSSL_EC_NAMED_CURVE); /* Used to save and retrieve keys */
  (*p_lib_its_security_context)->ec_group = (EC_GROUP*)EC_KEY_get0_group((*p_lib_its_security_context)->ec_key); /* Get pointer to the EC_GROUP */
  (*p_lib_its_security_context)->bn_ctx = BN_CTX_new();

  return 0;
}

int32_t initialize_with_private_key(
                                    const ecc_elliptic_curves_t p_elliptic_curve,
                                    const uint8_t* p_private_key,
                                    lib_its_security_context_t** p_lib_its_security_context
                                    ) {
  // Sanity checks
  if ((p_lib_its_security_context == NULL) || (p_private_key == NULL)) {
    return -1;
  }

  if (initialize(p_elliptic_curve, p_lib_its_security_context) == -1) {
    return -1;
  }
  EC_KEY_set_conv_form((*p_lib_its_security_context)->ec_key, POINT_CONVERSION_UNCOMPRESSED);

  // Build private key
  BIGNUM* p = BN_new();
  BN_bin2bn(p_private_key, (*p_lib_its_security_context)->key_length, p);
  // Build public keys
  EC_POINT* ec_point = EC_POINT_new((*p_lib_its_security_context)->ec_group);
  EC_POINT_mul((*p_lib_its_security_context)->ec_group, ec_point, p, NULL, NULL, (*p_lib_its_security_context)->bn_ctx);
  // Set private key
  EC_KEY_set_private_key((*p_lib_its_security_context)->ec_key, p);
  if (EC_KEY_check_key((*p_lib_its_security_context)->ec_key) != 0) {
    EC_POINT_free(ec_point);
    BN_clear_free(p);
    return -1;
  }
  BN_clear_free(p);
  // Private key is correct, set public keys
  EC_KEY_set_public_key((*p_lib_its_security_context)->ec_key, ec_point);
  BIGNUM* xy = BN_new();
  EC_POINT_point2bn((*p_lib_its_security_context)->ec_group, ec_point, POINT_CONVERSION_UNCOMPRESSED, xy, (*p_lib_its_security_context)->bn_ctx);
  if (BN_num_bytes(xy) == 0) {
    EC_POINT_free(ec_point);
    BN_clear_free(xy);
    return -1;
  }

  int32_t v_length = BN_num_bytes(xy);
  uint8_t* vv = (uint8_t*)malloc(v_length);
  BN_bn2bin(xy, vv);
  if ((v_length % 2) != 0) {
    // Remove first byte
    //    v_length -= 1;
    //    memcpy((void*)vv, (const void*)(vv + 1), v_length - 1);
    uint8_t *v = (uint8_t*)malloc(v_length - 1);
    memcpy((void*)v, (const void*)(vv + 1), v_length - 1);
    free(vv);
    vv = v;
    v_length -= 1;
  }
  BN_clear_free(xy);
  const int l = v_length / 2;
  (*p_lib_its_security_context)->public_key_x = (uint8_t*)malloc(l);
  memcpy((void*)(*p_lib_its_security_context)->public_key_x, (const void*)vv, l);
  (*p_lib_its_security_context)->public_key_y = (uint8_t*)malloc(l);
  memcpy((void*)(*p_lib_its_security_context)->public_key_y, (const void*)(vv + l), l);
  // Compressed
  int len = EC_POINT_point2oct((*p_lib_its_security_context)->ec_group, ec_point, POINT_CONVERSION_COMPRESSED, NULL, 0, (*p_lib_its_security_context)->bn_ctx);
  if (len != 0) {
    (*p_lib_its_security_context)->public_key_c = (uint8_t*)malloc(len);
    if (EC_POINT_point2oct((*p_lib_its_security_context)->ec_group, ec_point, POINT_CONVERSION_COMPRESSED, (*p_lib_its_security_context)->public_key_c, len, (*p_lib_its_security_context)->bn_ctx) != 0) {
      (*p_lib_its_security_context)->compressed_mode = ((*vv & 0x01) == 0x00) ? compressed_y_0 : compressed_y_1;
      memmove((void*)(*p_lib_its_security_context)->public_key_c, (const void*)(1 + (*p_lib_its_security_context)->public_key_c), len - 1);
    }
  }
  free(vv);
  EC_POINT_free(ec_point);

  (*p_lib_its_security_context)->private_key = (uint8_t*)malloc((*p_lib_its_security_context)->key_length);
  memcpy((void*)(*p_lib_its_security_context)->private_key, (const void*)p_private_key, (*p_lib_its_security_context)->key_length);

  return 0;
}

int32_t initialize_with_public_key(
                                   const ecc_elliptic_curves_t p_elliptic_curve,
                                   const uint8_t* p_public_key,
                                   const ecc_compressed_mode_t p_compressed_mode,
                                   lib_its_security_context_t** p_lib_its_security_context
                                   ) {
  // Sanity checks
  if ((p_lib_its_security_context == NULL) || (p_public_key == NULL)) {
    return -1;
  }

  if (initialize(p_elliptic_curve, p_lib_its_security_context) == -1) {
    return -1;
  }
  EC_KEY_set_conv_form((*p_lib_its_security_context)->ec_key, POINT_CONVERSION_UNCOMPRESSED);

  // Set public key
  BIGNUM* compressed_key = BN_new();
  BN_bin2bn(p_public_key, (*p_lib_its_security_context)->key_length, compressed_key);
  EC_POINT* ec_point = EC_POINT_new((*p_lib_its_security_context)->ec_group);
  int32_t result = 0;
  switch (p_elliptic_curve) {
  case nist_p_256: // Use primary
    // No break;
  case brainpool_p_256_r1:
    // No break;
  case brainpool_p_384_r1:
    result = EC_POINT_set_compressed_coordinates_GFp((*p_lib_its_security_context)->ec_group, ec_point, compressed_key, (p_compressed_mode == compressed_y_1) ? 1 : 0, (*p_lib_its_security_context)->bn_ctx); // Use primary elliptic curve
    break;
  default: // Use Binary
    result = EC_POINT_set_compressed_coordinates_GF2m((*p_lib_its_security_context)->ec_group, ec_point, compressed_key, (p_compressed_mode == compressed_y_1) ? 1 : 0, (*p_lib_its_security_context)->bn_ctx);
  } // End of 'switch' statement
  BN_clear_free(compressed_key);

  if (result == 0) {
    EC_POINT_free(ec_point);
    return -1;
  } else if (EC_POINT_is_on_curve((*p_lib_its_security_context)->ec_group, ec_point, (*p_lib_its_security_context)->bn_ctx) == 0) {
    EC_POINT_free(ec_point);
    return -1;
  }

  // Set public keys
  BIGNUM* xy = BN_new();
  EC_POINT_point2bn((*p_lib_its_security_context)->ec_group, ec_point, POINT_CONVERSION_UNCOMPRESSED, xy, (*p_lib_its_security_context)->bn_ctx);
  if (BN_num_bytes(xy) == 0) {
    EC_POINT_free(ec_point);
    BN_clear_free(xy);
    return -1;
  }
  EC_KEY_set_public_key((*p_lib_its_security_context)->ec_key, ec_point);
  // Generate X, Y coordinates
  int32_t v_length = BN_num_bytes(xy);
  uint8_t* vv = (uint8_t*)malloc(v_length);
  BN_bn2bin(xy, vv);
  BN_clear_free(xy);
  if ((v_length % 2) != 0) { // TODO Check alse xy[0] == 0x04
    // Remove first byte
    //    v_length -= 1;
    //    memcpy((void*)vv, (const void*)(vv + 1), v_length - 1);
    uint8_t *v = (uint8_t*)malloc(v_length - 1);
    memcpy((void*)v, (const void*)(vv + 1), v_length - 1);
    free(vv);
    vv = v;
    v_length -= 1;
  }
  const int l = v_length / 2;
  (*p_lib_its_security_context)->public_key_x = (uint8_t*)malloc(l);
  memcpy((void*)(*p_lib_its_security_context)->public_key_x, (const void*)vv, l);
  (*p_lib_its_security_context)->public_key_y = (uint8_t*)malloc(l);
  memcpy((void*)(*p_lib_its_security_context)->public_key_y, (const void*)(vv + l), l);
  (*p_lib_its_security_context)->public_key_c = (uint8_t*)malloc(l);
  memcpy((void*)(*p_lib_its_security_context)->public_key_c, (const void*)p_public_key, (*p_lib_its_security_context)->key_length);
  (*p_lib_its_security_context)->compressed_mode = p_compressed_mode;
  free(vv);
  EC_POINT_free(ec_point);

  return 0;
}

int32_t uninitialize(lib_its_security_context_t** p_lib_its_security_context) {
  // Sanity checks
  if ((p_lib_its_security_context == NULL) || (*p_lib_its_security_context == NULL)) {
    return -1;
  }

  if ((*p_lib_its_security_context)->private_key != NULL) free((*p_lib_its_security_context)->private_key);
  if ((*p_lib_its_security_context)->public_key_x != NULL) free((*p_lib_its_security_context)->public_key_x);
  if ((*p_lib_its_security_context)->public_key_y != NULL) free((*p_lib_its_security_context)->public_key_y);
  if ((*p_lib_its_security_context)->public_key_c != NULL) free((*p_lib_its_security_context)->public_key_c);
  if ((*p_lib_its_security_context)->secret_key != NULL) free((*p_lib_its_security_context)->secret_key);
  if ((*p_lib_its_security_context)->sym_key != NULL) free((*p_lib_its_security_context)->sym_key);
  if ((*p_lib_its_security_context)->enc_sym_key != NULL) free((*p_lib_its_security_context)->enc_sym_key);
  if ((*p_lib_its_security_context)->tag != NULL) free((*p_lib_its_security_context)->tag);
  if ((*p_lib_its_security_context)->nonce != NULL) free((*p_lib_its_security_context)->nonce);

  if ((*p_lib_its_security_context)->ec_key != NULL) {
    EC_KEY_free((*p_lib_its_security_context)->ec_key);
  }
  // Not required to free ec_group, it was a reference in ec_key
  if ((*p_lib_its_security_context)->bn_ctx != NULL) {
    BN_CTX_free((*p_lib_its_security_context)->bn_ctx);
  }

  free(*p_lib_its_security_context);
  *p_lib_its_security_context = NULL;

  return 0;
}

int32_t hash_with_sha256(
                         const uint8_t* p_to_be_hashed_data,
                         const size_t p_to_be_hashed_data_length,
                         uint8_t** p_hashed_data
                         ) {
  static uint8_t sha256_empty_string[] = { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 }; //! SHA-256 of an empty string

  // Sanity checks
  if (p_hashed_data == NULL) {
    return -1;
  }

  *p_hashed_data = (uint8_t*)malloc(32);
  if ((p_to_be_hashed_data == NULL) || (p_to_be_hashed_data_length == 0)) {
    // SHA-256 of an empty value
    memcpy((void*)*p_hashed_data, (const void*)sha256_empty_string, 32);
  } else {
    SHA256_CTX ctx;
    SHA256_Init(&ctx);
    SHA256_Update(&ctx, p_to_be_hashed_data, p_to_be_hashed_data_length);
    SHA256_Final(*p_hashed_data, &ctx);
  }

  return 0;
}

int32_t hash_with_sha384(
                         const uint8_t* p_to_be_hashed_data,
                         const size_t p_to_be_hashed_data_length,
                         uint8_t** p_hashed_data
                         ) {
  static unsigned char sha384_empty_string[] = { 0x38, 0xb0, 0x60, 0xa7, 0x51, 0xac, 0x96, 0x38, 0x4c, 0xd9, 0x32, 0x7e, 0xb1, 0xb1, 0xe3, 0x6a, 0x21, 0xfd, 0xb7, 0x11, 0x14, 0xbe, 0x07, 0x43, 0x4c, 0x0c, 0xc7, 0xbf, 0x63, 0xf6, 0xe1, 0xda, 0x27, 0x4e, 0xde, 0xbf, 0xe7, 0x6f, 0x65, 0xfb, 0xd5, 0x1a, 0xd2, 0xf1, 0x48, 0x98, 0xb9, 0x5b }; //! SHA-384 of an empty string

  // Sanity checks
  if (p_hashed_data == NULL) {
    return -1;
  }

  *p_hashed_data = (uint8_t*)malloc(48);
  if ((p_to_be_hashed_data == NULL) || (p_to_be_hashed_data_length == 0)) {
    // SHA-256 of an empty value
    memcpy((void*)*p_hashed_data, (const void*)sha384_empty_string, 48);
  } else {
    SHA512_CTX ctx;
    SHA384_Init(&ctx);
    SHA384_Update(&ctx, p_to_be_hashed_data, p_to_be_hashed_data_length);
    SHA384_Final(*p_hashed_data, &ctx);
  }

  return 0;
}

int32_t hmac_sha256(
                    const uint8_t* p_secret_key,
                    const size_t p_secret_key_length,
                    const uint8_t* p_message,
                    const size_t p_message_length,
                    uint8_t** p_hmac
                    ) {
  /* Sanity checks */
  if ((p_secret_key == NULL) || (p_secret_key_length == 0) || (p_message == NULL) || (p_message_length == 0) || (p_hmac == NULL)) {
    return -1;
  }

  uint32_t length = 64;
  uint8_t* hmac = (uint8_t*)malloc(length);
  HMAC_CTX *ctx = HMAC_CTX_new();
  HMAC_Init_ex(ctx, (const void*)p_secret_key, (long unsigned int)p_secret_key_length, EVP_sha256(), NULL);
  /* Compute the hash value */
  HMAC_Update(ctx, p_message, p_message_length);
  HMAC_Final(ctx, hmac, &length);
  HMAC_CTX_free(ctx);
  /* Resize the hmac */
  *p_hmac = (uint8_t*)malloc(16);
  memcpy((void*)*p_hmac, (const void*)hmac, 16);
  free(hmac);

  return 0;
}

int32_t prepare_data_to_be_verify(
                                  const lib_its_security_context_t* p_lib_its_security_context,
                                  const uint8_t* p_data,
                                  const size_t p_data_length,
                                  const uint8_t* p_certificate_issuer, uint8_t** p_hashed_data
                                  ) {
  // Calculate the SHA of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
  uint8_t* hashed_data1; // Hash (Data input)
  int32_t result;
  if (p_lib_its_security_context->elliptic_curve == brainpool_p_384_r1) {
    result = hash_with_sha384(p_data, p_data_length, &hashed_data1);
  } else {
    result = hash_with_sha256(p_data, p_data_length, &hashed_data1);
  }
  if (result == -1) {
    return -1;
  }
  uint8_t* hashed_data2; // Hash (Signer identifier input)
  bool found = true;
  for (int i = 0; i < 32; i++) {
    if (*(p_certificate_issuer + i) != 0x00) {
      found = false;
      break;
    }
  }
  if (p_lib_its_security_context->elliptic_curve == brainpool_p_384_r1) {
    if (!found) {
      result = hash_with_sha384(p_certificate_issuer, p_lib_its_security_context->key_length, &hashed_data2); // Hash of empty string
    } else {
      result = hash_with_sha384(NULL, 0, &hashed_data2); // Hash of empty string
    }
  } else {
    if (!found) {
      result = hash_with_sha256(p_certificate_issuer, p_lib_its_security_context->key_length, &hashed_data2); // Hash of empty string
    } else {
      result = hash_with_sha256(NULL, 0, &hashed_data2); // Hash of empty string
    }
  }
  if (result == -1) {
    free(hashed_data1);
    return -1;
  }
  uint8_t* hash_data_buffer = (uint8_t*)malloc(2 * p_lib_its_security_context->key_length); // Hash (Data input) || Hash (Signer identifier input)
  memcpy((void*)hash_data_buffer, (const void*)hashed_data1, p_lib_its_security_context->key_length);
  memcpy((void*)(hash_data_buffer + p_lib_its_security_context->key_length), (const void*)hashed_data2, p_lib_its_security_context->key_length);
  if (p_lib_its_security_context->elliptic_curve == brainpool_p_384_r1) {
    result = hash_with_sha384(hash_data_buffer, 2 * p_lib_its_security_context->key_length, p_hashed_data); // Hash ( Hash (Data input) || Hash (Signer identifier input) )
  } else {
    result = hash_with_sha256(hash_data_buffer, 2 * p_lib_its_security_context->key_length, p_hashed_data); // Hash ( Hash (Data input) || Hash (Signer identifier input) )
  }
  free(hashed_data1);
  free(hashed_data2);
  free(hash_data_buffer);

  return 0;
}

int32_t generic_signature(
                          lib_its_security_context_t* p_lib_its_security_context,
                          const uint8_t* p_to_be_signed_secured_message,
                          const size_t p_to_be_signed_secured_message_length,
                          const uint8_t* p_certificate_issuer,
                          const uint8_t* p_private_key,
                          uint8_t** p_signature