LibItsSecurity_externals.cc 82.4 KB
Newer Older
#include "LibItsSecurity_Functions.hh"

#include "sha256.hh"
#include "sha384.hh"
#include "hmac.hh"

#include "security_ecc.hh"

#include "security_services.hh"

#include <openssl/ec.h>
#include <openssl/ecdsa.h>

#include "loggers.hh"

namespace LibItsSecurity__Functions 
{

  // FIXME Unify code with security_services
  
  /**
   * \fn OCTETSTRING fx_hashWithSha256(const OCTETSTRING& p__toBeHashedData);
   * \brief Produces a 256-bit (32-byte) hash value
   * \param[in] p__toBeHashedData The data to be used to calculate the hash value
   * \return  The hash value
   */
  OCTETSTRING fx__hashWithSha256(
                                 const OCTETSTRING& p__toBeHashedData
                                 ) {
    loggers::get_instance().log_msg(">>> fx__hashWithSha256: p__toBeHashedData= ", p__toBeHashedData); 
    sha256 hash;
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeHashedData), p__toBeHashedData.lengthof() + static_cast<const unsigned char *>(p__toBeHashedData));
    std::vector<unsigned char> hashData;
    hash.generate(tbh, hashData);
    loggers::get_instance().log_to_hexa("fx__hashWithSha256: hashData= ", hashData.data(), hashData.size()); 
    return OCTETSTRING(hashData.size(), hashData.data());
  } // End of function fx__hashWithSha256

  /**
   * \fn OCTETSTRING fx_hashWithSha384(const OCTETSTRING& p__toBeHashedData);
   * \brief Produces a 384-bit (48-byte) hash value
   * \param[in] p__toBeHashedData Data to be used to calculate the hash value
   * \return The hash value
   */
  OCTETSTRING fx__hashWithSha384(
                                 const OCTETSTRING& p__toBeHashedData
                                 ) {
    sha384 hash;
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeHashedData), p__toBeHashedData.lengthof() + static_cast<const unsigned char *>(p__toBeHashedData));
    std::vector<unsigned char> hashData;
    hash.generate(tbh, hashData);
    return OCTETSTRING(hashData.size(), hashData.data());
  } // End of function fx__hashWithSha384

  /**
   * \fn OCTETSTRING fx__signWithEcdsaNistp256WithSha256(const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey);
   * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature
   * \param[in] p__toBeSignedSecuredMessage The data to be signed
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__privateKey The private key
   * \return The signature value
   */
  OCTETSTRING fx__signWithEcdsaNistp256WithSha256(
                                                  const OCTETSTRING& p__toBeSignedSecuredMessage,
                                                  const OCTETSTRING& p__certificateIssuer,
                                                  const OCTETSTRING& p__privateKey
                                                  ) {
garciay's avatar
garciay committed
    loggers::get_instance().log_msg(">>> fx__signWithEcdsaNistp256WithSha256: data=", p__toBeSignedSecuredMessage); 
    loggers::get_instance().log_msg(">>> fx__signWithEcdsaNistp256WithSha256: issuer=", p__certificateIssuer); 
    loggers::get_instance().log_msg(">>> fx__signWithEcdsaNistp256WithSha256: private key=", p__privateKey); 
    
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__privateKey.lengthof() != 32)) {
      loggers::get_instance().log("fx__signWithEcdsaNistp256WithSha256: Wrong parameters");
      return OCTETSTRING();
    }
    
    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbs(static_cast<const unsigned char *>(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast<const unsigned char *>(p__toBeSignedSecuredMessage));
    hash.generate(tbs, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hash.generate(issuer, hashData2);
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaNistp256WithSha256: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaNistp256WithSha256: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaNistp256WithSha256: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Calculate the signature
    std::vector<unsigned char> p_key(static_cast<const unsigned char *>(p__privateKey), static_cast<const unsigned char *>(p__privateKey) + p__privateKey.lengthof());
    security_ecc k(ec_elliptic_curves::nist_p_256, p_key);
    std::vector<unsigned char> r_sig;
    std::vector<unsigned char> s_sig;
    if (k.sign(hashData, r_sig, s_sig) == 0) {
      OCTETSTRING os(r_sig.size(), r_sig.data());
      // loggers::get_instance().log_to_hexa("r_sig= ", os); 
      // loggers::get_instance().log_to_hexa("s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data()); 
      os += OCTETSTRING(s_sig.size(), s_sig.data());
      // loggers::get_instance().log_to_hexa("sig= ", os); 
      return os;
    }

    return OCTETSTRING();
  }

  /**
   * \fn OCTETSTRING fx__signWithEcdsaBrainpoolp256WithSha256(const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey);
   * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature
   * \param[in] p__toBeSignedSecuredMessage The data to be signed
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__privateKey The private key
   * \return The signature value
   */
  OCTETSTRING fx__signWithEcdsaBrainpoolp256WithSha256(
                                                       const OCTETSTRING& p__toBeSignedSecuredMessage,
                                                       const OCTETSTRING& p__certificateIssuer,
                                                       const OCTETSTRING& p__privateKey
                                                       ) {
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__privateKey.lengthof() != 32)) {
      loggers::get_instance().log("fx__signWithEcdsaBrainpoolp256WithSha256: Wrong parameters");
      return OCTETSTRING();
    }
    
    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbs(static_cast<const unsigned char *>(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast<const unsigned char *>(p__toBeSignedSecuredMessage));
    hash.generate(tbs, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hash.generate(issuer, hashData2);
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp256WithSha256: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp256WithSha256: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp256WithSha256: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Calculate the signature
    std::vector<unsigned char> p_key(static_cast<const unsigned char *>(p__privateKey), static_cast<const unsigned char *>(p__privateKey) + p__privateKey.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_256_r1, p_key);
    std::vector<unsigned char> r_sig;
    std::vector<unsigned char> s_sig;
    if (k.sign(hashData, r_sig, s_sig) == 0) {
      OCTETSTRING os(r_sig.size(), r_sig.data());
      // loggers::get_instance().log_to_hexa("r_sig= ", os); 
      // loggers::get_instance().log_to_hexa("s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data()); 
      os += OCTETSTRING(s_sig.size(), s_sig.data());
      // loggers::get_instance().log_to_hexa("sig= ", os); 
      return os;
    }

    return OCTETSTRING();
  }

  /**
   * \fn OCTETSTRING fx__signWithEcdsaBrainpoolp384WithSha384(const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey);
   * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature
   * \param[in] p__toBeSignedSecuredMessage The data to be signed
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__privateKey The private key
   * \return The signature value
   */
  OCTETSTRING fx__signWithEcdsaBrainpoolp384WithSha384(
                                                       const OCTETSTRING& p__toBeSignedSecuredMessage,
                                                       const OCTETSTRING& p__certificateIssuer,
                                                       const OCTETSTRING& p__privateKey
                                                       ) {
    // Sanity checks
	    if ((p__certificateIssuer.lengthof() != 8) || (p__privateKey.lengthof() != 32)) {
      loggers::get_instance().log("fx__signWithEcdsaBrainpoolp384WithSha384: Wrong parameters");
      return OCTETSTRING();
    }
    
    // Calculate the SHA384 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha384 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbs(static_cast<const unsigned char *>(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast<const unsigned char *>(p__toBeSignedSecuredMessage));
    hash.generate(tbs, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hash.generate(issuer, hashData2);
    } else {
      hashData2 = hash.get_sha384_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Calculate the signature
    std::vector<unsigned char> p_key(static_cast<const unsigned char *>(p__privateKey), static_cast<const unsigned char *>(p__privateKey) + p__privateKey.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_384_r1, p_key);
    std::vector<unsigned char> r_sig;
    std::vector<unsigned char> s_sig;
    if (k.sign(hashData, r_sig, s_sig) == 0) {
      OCTETSTRING os(r_sig.size(), r_sig.data());
      //loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: r_sig= ", os); 
      //loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data())); 
      os += OCTETSTRING(s_sig.size(), s_sig.data());
      //loggers::get_instance().log_to_hexa("fx__signWithEcdsaBrainpoolp384WithSha384: sig= ", os); 
      return os;
    }

    return OCTETSTRING();
  }

  /**
   * \fn BOOLEAN fx__verifyWithEcdsaNistp256WithSha256(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaNistp256PublicKeyCompressed);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaNistp256PublicKeyCompressed The compressed public key (x coordinate only)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaNistp256WithSha256(
                                                const OCTETSTRING& p__toBeVerifiedData,
                                                const OCTETSTRING& p__certificateIssuer,
                                                const OCTETSTRING& p__signature,
                                                const OCTETSTRING& ,
                                                const INTEGER& p__compressedMode
                                                ) {p__ecdsaNistp256PublicKeyCompressed
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__signature.lengthof() != 64) || (p__ecdsaNistp256PublicKeyCompressed.lengthof() != 32)) {
      loggers::get_instance().log("fx__verifyWithEcdsaNistp256WithSha256: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_compressed(static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyCompressed), static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyCompressed) + p__ecdsaNistp256PublicKeyCompressed.lengthof());
    security_ecc k(ec_elliptic_curves::nist_p_256, pub_key_compressed, (p__compressedMode == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }
  
  /**
   * \fn BOOLEAN fx__verifyWithEcdsaNistp256WithSha256_1(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaNistp256PublicKeyX, const OCTETSTRING& p__ecdsaNistp256PublicKeyY);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaNistp256PublicKeyX The public key (x coordinate)
   * \param[in] p__ecdsaNistp256PublicKeyY The public key (y coordinate)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaNistp256WithSha256__1(
                                                   const OCTETSTRING& p__toBeVerifiedData,
                                                   const OCTETSTRING& p__certificateIssuer,
                                                   const OCTETSTRING& p__signature,
                                                   const OCTETSTRING& p__ecdsaNistp256PublicKeyX,
                                                   const OCTETSTRING& p__ecdsaNistp256PublicKeyY
                                                   ) {
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__signature.lengthof() != 64)) {
      loggers::get_instance().log("fx__verifyWithEcdsaNistp256WithSha256__1: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256__1: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256__1: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaNistp256WithSha256__1: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_x(static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyX), static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyX) + p__ecdsaNistp256PublicKeyX.lengthof());
    std::vector<unsigned char> pub_key_y(static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyY), static_cast<const unsigned char *>(p__ecdsaNistp256PublicKeyY) + p__ecdsaNistp256PublicKeyY.lengthof());
    security_ecc k(ec_elliptic_curves::nist_p_256, pub_key_x, pub_key_y);
    //security_ecc k(ec_elliptic_curves::nist_p_256);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }

  /**
   * \fn BOOLEAN fx__verifyWithEcdsaBrainpoolp256WithSha256(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyCompressed);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaBrainpoolp256PublicKeyCompressed The compressed public key (x coordinate only)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaBrainpoolp256WithSha256(
                                                     const OCTETSTRING& p__toBeVerifiedData,
                                                     const OCTETSTRING& p__certificateIssuer,
                                                     const OCTETSTRING& p__signature,
                                                     const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyCompressed,
                                                     const INTEGER& p__compressedMode
                                                     ) {
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__signature.lengthof() != 64) || (p__ecdsaNistp256PublicKeyCompressed.lengthof() != 32)) {
      loggers::get_instance().log("fx__verifyWithEcdsaBrainpoolp256WithSha256: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_compressed(static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyCompressed), static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyCompressed) + p__ecdsaBrainpoolp256PublicKeyCompressed.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_256_r1, pub_key_compressed, (p__compressedMode == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }

  /**
   * \fn BOOLEAN fx__verifyWithEcdsaBrainpoolp256WithSha256_1(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyX, const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyY);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaBrainpoolp256PublicKeyX The public key (x coordinate)
   * \param[in] p__ecdsaBrainpoolp256PublicKeyY The public key (y coordinate)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaBrainpoolp256WithSha256__1(
                                                        const OCTETSTRING& p__toBeVerifiedData,
                                                        const OCTETSTRING& p__certificateIssuer,
                                                        const OCTETSTRING& p__signature,
                                                        const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyX,
                                                        const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyY
                                                        ) {
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__signature.lengthof() != 64)) {
      loggers::get_instance().log("fx__verifyWithEcdsaBrainpoolp256WithSha256__1: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA256 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha256 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha256_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256__1: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256__1: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp256WithSha256__1: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_x(static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyX), static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyX) + p__ecdsaBrainpoolp256PublicKeyX.lengthof());
    std::vector<unsigned char> pub_key_y(static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyY), static_cast<const unsigned char *>(p__ecdsaBrainpoolp256PublicKeyY) + p__ecdsaBrainpoolp256PublicKeyY.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_256_r1, pub_key_x, pub_key_y);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }

  /**
   * \fn BOOLEAN fx__verifyWithEcdsaBrainpoolp384WithSha384(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyCompressed);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaBrainpoolp384PublicKeyCompressed The compressed public key (x coordinate only)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaBrainpoolp384WithSha384(
                                                     const OCTETSTRING& p__toBeVerifiedData,
                                                     const OCTETSTRING& p__certificateIssuer,
                                                     const OCTETSTRING& p__signature,
                                                     const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyCompressed,
                                                     const INTEGER& p__compressedMode
                                                     ) {
    // Sanity checks
    if ((p__certificateIssuer.lengthof() != 8) || (p__signature.lengthof() != 96) || (p__ecdsaBrainpoolp384PublicKeyCompressed.lengthof() != 48)) {
      loggers::get_instance().log("fx__verifyWithEcdsaBrainpoolp384WithSha384: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA384 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha384 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha384_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_compressed(static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyCompressed), static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyCompressed) + p__ecdsaBrainpoolp384PublicKeyCompressed.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_384_r1, pub_key_compressed, (p__compressedMode == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }

  /**
   * \fn BOOLEAN fx__verifyWithEcdsaBrainpoolp384WithSha384_1(const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyX, const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyY);
   * \brief Verify the signature of the specified data
   * \param[in] p__toBeVerifiedData The data to be verified
   * \param[in] p__certificateIssuer Certificate issuer
   * \param[in] p__signature The signature
   * \param[in] p__ecdsaBrainpoolp384PublicKeyX The public key (x coordinate)
   * \param[in] p__ecdsaBrainpoolp384PublicKeyY The public key (y coordinate)
   * \return true on success, false otherwise
   */
  BOOLEAN fx__verifyWithEcdsaBrainpoolp384WithSha384__1(
                                                        const OCTETSTRING& p__toBeVerifiedData,
                                                        const OCTETSTRING& p__certificateIssuer,
                                                        const OCTETSTRING& p__signature,
                                                        const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyX,
                                                        const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyY
                                                        ) {
    // Sanity checks
    if (p__certificateIssuer.lengthof() != 48) {
      loggers::get_instance().log("fx__verifyWithEcdsaBrainpoolp384WithSha384__1: Wrong parameters");
      return FALSE;
    }

    // Calculate the SHA384 of the hashed data for signing: Hash ( Hash (Data input) || Hash (Signer identifier input) )
    sha384 hash;
    std::vector<unsigned char> hashData1; // Hash (Data input)
    std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p__toBeVerifiedData), p__toBeVerifiedData.lengthof() + static_cast<const unsigned char *>(p__toBeVerifiedData));
    hash.generate(tbh, hashData1);
    std::vector<unsigned char> hashData2; // Hash (Signer identifier input)
    if (p__certificateIssuer != int2oct(0, 8)) { // || Hash (Signer identifier input)
      std::vector<unsigned char> issuer = std::vector<unsigned char>(static_cast<const unsigned char*>(p__certificateIssuer), p__certificateIssuer.lengthof() + static_cast<const unsigned char*>(p__certificateIssuer));
      hashData2.insert(hashData1.end(), issuer.cbegin(), issuer.cend());
    } else {
      hashData2 = hash.get_sha384_empty_string(); // Hash of empty string
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash (Data input)=", hashData1.data(), hashData1.size());
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash (Signer identifier input)=", hashData2.data(), hashData2.size());
    hashData1.insert(hashData1.end(), hashData2.cbegin(), hashData2.cend()); // Hash (Data input) || Hash (Signer identifier input)
    std::vector<unsigned char> hashData; // Hash ( Hash (Data input) || Hash (Signer identifier input) )
    hash.generate(hashData1, hashData);
    loggers::get_instance().log_to_hexa("fx__verifyWithEcdsaBrainpoolp384WithSha384: Hash ( Hash (Data input) || Hash (Signer identifier input) )=", hashData.data(), hashData.size());
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    // Check the signature
    std::vector<unsigned char> signature(static_cast<const unsigned char *>(p__signature), static_cast<const unsigned char *>(p__signature) + p__signature.lengthof());
    std::vector<unsigned char> pub_key_x(static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyX), static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyX) + p__ecdsaBrainpoolp384PublicKeyX.lengthof());
    std::vector<unsigned char> pub_key_y(static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyY), static_cast<const unsigned char *>(p__ecdsaBrainpoolp384PublicKeyY) + p__ecdsaBrainpoolp384PublicKeyY.lengthof());
    security_ecc k(ec_elliptic_curves::brainpool_p_384_r1, pub_key_x, pub_key_y);
    if (k.sign_verif(hashData, signature) == 0) {
      return TRUE;
    }

    return FALSE;
  }

  /**
   * \fn OCTETSTRING fx__test__hmac__sha256(const OCTETSTRING& p__k, const OCTETSTRING& p__m);
   * \brief Generate a HMAC-SHA256 value based on the provided secret key
   * \param[in] p__k The secret key used for the HMAC calculation
   * \param[in] p__m The message
   * \return The HMAC value resized to 16-byte
   */
  OCTETSTRING fx__test__hmac__sha256(const OCTETSTRING& p__k, const OCTETSTRING& p__m) {
    loggers::get_instance().log(">>> fx__test__hmac__sha256");

    hmac h(hash_algorithms::sha_256); // TODO Use ec_encryption_algorithm
    std::vector<unsigned char> k(static_cast<const unsigned char *>(p__k), p__k.lengthof() + static_cast<const unsigned char *>(p__k));
    std::vector<unsigned char> m(static_cast<const unsigned char *>(p__m), p__m.lengthof() + static_cast<const unsigned char *>(p__m));
    std::vector<unsigned char> t;
    if (h.generate(m, k, t) == -1) {
      loggers::get_instance().warning("fx__test__hmac__sha256: Failed to generate HMAC");
      return OCTETSTRING();
    }

    OCTETSTRING os(t.size(), t.data());
    loggers::get_instance().log_to_hexa("fx__test__hmac__sha256: HMAC: ", os);

    return os;
  }

  /**
   * \fn OCTETSTRING fx__test__encrypt__aes__128__ccm__test(const OCTETSTRING& p__k, const OCTETSTRING& p__n, const OCTETSTRING& p__pt);
   * \brief Encrypt the message using AES 128 CCM algorithm
   * \param[in] p__k The symmetric encryption key
   * \param[in] p__n The initial vector, nonce vector
   * \param[in] p__pt The message to encrypt
   * \return The encrypted message concatenated to the AES 128 CCM tag
   */
  OCTETSTRING fx__test__encrypt__aes__128__ccm__test(const OCTETSTRING& p__k, const OCTETSTRING& p__n, const OCTETSTRING& p__pt) {
    loggers::get_instance().log(">>> fx__test__encrypt__aes__128__ccm__test");
    
    security_ecc ec(ec_elliptic_curves::nist_p_256);
    std::vector<unsigned char> k(static_cast<const unsigned char *>(p__k), p__k.lengthof() + static_cast<const unsigned char *>(p__k));
    std::vector<unsigned char> n(static_cast<const unsigned char *>(p__n), p__n.lengthof() + static_cast<const unsigned char *>(p__n));
    std::vector<unsigned char> pt(static_cast<const unsigned char *>(p__pt), p__pt.lengthof() + static_cast<const unsigned char *>(p__pt));

    std::vector<unsigned char> enc_message;
    if (ec.encrypt(encryption_algotithm::aes_128_ccm, k, n, pt, enc_message) == -1) {
      loggers::get_instance().warning("fx__test__encrypt__aes__128__ccm__test: Failed to encrypt message");
      return OCTETSTRING();
    }
    OCTETSTRING os(enc_message.size(), enc_message.data());
    os = os + OCTETSTRING(ec.tag().size(), ec.tag().data());
    loggers::get_instance().log_to_hexa("fx__test__encrypt__aes__128__ccm__test: encrypted message: ", os);

    return os;
  }
  
  /**
   * \fn OCTETSTRING fx__test__decrypt__aes__128__ccm__test(const OCTETSTRING& p__k, const OCTETSTRING& p__n, const OCTETSTRING& p__ct);
   * \brief Encrypt the message using AES 128 CCM algorithm
   * \param[in] p__k The symmetric encryption key
   * \param[in] p__n The initial vector, nonce vector
   * \param[in] p__ct The encrypted message concatenated to the AES 128 CCM tag
   * \return The original message
   */
  OCTETSTRING fx__test__decrypt__aes__128__ccm__test(const OCTETSTRING& p__k, const OCTETSTRING& p__n, const OCTETSTRING& p__ct) {
    loggers::get_instance().log(">>> fx__test__decrypt__aes__128__ccm__test");
    
    security_ecc ec(ec_elliptic_curves::nist_p_256);
    std::vector<unsigned char> k(static_cast<const unsigned char *>(p__k), p__k.lengthof() + static_cast<const unsigned char *>(p__k));
    std::vector<unsigned char> n(static_cast<const unsigned char *>(p__n), p__n.lengthof() + static_cast<const unsigned char *>(p__n));
    std::vector<unsigned char> ct(static_cast<const unsigned char *>(p__ct), p__ct.lengthof() + static_cast<const unsigned char *>(p__ct));
    // Extract the tag
    std::vector<unsigned char> tag(16, 0x00);
    std::copy(ct.end() - tag.size(), ct.end(), tag.begin());
    loggers::get_instance().log_to_hexa("fx__test__decrypt__aes__128__ccm__test: tag: ", tag.data(), tag.size());
    // Remove the tag from the end of the encrypted message
    ct.resize(ct.size() - tag.size());
    
    std::vector<unsigned char> message;
    if (ec.decrypt(encryption_algotithm::aes_128_ccm, k, n, tag, ct, message) == -1) {
      loggers::get_instance().warning("fx__test__decrypt__aes__128__ccm__test: Failed to decrypt message");
      return OCTETSTRING();
    }
    OCTETSTRING os(message.size(), message.data());
    loggers::get_instance().log_to_hexa("fx__test__decrypt__aes__128__ccm__test: decrypted message: ", os);
    
    return os;
  }
  
  /**
   * \fn OCTETSTRING fx__encryptWithEciesNistp256WithSha256(const OCTETSTRING& p__toBeEncryptedSecuredMessage, const OCTETSTRING& p__recipientsPublicKeyX, const OCTETSTRING& p__recipientsPublicKeyY, OCTETSTRING& p__publicEphemeralKeyX, OCTETSTRING& p__publicEphemeralKeyY, OCTETSTRING& p__encrypted__sym__key, OCTETSTRING& p__authentication__vector, OCTETSTRING& p__nonce);
   * \brief Encrypt the message using ECIES algorithm to encrypt AES 128 CCM symmetric key, as defined in IEEE Std 1609.2-2017
   * \param[in] p__toBeEncryptedSecuredMessage The message to be encrypted
   * \param[in] p__recipientsPublicKeyCompressed The Recipient's compressed public key
   * \param[in] p__compressedMode The compressed mode, 0 if the latest bit of Y-coordinate is 0, 1 otherwise
   * \param[out] p__publicEphemeralKeyCompressed The public ephemeral compressed key
   * \param[out] p__ephemeralCompressedMode The compressed mode, 0 if the latest bit of Y-coordinate is 0, 1 otherwise
   * \param[out] p__encrypted__sym__key The encrypted AES 128 symmetric key
   * \param[out] p__authentication__vector The tag of the encrypted AES 128 symmetric key
   * \param[out] p__nonce The nonce vector
   * \return The original message
   * \see IEEE Std 1609.2-2017 Clause 5.3.5 Public key encryption algorithms: ECIES
   * \see https://www.nominet.uk/researchblog/how-elliptic-curve-cryptography-encryption-works/
   * \see http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf
   */
  // TODO Use common function for both fx__encryptWithEciesxxx and fx__decryptWithEciesxxx function
  OCTETSTRING fx__encryptWithEciesNistp256WithSha256(const OCTETSTRING& p__toBeEncryptedSecuredMessage, const OCTETSTRING& p__recipientsPublicKeyCompressed, const INTEGER& p__compressedMode, OCTETSTRING& p__publicEphemeralKeyCompressed, INTEGER& p__ephemeralCompressedMode, OCTETSTRING& p__encrypted__sym__key, OCTETSTRING& p__authentication__vector, OCTETSTRING& p__nonce) {
    loggers::get_instance().log_msg(">>> fx__encryptWithEciesNistp256WithSha256: p__toBeEncryptedSecuredMessage: ", p__toBeEncryptedSecuredMessage);
    loggers::get_instance().log_msg(">>> fx__encryptWithEciesNistp256WithSha256: p__recipientsPublicKeyX: ", p__recipientsPublicKeyCompressed);
    loggers::get_instance().log(">>> fx__encryptWithEciesNistp256WithSha256: p__compressedMode: %d", static_cast<int>(p__compressedMode));
    
    // 1. Generate new Private/Public key
    security_ecc ec(ec_elliptic_curves::nist_p_256);
    if (ec.generate() == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesNistp256WithSha256: Failed to generate ephemeral keys");
      return OCTETSTRING();
    }
    // 2. Generate and derive shared secret
    std::vector<unsigned char> recipients_public_comp_key(static_cast<const unsigned char *>(p__recipientsPublicKeyCompressed), p__recipientsPublicKeyCompressed.lengthof() + static_cast<const unsigned char *>(p__recipientsPublicKeyCompressed));
    security_ecc ec_comp(ec_elliptic_curves::nist_p_256, recipients_public_comp_key, (static_cast<int>(p__compressedMode) == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    if (ec.generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, ec_comp.public_key_x(), ec_comp.public_key_y()) == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesNistp256WithSha256: Failed to generate and derive secret key");
      return OCTETSTRING();
    }
    // Set the encrypted symmetric key
    p__encrypted__sym__key = OCTETSTRING(ec.encrypted_symmetric_key().size(), ec.encrypted_symmetric_key().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: Encrypted symmetric key: ", p__encrypted__sym__key);
    // Set the tag of the symmetric key encryption
    p__authentication__vector = OCTETSTRING(ec.tag().size(), ec.tag().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: p__authentication__vector: ", p__authentication__vector);
    // Set ephemeral public keys
    p__publicEphemeralKeyCompressed = OCTETSTRING(ec.public_key_compressed().size(), ec.public_key_compressed().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: Ephemeral public compressed key: ", p__publicEphemeralKeyCompressed);
    p__ephemeralCompressedMode = (ec.public_key_compressed_mode() == ecc_compressed_mode::compressed_y_0) ? 0 : 1;
    loggers::get_instance().log("fx__encryptWithEciesNistp256WithSha256: Ephemeral public compressed mode: %d: ", p__ephemeralCompressedMode);
    // 3. Retrieve AES 128 parameters
    p__nonce = OCTETSTRING(ec.nonce().size(), ec.nonce().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: p__nonce: ", p__nonce);
    OCTETSTRING enc_symm_key = OCTETSTRING(ec.symmetric_encryption_key().size(), ec.symmetric_encryption_key().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: enc_symm_key: ", enc_symm_key);
    // 4. Encrypt the data using AES-128 CCM
    std::vector<unsigned char> message(static_cast<const unsigned char *>(p__toBeEncryptedSecuredMessage), p__toBeEncryptedSecuredMessage.lengthof() + static_cast<const unsigned char *>(p__toBeEncryptedSecuredMessage));
    std::vector<unsigned char> enc_message;
    if (ec.encrypt(encryption_algotithm::aes_128_ccm, ec.symmetric_encryption_key(), ec.nonce(), message, enc_message) == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesNistp256WithSha256: Failed to encrypt message");
      return OCTETSTRING();
    }
    enc_message.insert(enc_message.end(), std::make_move_iterator(ec.tag().begin()), std::make_move_iterator(ec.tag().end()));
    OCTETSTRING os(enc_message.size(), enc_message.data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: enc message||Tag: ", os);
    
    return os;
  }

  /**
   * \fn OCTETSTRING fx__decryptWithEciesNistp256WithSha256(const OCTETSTRING& p__encryptedSecuredMessage, const OCTETSTRING& p__privateEncKey, const OCTETSTRING& p__publicEphemeralKeyX, const OCTETSTRING& p__publicEphemeralKeyY, const OCTETSTRING& p__encrypted__sym__key, const OCTETSTRING& p__authentication__vector, const OCTETSTRING& p__nonce);
   * \brief Decrypt the message using ECIES algorithm to decrypt AES 128 CCM symmetric key, as defined in IEEE Std 1609.2-2017
   * \param[in] p__encryptedSecuredMessage The encrypted message
   * \param[in] p__privateEncKey The private encryption key
   * \param[in] p__publicEphemeralKeyCompressed The public ephemeral compressed key
   * \param[in] p__ephemeralCompressedMode The compressed mode, 0 if the latest bit of Y-coordinate is 0, 1 otherwise
   * \param[in] p__encrypted__sym__key The encrypted AES 128 symmetric key
   * \param[in] p__authentication__vector The tag of the encrypted AES 128 symmetric key
   * \param[in] p__nonce The nonce vector
   * \return The original message
   * \see IEEE Std 1609.2-2017 Clause 5.3.5 Public key encryption algorithms: ECIES
   * \see https://www.nominet.uk/researchblog/how-elliptic-curve-cryptography-encryption-works/
   * \see http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf
   */
  // TODO Use common function for both fx__encryptWithEciesxxx and fx__decryptWithEciesxxx function
  OCTETSTRING fx__decryptWithEciesNistp256WithSha256(const OCTETSTRING& p__encryptedSecuredMessage, const OCTETSTRING& p__privateEncKey, const OCTETSTRING& p__publicEphemeralKeyCompressed, const INTEGER& p__ephemeralCompressedMode, const OCTETSTRING& p__encrypted__sym__key, const OCTETSTRING& p__authentication__vector, const OCTETSTRING& p__nonce) {
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__toBeEncryptedSecuredMessage: ", p__encryptedSecuredMessage);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__privateEncKey: ", p__privateEncKey);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__publicEphemeralKeyCompressed: ", p__publicEphemeralKeyCompressed);
    loggers::get_instance().log(">>> fx__decryptWithEciesNistp256WithSha256: p__ephemeralCompressedMode: %d", static_cast<int>(p__ephemeralCompressedMode));
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__nonce: ", p__nonce);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__authentication__vector: ", p__authentication__vector);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesNistp256WithSha256: p__encrypted__sym__key: ", p__encrypted__sym__key);

    // 1. Create security_ecc instance
    std::vector<unsigned char> private_enc_key(static_cast<const unsigned char*>(p__privateEncKey), p__privateEncKey.lengthof() + static_cast<const unsigned char*>(p__privateEncKey));
    security_ecc ec(ec_elliptic_curves::nist_p_256, private_enc_key);
    std::vector<unsigned char> ephemeral_public_comp_key(static_cast<const unsigned char*>(p__publicEphemeralKeyCompressed), p__publicEphemeralKeyCompressed.lengthof() + static_cast<const unsigned char*>(p__publicEphemeralKeyCompressed));
    security_ecc ec_comp(ec_elliptic_curves::nist_p_256, ephemeral_public_comp_key, (static_cast<int>(p__ephemeralCompressedMode) == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    
    // 2. Generate the shared secret value based on recipient's public ephemeral keys will be required
    std::vector<unsigned char> enc_sym_key(static_cast<const unsigned char*>(p__encrypted__sym__key), p__encrypted__sym__key.lengthof() + static_cast<const unsigned char*>(p__encrypted__sym__key));
    std::vector<unsigned char> nonce(static_cast<const unsigned char*>(p__nonce), p__nonce.lengthof() + static_cast<const unsigned char*>(p__nonce));
    std::vector<unsigned char> authentication_vector(static_cast<const unsigned char*>(p__authentication__vector), p__authentication__vector.lengthof() + static_cast<const unsigned char*>(p__authentication__vector));
    if (ec.generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, private_enc_key, ec_comp.public_key_x(), ec_comp.public_key_y(), enc_sym_key, nonce, authentication_vector) == -1) {
      loggers::get_instance().warning("fx__decryptWithEciesNistp256WithSha256: Failed to generate shared secret");
      return OCTETSTRING();
    }
    
    // Decrypt the message
    std::vector<unsigned char> enc_message(static_cast<const unsigned char*>(p__encryptedSecuredMessage), p__encryptedSecuredMessage.lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p__encryptedSecuredMessage));
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesNistp256WithSha256: enc_message: ", enc_message.data(), enc_message.size());
    std::vector<unsigned char> tag(p__encryptedSecuredMessage.lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p__encryptedSecuredMessage), p__encryptedSecuredMessage.lengthof() + static_cast<const unsigned char*>(p__encryptedSecuredMessage));
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesNistp256WithSha256: tag: ", tag.data(), tag.size());
    std::vector<unsigned char> message;
    if (ec.decrypt(tag, enc_message, message) == -1) {
      loggers::get_instance().warning("fx__decryptWithEciesNistp256WithSha256: Failed to generate shared secret");
      return OCTETSTRING();
    }
    
    OCTETSTRING os(message.size(), message.data());
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesNistp256WithSha256: dec message: ", os);
    
    return os;
  }
  
  OCTETSTRING fx__encryptWithEciesBrainpoolp256WithSha256(const OCTETSTRING& p__toBeEncryptedSecuredMessage, const OCTETSTRING& p__recipientsPublicKeyCompressed, const INTEGER& p__compressedMode, OCTETSTRING& p__publicEphemeralKeyCompressed, INTEGER& p__ephemeralCompressedMode, OCTETSTRING& p__encrypted__sym__key, OCTETSTRING& p__authentication__vector, OCTETSTRING& p__nonce) {
    loggers::get_instance().log_msg(">>> fx__encryptWithEciesBrainpoolp256WithSha256: p__toBeEncryptedSecuredMessage: ", p__toBeEncryptedSecuredMessage);
    loggers::get_instance().log_msg(">>> fx__encryptWithEciesBrainpoolp256WithSha256: p__recipientsPublicKeyCompressed: ", p__recipientsPublicKeyCompressed);
    loggers::get_instance().log(">>> fx__encryptWithEciesBrainpoolp256WithSha256: p__compressedMode: %d", static_cast<int>(p__compressedMode));

    // 1. Generate new Private/Public key
    security_ecc ec(ec_elliptic_curves::brainpool_p_256_r1);
    if (ec.generate() == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesBrainpoolp256WithSha256: Failed to generate ephemeral keys");
      return OCTETSTRING();
    }
    // 2. Generate and derive shared secret
    std::vector<unsigned char> recipients_public_comp_key(static_cast<const unsigned char *>(p__recipientsPublicKeyCompressed), p__recipientsPublicKeyCompressed.lengthof() + static_cast<const unsigned char *>(p__recipientsPublicKeyCompressed));
    security_ecc ec_comp(ec_elliptic_curves::brainpool_p_256_r1, recipients_public_comp_key, (static_cast<int>(p__compressedMode) == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);
    if (ec.generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, ec_comp.public_key_x(), ec_comp.public_key_y()) == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesBrainpoolp256WithSha256: Failed to generate and derive secret key");
      return OCTETSTRING();
    }
    // Set the encrypted symmetric key
    p__encrypted__sym__key = OCTETSTRING(ec.encrypted_symmetric_key().size(), ec.encrypted_symmetric_key().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesBrainpoolp256WithSha256: Encrypted symmetric key: ", p__encrypted__sym__key);
    // Set the tag of the symmetric key encryption
    p__authentication__vector = OCTETSTRING(ec.tag().size(), ec.tag().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesBrainpoolp256WithSha256: p__authentication__vector: ", p__authentication__vector);
    // Set ephemeral public keys
    p__publicEphemeralKeyCompressed = OCTETSTRING(ec.public_key_compressed().size(), ec.public_key_compressed().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesNistp256WithSha256: Ephemeral public compressed key: ", p__publicEphemeralKeyCompressed);
    p__ephemeralCompressedMode = (ec.public_key_compressed_mode() == ecc_compressed_mode::compressed_y_0) ? 0 : 1;
    loggers::get_instance().log("fx__encryptWithEciesNistp256WithSha256: Ephemeral public compressed mode: %d: ", p__ephemeralCompressedMode);
    // 3. Retrieve AES 128 parameters
    p__nonce = OCTETSTRING(ec.nonce().size(), ec.nonce().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesBrainpoolp256WithSha256: p__nonce: ", p__nonce);
    OCTETSTRING enc_symm_key = OCTETSTRING(ec.symmetric_encryption_key().size(), ec.symmetric_encryption_key().data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesBrainpoolp256WithSha256: enc_symm_key: ", enc_symm_key);
    // 4. Encrypt the data using AES-128 CCM
    std::vector<unsigned char> message(static_cast<const unsigned char *>(p__toBeEncryptedSecuredMessage), p__toBeEncryptedSecuredMessage.lengthof() + static_cast<const unsigned char *>(p__toBeEncryptedSecuredMessage));
    std::vector<unsigned char> enc_message;
    if (ec.encrypt(encryption_algotithm::aes_128_ccm, ec.symmetric_encryption_key(), ec.nonce(), message, enc_message) == -1) {
      loggers::get_instance().warning("fx__encryptWithEciesBrainpoolp256WithSha256: Failed to encrypt message");
      return OCTETSTRING();
    }
    enc_message.insert(enc_message.end(), std::make_move_iterator(ec.tag().begin()), std::make_move_iterator(ec.tag().end()));
    OCTETSTRING os(enc_message.size(), enc_message.data());
    loggers::get_instance().log_to_hexa("fx__encryptWithEciesBrainpoolp256WithSha256: enc message||Tag: ", os);

    return os;
  }

  OCTETSTRING fx__decryptWithEciesBrainpoolp256WithSha256(const OCTETSTRING& p__encryptedSecuredMessage, const OCTETSTRING& p__privateEncKey, const OCTETSTRING& p__publicEphemeralKeyCompressed, const INTEGER& p__ephemeralCompressedMode, const OCTETSTRING& p__encrypted__sym__key, const OCTETSTRING& p__authentication__vector, const OCTETSTRING& p__nonce) {
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__toBeEncryptedSecuredMessage: ", p__encryptedSecuredMessage);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__privateEncKey: ", p__privateEncKey);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__publicEphemeralKeyCompressed: ", p__publicEphemeralKeyCompressed);
    loggers::get_instance().log(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__ephemeralCompressedMode: %d", static_cast<int>(p__ephemeralCompressedMode));
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__nonce: ", p__nonce);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__authentication__vector: ", p__authentication__vector);
    loggers::get_instance().log_msg(">>> fx__decryptWithEciesBrainpoolp256WithSha256: p__encrypted__sym__key: ", p__encrypted__sym__key);

    // 1. Create security_ecc instance
    std::vector<unsigned char> private_enc_key(static_cast<const unsigned char*>(p__privateEncKey), p__privateEncKey.lengthof() + static_cast<const unsigned char*>(p__privateEncKey));
    security_ecc ec(ec_elliptic_curves::brainpool_p_256_r1, private_enc_key);
    std::vector<unsigned char> ephemeral_public_comp_key(static_cast<const unsigned char*>(p__publicEphemeralKeyCompressed), p__publicEphemeralKeyCompressed.lengthof() + static_cast<const unsigned char*>(p__publicEphemeralKeyCompressed));
    security_ecc ec_comp(ec_elliptic_curves::brainpool_p_256_r1, ephemeral_public_comp_key, (static_cast<int>(p__ephemeralCompressedMode) == 0) ? ecc_compressed_mode::compressed_y_0 : ecc_compressed_mode::compressed_y_1);

    // 2. Generate the shared secret value based on recipient's public ephemeral keys will be required
    std::vector<unsigned char> enc_sym_key(static_cast<const unsigned char*>(p__encrypted__sym__key), p__encrypted__sym__key.lengthof() + static_cast<const unsigned char*>(p__encrypted__sym__key));
    std::vector<unsigned char> nonce(static_cast<const unsigned char*>(p__nonce), p__nonce.lengthof() + static_cast<const unsigned char*>(p__nonce));
    std::vector<unsigned char> authentication_vector(static_cast<const unsigned char*>(p__authentication__vector), p__authentication__vector.lengthof() + static_cast<const unsigned char*>(p__authentication__vector));
    if (ec.generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, private_enc_key, ec_comp.public_key_x(), ec_comp.public_key_y(), enc_sym_key, nonce, authentication_vector) == -1) {
      loggers::get_instance().warning("fx__decryptWithEciesBrainpoolp256WithSha256: Failed to generate shared secret");
      return OCTETSTRING();
    }

    // Decypt the message
    std::vector<unsigned char> enc_message(static_cast<const unsigned char*>(p__encryptedSecuredMessage), p__encryptedSecuredMessage.lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p__encryptedSecuredMessage));
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesBrainpoolp256WithSha256: enc_message: ", enc_message.data(), enc_message.size());
    std::vector<unsigned char> tag(p__encryptedSecuredMessage.lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p__encryptedSecuredMessage), p__encryptedSecuredMessage.lengthof() + static_cast<const unsigned char*>(p__encryptedSecuredMessage));
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesBrainpoolp256WithSha256: tag: ", tag.data(), tag.size());
    std::vector<unsigned char> message;
    if (ec.decrypt(tag, enc_message, message) == -1) {
      loggers::get_instance().warning("fx__decryptWithEciesBrainpoolp256WithSha256: Failed to generate shared secret");
      return OCTETSTRING();
    }

    OCTETSTRING os(message.size(), message.data());
    loggers::get_instance().log_to_hexa("fx__decryptWithEciesBrainpoolp256WithSha256: dec message: ", os);

    return os;
  }

  /**
   * \brief    Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm.
   *          This function should not be used by the ATS
   * \param   p_privateKey    The new private key value
   * \param   p_publicKeyX    The new public key value (x coordinate)
   * \param   p_publicKeyX    The new public key value (y coordinate)
   * \return  true on success, false otherwise
   fx_generateKeyPair_nistp256(out octetstring<UInt64> p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean;
  */
  BOOLEAN fx__generateKeyPair__nistp256(
                                        OCTETSTRING& p__privateKey,
                                        OCTETSTRING& p__publicKeyX,
                                        OCTETSTRING& p__publicKeyY,
                                        OCTETSTRING& p__publicKeyCompressed,
                                        INTEGER& p__compressedMode
                                        ) {
    security_ecc k(ec_elliptic_curves::nist_p_256);
    if (k.generate() != 0) {
      p__privateKey = OCTETSTRING();
      p__publicKeyX = OCTETSTRING();
      p__publicKeyY = OCTETSTRING();
      p__publicKeyCompressed = OCTETSTRING();
      return FALSE;
    }
    // Sanity checks
    if (k.private_key().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__nistp256: Invalid private key size");
      return FALSE;
    }
    if (k.public_key_x().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__nistp256: Invalid public key X-coordonate size");
      return FALSE;
    }
    if (k.public_key_y().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__nistp256: Invalid public key Y-coordonate size");
      return FALSE;
    }
    if (k.public_key_compressed().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__nistp256: Invalid public compressed key size");
      return FALSE;
    }
    p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data());
    p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data());
    p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data());
    p__publicKeyCompressed = OCTETSTRING(k.public_key_compressed().size(), k.public_key_compressed().data());
    p__compressedMode = INTEGER((int)k.public_key_compressed_mode());
    
    return TRUE;
  }

  /**
   * \brief    Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm.
   *          This function should not be used by the ATS
   * \param   p_privateKey    The new private key value
   * \param   p_publicKeyX    The new public key value (x coordinate)
   * \param   p_publicKeyX    The new public key value (y coordinate)
   * \return  true on success, false otherwise
   fx_generateKeyPair_nistp256(out octetstring<UInt64> p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean;
  */
  BOOLEAN fx__generateKeyPair__brainpoolp256(
                                             OCTETSTRING& p__privateKey,
                                             OCTETSTRING& p__publicKeyX,
                                             OCTETSTRING& p__publicKeyY,
                                             OCTETSTRING& p__publicKeyCompressed,
                                             INTEGER& p__compressedMode
                                             ) {
    security_ecc k(ec_elliptic_curves::brainpool_p_256_r1);
    if (k.generate() != 0) {
      p__privateKey = OCTETSTRING();
      p__publicKeyX = OCTETSTRING();
      p__publicKeyY = OCTETSTRING();
      p__publicKeyCompressed = OCTETSTRING();
      return FALSE;
    }

    // Sanity checks
    if (k.private_key().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp256: Invalid private key size");
      return FALSE;
    }
    if (k.public_key_x().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp256: Invalid public key X-coordonate size");
      return FALSE;
    }
    if (k.public_key_y().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp256: Invalid public key Y-coordonate size");
      return FALSE;
    }
    if (k.public_key_compressed().size() != 32) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp256: Invalid public compressed key size");
      return FALSE;
    }
    p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data());
    p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data());
    p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data());
    p__publicKeyCompressed = OCTETSTRING(k.public_key_compressed().size(), k.public_key_compressed().data());
    p__compressedMode = INTEGER((int)k.public_key_compressed_mode());
    
    return TRUE;
  }

  /**
   * \brief    Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm.
   *          This function should not be used by the ATS
   * \param   p_privateKey    The new private key value
   * \param   p_publicKeyX    The new public key value (x coordinate)
   * \param   p_publicKeyX    The new public key value (y coordinate)
   * \return  true on success, false otherwise
   fx_generateKeyPair_nistp256(out octetstring<UInt64> p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean;
  */
  BOOLEAN fx__generateKeyPair__brainpoolp384(
                                             OCTETSTRING& p__privateKey,
                                             OCTETSTRING& p__publicKeyX,
                                             OCTETSTRING& p__publicKeyY,
                                             OCTETSTRING& p__publicKeyCompressed,
                                             INTEGER& p__compressedMode
                                             ) {
    security_ecc k(ec_elliptic_curves::brainpool_p_384_r1);
    if (k.generate() != 0) {
      p__privateKey = OCTETSTRING();
      p__publicKeyX = OCTETSTRING();
      p__publicKeyY = OCTETSTRING();
      p__publicKeyCompressed = OCTETSTRING();
      return FALSE;
    }

    // Sanity checks
    if (k.private_key().size() != 48) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp384: Invalid private key size");
      return FALSE;
    }
    if (k.public_key_x().size() != 48) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp384: Invalid public key X-coordonate size");
      return FALSE;
    }
    if (k.public_key_y().size() != 48) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp384: Invalid public key Y-coordonate size");
      return FALSE;
    }
    if (k.public_key_compressed().size() != 48) {
      loggers::get_instance().error("fx__generateKeyPair__brainpoolp384: Invalid public compressed key size");
      return FALSE;
    }
    p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data());
    p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data());
    p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data());
    p__publicKeyCompressed = OCTETSTRING(k.public_key_compressed().size(), k.public_key_compressed().data());
    p__compressedMode = INTEGER((int)k.public_key_compressed_mode());

    return TRUE;
  }

  //        group encryption

  //        group certificatesLoader

  /** 
   * \brief    Load in memory cache the certificates available in the specified directory
   * \param   p_rootDirectory Root directory to access to the certificates identified by the certificate ID
   * \param   p_configId      A configuration identifier
   * @remark  This method SHALL be call before any usage of certificates
   * \return  true on success, false otherwise
   fx_loadCertificates(in charstring p_rootDirectory, in charstring p_configId) return boolean;
  */
  BOOLEAN fx__loadCertificates(
                               const CHARSTRING& p__rootDirectory,
                               const CHARSTRING& p__configId
                               ) {
    loggers::get_instance().log(">>> fx__loadCertificates: '%s', '%s'", static_cast<const char*>(p__rootDirectory), static_cast<const char*>(p__configId));