Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <chrono>
#include <cmath>
#include "security_services.hh"
using namespace std; // Required for isnan()
#include "etsi_ts103097_tobesigned_data_codec.hh"
#include "etsi_ts103097_data_codec.hh"
#include "etsi_ts103097_certificate_codec.hh"
#include "sha256.hh"
#include "sha384.hh"
#include "security_ecc.hh"
#include "params.hh"
#include "loggers.hh"
#include "converter.hh"
security_services * security_services::instance = nullptr;
security_services::security_services() : _setup_done{false}, _ec_keys_enc(nullptr), _security_cache(new security_cache), _security_db(nullptr), _last_generation_time(0), _unknown_certificate(), _latitude(0), _longitude(0), _elevation(0) {
loggers::get_instance().log(">>> security_services::security_services");
} // End of ctor
int security_services::setup(params& p_params) { // FIXME Rename this method
loggers::get_instance().log(">>> security_services::setup");
_params = p_params;
_params.log();
if (_setup_done) {
loggers::get_instance().warning("security_services::setup: Already done");
return 0;
}
// Build the certificate caching
try {
_security_db.reset(new security_db(_params[params::sec_db_path]));
if (_security_db.get() == nullptr) { // Memory allocation issue
loggers::get_instance().warning("security_services::setup: _security_db pointer is NULL");
return -1;
}
_setup_done = true;
} catch(...) {
loggers::get_instance().error("security_services::setup: Filesystem access error, terminate test suite on TTCN-3 error. Please check user name and paths in the test suite configuration file.");
return -1;
}
// Initialise encryption mechanism
if (_params[params::encrypted_mode].compare("1") == 0) {
params::const_iterator it = _params.find(params::cypher);
if (it == _params.cend()) {
_ec_keys_enc.reset(new security_ecc(ec_elliptic_curves::nist_p_256));
_params.insert(std::pair<std::string, std::string>(params::cypher, std::string("NISTP-256")));
p_params.insert(std::pair<std::string, std::string>(params::cypher, std::string("NISTP-256")));
} else if (it->second.compare("NISTP-256")) {
_ec_keys_enc.reset(new security_ecc(ec_elliptic_curves::nist_p_256));
} else if (it->second.compare("BP-256")) {
_ec_keys_enc.reset(new security_ecc(ec_elliptic_curves::brainpool_p_256_r1));
} else {
loggers::get_instance().warning("security_services::setup: Failed to encode ToBeSignedData");
return -1;
}
}
return 0;
}
int security_services::store_certificate(const CHARSTRING& p_cert_id, const OCTETSTRING& p_cert, const OCTETSTRING& p_private_key, const OCTETSTRING& p_public_key_x, const OCTETSTRING& p_public_key_y, const OCTETSTRING& p_public_comp_key, const INTEGER& p_public_comp_key_mode, const OCTETSTRING& p_hashid8, const OCTETSTRING& p_issuer, const OCTETSTRING& p_private_enc_key, const OCTETSTRING& p_public_enc_key_x, const OCTETSTRING& p_public_enc_key_y, const OCTETSTRING& p_public_enc_compressed_key, const INTEGER& p_public_enc_key_compressed_mode) {
loggers::get_instance().log_msg(">>> security_services::store_certificate: ", p_cert_id);
// Sanity checks
if (_security_db.get() == nullptr) { // Setup not called
loggers::get_instance().warning("security_services::store_certificate: Not initialised");
return -1;
}
return _security_db.get()->store_certificate(p_cert_id, p_cert, p_private_key, p_public_key_x, p_public_key_y, p_public_comp_key, p_public_comp_key_mode, p_hashid8, p_issuer, p_private_enc_key, p_public_enc_key_x, p_public_enc_key_y, p_public_enc_compressed_key, p_public_enc_key_compressed_mode);
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
}
int security_services::verify_and_extract_gn_payload(const OCTETSTRING& p_secured_gn_payload, const bool p_verify, IEEE1609dot2::Ieee1609Dot2Data& p_ieee_1609dot2_data, OCTETSTRING& p_unsecured_gn_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::verify_and_extract_gn_payload: ", p_secured_gn_payload);
// Sanity checks
if (p_secured_gn_payload.lengthof() == 0) {
return -1;
}
// Decode the secured message (OER encoding)
etsi_ts103097_data_codec codec;
codec.decode(p_secured_gn_payload, p_ieee_1609dot2_data, &p_params);
// Sanity checks
if (!p_ieee_1609dot2_data.is_bound()) {
loggers::get_instance().warning("security_services::verify_and_extract_gn_payload: Unbound value, discard it");
return -1;
}
if (p_verify && ((unsigned int)(int)p_ieee_1609dot2_data.protocolVersion() != security_services::ProtocolVersion)) {
loggers::get_instance().warning("security_services::verify_and_extract_gn_payload: Wrong version protocol, discard it");
return -1;
}
return process_ieee_1609_dot2_content(p_ieee_1609dot2_data.content(), p_verify, p_unsecured_gn_payload, p_params);
} // End of method verify_and_extract_gn_payload
int security_services::process_ieee_1609_dot2_content(const IEEE1609dot2::Ieee1609Dot2Content& p_ieee_1609_dot2_content, const bool p_verify, OCTETSTRING& p_unsecured_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_content: ", p_ieee_1609_dot2_content);
if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_unsecuredData)) { // Unsecured packet, End of recursivity
p_unsecured_payload = p_ieee_1609_dot2_content.unsecuredData();
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_signedData)) {
const IEEE1609dot2::SignedData& signedData = p_ieee_1609_dot2_content.signedData();
if (process_ieee_1609_dot2_signed_data(signedData, p_verify, p_unsecured_payload, p_params) != 0) {
if (p_verify) {
return -1;
}
}
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_encryptedData)) {
const IEEE1609dot2::EncryptedData& encrypted_data = p_ieee_1609_dot2_content.encryptedData();
OCTETSTRING signed_payload;
if (process_ieee_1609_dot2_encrypted_data(encrypted_data, p_verify, signed_payload, p_params) != 0) {
return -1;
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_content: Decrypted payload: ", signed_payload);
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data; // TODO Check if it could be reused
if (verify_and_extract_gn_payload(signed_payload, p_verify, ieee_1609dot2_data, p_unsecured_payload, p_params) != 0) {
if (p_verify) {
return -1;
}
}
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_signedCertificateRequest)) {
// Reset certificate timer
loggers::get_instance().log("security_services::process_ieee_1609_dot2_content: Set Certificate re-transmission flag and reset timer");
_last_generation_time = 0;
return 0;
} else { // Shall never be reached
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_content: Undefined IEEE 1609.2 Content, discard it");
if (p_verify) {
return -1;
}
}
loggers::get_instance().log_msg("<<< security_services::process_ieee_1609_dot2_content: ", p_unsecured_payload);
return 0;
} // End of method process_ieee_1609_dot2_content
int security_services::process_ieee_1609_dot2_signed_data(const IEEE1609dot2::SignedData& p_signed_data, const bool p_verify, OCTETSTRING& p_unsecured_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_signed_data: ", p_signed_data);
// Check the headerInfo content
const IEEE1609dot2::HeaderInfo& header_info = p_signed_data.tbsData().headerInfo();
p_params[params::its_aid] = std::to_string(header_info.psid().get_long_long_val());
if (!header_info.generationTime().is_present()) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: HeaderInfo::GenerationTime field is missing");
if (p_verify) {
return -1;
}
} else {
const OPTIONAL<INTEGER>& v = dynamic_cast<const OPTIONAL<INTEGER>& >(header_info.generationTime());
unsigned long long gt = ((INTEGER&)(*v.get_opt_value())).get_long_long_val() * 1000 - 1072911600000L;
// Get current time timestamp
unsigned long long ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count() - 1072911600000L; // TODO Add method such as its_tme() & its_time_mod() beacuse it is used also in LibItsCommon_externals
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: generation time check %ld / %ld", header_info.generationTime(), ms);
if (abs((double)gt - (double)ms) >= 5.0) { // TODO Use a params for generation_time_epsilon
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Invalid generation time, discard it");
if (p_verify) {
return -1;
}
}
}
// Check encryption keys if present
if (header_info.encryptionKey().is_present()) {
// TODO
}
// Check request certificate
if (header_info.inlineP2pcdRequest().is_present()) {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: inlineP2pcdRequest not supported yet");
// TODO
}
// Check requested certificate
if (header_info.requestedCertificate().is_present()) {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: requestedCertificate not supported yet");
// TODO
}
// Check and extract unsecured payload
if (p_signed_data.tbsData().payload().data().is_present()) {
// Check protocol version
const OPTIONAL<IEEE1609dot2::Ieee1609Dot2Data>& v = dynamic_cast<const OPTIONAL<IEEE1609dot2::Ieee1609Dot2Data>& >(p_signed_data.tbsData().payload().data());
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: SignedDataPayload.data = ", v);
const IEEE1609dot2::Ieee1609Dot2Data& ieee_1609dot2_data = static_cast<const IEEE1609dot2::Ieee1609Dot2Data&>(*v.get_opt_value());
if (p_verify && ((unsigned int)(int)ieee_1609dot2_data.protocolVersion() != security_services::ProtocolVersion)) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Wrong version protocol, discard it");
if (p_verify) {
return -1;
}
}
if (process_ieee_1609_dot2_content(ieee_1609dot2_data.content(), p_verify, p_unsecured_payload, p_params) != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to process SignedData, discard it");
if (p_verify) {
return -1;
}
}
} else if (p_signed_data.tbsData().payload().extDataHash().is_present()) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported extDataHash, discard it");
if (p_verify) {
return -1;
}
} else { // Shall not be reached
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported SignedDataPayload, discard it");
return -1;
}
// Encode the ToBeSignedData
etsi_ts103097_tobesigned_data_codec tbs_data_codec;
OCTETSTRING os;
tbs_data_codec.encode(p_signed_data.tbsData(), os);
if (os.lengthof() == 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to encode ToBeSignedData");
return -1;
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: encoded tbs_data = ", os);
// Calculate the hash according to the hashId
OCTETSTRING hashed_data;
if (p_signed_data.hashId() == IEEE1609dot2BaseTypes::HashAlgorithm::sha256) {
hash_sha256(os, hashed_data);
} else {
hash_sha384(os, hashed_data);
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: hashed_data = ", hashed_data);
// Retrieve certificate identifier
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: signer = ", p_signed_data.signer());
std::string certificate_id;
int result = -1;
if (p_signed_data.signer().ischosen(IEEE1609dot2::SignerIdentifier::ALT_digest)) {
// Retrieve the certificate identifier from digest
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Retrieve the certificate identifier from digest");
result = _security_db.get()->get_certificate_id(p_signed_data.signer().digest(), certificate_id);
if (result == -1) {
// Check in the cache
if (_security_cache.get()->get_certificate_id(p_signed_data.signer().digest(), certificate_id) == -1) {
// Unknown certificate, request it
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Unknown certificate, request it");
const OCTETSTRING& os = p_signed_data.signer().digest();
_unknown_certificate.resize(3);
const unsigned char* p = static_cast<const unsigned char*>(os) + os.lengthof() - 3;
for (int i = 0; i < 3; i++) {
_unknown_certificate[i] = *(p + i);
} // End of 'for' statement
loggers::get_instance().log_to_hexa("security_services::process_ieee_1609_dot2_signed_data: HashedId3: ", _unknown_certificate.data(), _unknown_certificate.size());
}
// Reset certificate timer
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Set Certificate re-transmission flag and reset timer");
_last_generation_time = 0;
}
} else if (p_signed_data.signer().ischosen(IEEE1609dot2::SignerIdentifier::ALT_certificate) && (p_signed_data.signer().certificate().size_of() != 0)) {
// Extract the certificates
std::vector<std::string> certificate_ids;
for (int i = 0; i < p_signed_data.signer().certificate().size_of(); i++) {
IEEE1609dot2::CertificateBase cert = p_signed_data.signer().certificate()[i];
// Retrieve ssps
OPTIONAL<IEEE1609dot2BaseTypes::SequenceOfPsidSsp>& v = cert.toBeSigned().appPermissions();
if (v.is_present()) {
IEEE1609dot2BaseTypes::SequenceOfPsidSsp psid_ssps = static_cast<const IEEE1609dot2BaseTypes::SequenceOfPsidSsp&>(*v.get_opt_value());
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: psid_ssps size: %d", psid_ssps.lengthof());
for (int i = 0; i < psid_ssps.lengthof(); i++) {
const IEEE1609dot2BaseTypes::PsidSsp& psid_ssp = psid_ssps[i];
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: Processing psid_ssp ", psid_ssp);
const OPTIONAL<IEEE1609dot2BaseTypes::ServiceSpecificPermissions>& s = psid_ssp.ssp();
if (s.is_present()) {
const IEEE1609dot2BaseTypes::ServiceSpecificPermissions& ssp = static_cast<const IEEE1609dot2BaseTypes::ServiceSpecificPermissions>(s);
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: Processing ssp ", ssp);
params::const_iterator it = p_params.find(std::to_string(psid_ssp.psid()));
if (it == p_params.cend()) {
OCTETSTRING os;
if (ssp.ischosen(IEEE1609dot2BaseTypes::ServiceSpecificPermissions::ALT_opaque)) {
os = ssp.opaque();
} else {
os = ssp.bitmapSsp();
}
p_params[std::to_string(psid_ssp.psid())] = std::string(static_cast<const char *>(oct2str(os)));
}
}
} // End of 'for' statement
}
std::string certificate_id;
if (extract_and_store_certificate(cert, certificate_id) != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to store certificate");
if (p_verify) {
return -1;
}
}
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: certificate_id: '%s'", certificate_id.c_str());
certificate_ids.push_back(certificate_id);
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: certificate_ids size: %d", certificate_ids.size());
} // End of 'for' statement
certificate_id = certificate_ids[0];
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: After extract_and_store_certificate, certificate_id: '%s'", certificate_id.c_str());
} else {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported SignerIdentifier");
return -1;
}
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: certificate id = '%s'", certificate_id.c_str());
// Verify the signature of the ToBeSignedData
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: signature = ", p_signed_data.signature__());
result = -1;
if (p_signed_data.signature__().ischosen(IEEE1609dot2BaseTypes::Signature::ALT_ecdsaNistP256Signature)) {
result = verify_sign_ecdsa_nistp256(hashed_data, p_signed_data.signature__(), certificate_id, p_params);
} else {
// TODO
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: TODO");
}
if (result != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to verify signature");
return -1;
}
loggers::get_instance().log_msg("<<< security_services::process_ieee_1609_dot2_signed_data: ", p_unsecured_payload);
return 0;
} // End of method process_ieee_1609_dot2_signed_data
int security_services::process_ieee_1609_dot2_encrypted_data(const IEEE1609dot2::EncryptedData& p_encrypted_data, const bool p_verify, OCTETSTRING& p_unsecured_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_encrypted_data: ", p_encrypted_data);
// 1. Retrieve the RecipientId
const IEEE1609dot2::RecipientInfo& r = p_encrypted_data.recipients()[0]; // TODO Add multiple support of recipients
const IEEE1609dot2BaseTypes::EciesP256EncryptedKey* ecies = nullptr; // TODO Use smart pointer
const OCTETSTRING* recipient_id = nullptr; // TODO Use smart pointer
if (r.ischosen(IEEE1609dot2::RecipientInfo::ALT_certRecipInfo)) {
recipient_id = &r.certRecipInfo().recipientId();
if (r.certRecipInfo().encKey().ischosen(IEEE1609dot2::EncryptedDataEncryptionKey::ALT_eciesNistP256)) {
ecies = &r.certRecipInfo().encKey().eciesNistP256();
} else if (r.certRecipInfo().encKey().ischosen(IEEE1609dot2::EncryptedDataEncryptionKey::ALT_eciesBrainpoolP256r1)) {
ecies = &r.certRecipInfo().encKey().eciesBrainpoolP256r1();
} else {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Unsupported encryption algorithm");
return -1;
}
} else {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Unsupported RecipientInfo variant");
return -1;
}
if (!ecies->v().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Unsupported EccP256CurvePoint variant");
return -1;
}
if (!p_encrypted_data.ciphertext().ischosen(IEEE1609dot2::SymmetricCiphertext::ALT_aes128ccm)) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Unsupported AES 128 algorithm");
return -1;
}
// 2. Retrieve the certificate if present
std::string certificate_id;
if (_security_db.get()->get_certificate_id(*recipient_id, certificate_id) == -1) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Unknown certificate");
// TODO Setup request certificate mechanism
return -1;
}
OCTETSTRING p_enc_key;
if (_security_db.get()->get_private_enc_key(certificate_id, p_enc_key) == -1) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Failed to retrieve private encryption key");
return -1;
}
std::vector<unsigned char> private_enc_key(static_cast<const unsigned char*>(p_enc_key), p_enc_key.lengthof() + static_cast<const unsigned char*>(p_enc_key));
// 3. Generate the shared secret value based on recipient's public ephemeral keys will be required
security_ecc ec(ec_elliptic_curves::nist_p_256, private_enc_key);
std::vector<unsigned char> ephemeral_public_key_x(static_cast<const unsigned char*>(ecies->v().uncompressedP256().x()), ecies->v().uncompressedP256().x().lengthof() + static_cast<const unsigned char*>(ecies->v().uncompressedP256().x()));
std::vector<unsigned char> ephemeral_public_key_y(static_cast<const unsigned char*>(ecies->v().uncompressedP256().y()), ecies->v().uncompressedP256().y().lengthof() + static_cast<const unsigned char*>(ecies->v().uncompressedP256().y()));
std::vector<unsigned char> enc_sym_key(static_cast<const unsigned char*>(ecies->c()), ecies->c().lengthof() + static_cast<const unsigned char*>(ecies->c()));
std::vector<unsigned char> nonce(static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().nonce()), p_encrypted_data.ciphertext().aes128ccm().nonce().lengthof() + static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().nonce()));
std::vector<unsigned char> authentication_vector(static_cast<const unsigned char*>(ecies->t()), ecies->t().lengthof() + static_cast<const unsigned char*>(ecies->t()));
if (ec.generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, private_enc_key, ephemeral_public_key_x, ephemeral_public_key_y, enc_sym_key, nonce, authentication_vector) == -1) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Failed to generate shared secret");
return -1;
}
// 4. Decrypt the message
std::vector<unsigned char> enc_message(static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext()), p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext().lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext()));
loggers::get_instance().log_to_hexa("security_services::process_ieee_1609_dot2_encrypted_data: enc_message: ", enc_message.data(), enc_message.size());
std::vector<unsigned char> tag(p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext().lengthof() - ec.tag().size() + static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext()), p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext().lengthof() + static_cast<const unsigned char*>(p_encrypted_data.ciphertext().aes128ccm().ccmCiphertext()));
loggers::get_instance().log_to_hexa("security_services::process_ieee_1609_dot2_encrypted_data: tag: ", tag.data(), tag.size());
std::vector<unsigned char> message;
if (ec.decrypt(tag, enc_message, message) == -1) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_encrypted_data: Failed to generate shared secret");
return -1;
}
p_unsecured_payload = OCTETSTRING(message.size(), message.data());
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_encrypted_data: ", p_unsecured_payload);
return 0;
} // End of method process_ieee_1609_dot2_encrypted_data
int security_services::secure_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_secured_gn_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::secure_gn_payload: ", p_unsecured_gn_payload);
p_params.log();
OCTETSTRING signed_payload;
if (sign_gn_payload(p_unsecured_gn_payload, signed_payload, p_params) != 0) {
p_secured_gn_payload = p_unsecured_gn_payload;
loggers::get_instance().warning("security_services::secure_gn_payload: Failed to signed payload");
return -1;
}
if (_params[params::encrypted_mode].compare("1") == 0) {
if (encrypt_gn_payload(signed_payload, p_secured_gn_payload, p_params) != 0) {
p_secured_gn_payload = signed_payload;
loggers::get_instance().warning("security_services::secure_gn_payload: Failed to encrypt payload");
return -1;
}
} else { // No encryption required
loggers::get_instance().log("security_services::secure_gn_payload: Encryption mode not set");
p_secured_gn_payload = signed_payload;
}
return 0;
}
int security_services::sign_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_signed_gn_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_gn_payload: ", p_unsecured_gn_payload);
// Set unsecured data
IEEE1609dot2::Ieee1609Dot2Content unsecured_data_content;
unsecured_data_content.unsecuredData() = p_unsecured_gn_payload;
IEEE1609dot2::Ieee1609Dot2Data unsecured_data(ProtocolVersion, unsecured_data_content);
// Set hash algorithm
IEEE1609dot2BaseTypes::HashAlgorithm hashId(IEEE1609dot2BaseTypes::HashAlgorithm::sha256);
if (p_params[params::hash].compare("SHA-384") == 0) {
hashId = IEEE1609dot2BaseTypes::HashAlgorithm::sha384;
}
// Set SignedDataPayload
IEEE1609dot2::SignedDataPayload payload;
payload.data() = unsecured_data;
payload.extDataHash().set_to_omit();
IEEE1609dot2::HeaderInfo header_info;
// Set secured field according to the payload!
header_info.psid() = converter::get_instance().string_to_int(p_params[params::its_aid]);
header_info.expiryTime().set_to_omit();
header_info.generationLocation().set_to_omit();
header_info.p2pcdLearningRequest().set_to_omit();
header_info.missingCrlIdentifier().set_to_omit();
if (_params[params::encrypted_mode].compare("1") == 0) {
// TODO Set the encrytion key. Not supported yet, need to clarify mechanism, see IEEE Std 1609.2-20XX Clause 6.3.9 HeaderInfo
header_info.encryptionKey().set_to_omit();
} else {
header_info.encryptionKey().set_to_omit();
}
params::const_iterator it = p_params.find(params::payload_type);
if (it != p_params.cend()) {
loggers::get_instance().log("security_services::sign_gn_payload: Payload type: %s", it->second.c_str());
if (it->second.compare("1") == 0) { // DENM
OPTIONAL<IEEE1609dot2BaseTypes::ThreeDLocation> location(IEEE1609dot2BaseTypes::ThreeDLocation(_latitude, _longitude, _elevation));
loggers::get_instance().log_msg("security_services::sign_gn_payload: generationLocation: ", location);
header_info.generationLocation() = location;
loggers::get_instance().log_msg("security_services::sign_gn_payload: generationLocation: ", header_info.generationLocation());
} else if (it->second.compare("2") == 0) { // CAM
// Noting to do
} else {
// Noting to do
}
} else { // Process it as a GeoNetworking payload
loggers::get_instance().log("security_services::sign_gn_payload: Payload type not set");
// Noting to do
}
unsigned long long ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count() - 1072911600000L; // TODO Add method such as its_tme() & its_time_mod() beacuse it is used also in LibItsCommon_externals
INTEGER i;
i.set_long_long_val((unsigned int)ms);
header_info.generationTime() = OPTIONAL<INTEGER>(i);
// Check if a certificate shall be requested
if (_unknown_certificate.size() == 3) { // HashedId3
IEEE1609dot2BaseTypes::SequenceOfHashedId3 s;
s[0] = OCTETSTRING(_unknown_certificate.size(), _unknown_certificate.data());
header_info.inlineP2pcdRequest() = OPTIONAL<IEEE1609dot2BaseTypes::SequenceOfHashedId3>(s);
_unknown_certificate.clear();
} else {
header_info.inlineP2pcdRequest().set_to_omit();
}
header_info.requestedCertificate().set_to_omit();
IEEE1609dot2::ToBeSignedData tbs_data;
tbs_data.payload() = payload;
tbs_data.headerInfo() = header_info;
loggers::get_instance().log_msg("security_services::sign_gn_payload: tbs_data = ", tbs_data);
// Sign the ToBeSignedData data structure
IEEE1609dot2BaseTypes::Signature signature;
if (sign_tbs_data(tbs_data, hashId, signature, p_params) != 0) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to secure payload");
return -1;
}
IEEE1609dot2::SignerIdentifier signer;
loggers::get_instance().log("security_services::sign_gn_payload: ms = %d - _last_generation_time = %d - ms - _last_generation_time = %d", (unsigned int)ms, _last_generation_time, (unsigned int)(ms - _last_generation_time));
std::string certificate_id = p_params[params::certificate];
loggers::get_instance().log("security_services::sign_gn_payload: certificate_id = %s", certificate_id.c_str());
if ((unsigned int)(ms - _last_generation_time) >= 1000 * 0.95) { // Need to add certificate
IEEE1609dot2::CertificateBase cert;
if (_security_db->get_certificate(certificate_id, cert) != 0) {
loggers::get_instance().warning("security_services:sign_gn_payload: Failed to secure payload");
return -1;
}
IEEE1609dot2::SequenceOfCertificate sequenceOfCertificate;
sequenceOfCertificate[0] = cert;
signer.certificate() = sequenceOfCertificate;
// Reset send certificate timer
_last_generation_time = ms;
} else {
OCTETSTRING digest;
if (_security_db->get_hashed_id(certificate_id, digest) != 0) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to secure payload");
return -1;
}
signer.digest() = digest;
}
IEEE1609dot2::SignedData signed_data(
hashId,
tbs_data,
signer,
signature
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: signed_data = ", signed_data);
IEEE1609dot2::Ieee1609Dot2Content ieee_dot2_content;
ieee_dot2_content.signedData() = signed_data;
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data(
security_services::ProtocolVersion,
ieee_dot2_content
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: ieee_1609dot2_data = ", ieee_1609dot2_data);
etsi_ts103097_data_codec codec;
codec.encode(ieee_1609dot2_data, p_signed_gn_payload);
if (!p_signed_gn_payload.is_bound()) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to encode Ieee1609Dot2Data");
return -1;
}
return 0;
}
int security_services::encrypt_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_enc_gn_payload, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::encrypt_gn_payload: ", p_unsecured_gn_payload);
// Sanity checks
if (_ec_keys_enc.get() == nullptr) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Encryption not initialised");
return -1;
}
params::const_iterator it = p_params.find("peer_certificate");
if (it == p_params.cend()) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Encryption impossible without a peer_certificte indication in parameters");
return -1;
}
std::string certificate_id = it->second;
// 1. Retrieve recipient's public keys
OCTETSTRING r_public_key_x;
OCTETSTRING r_public_key_y;
if (_security_db.get()->get_public_enc_keys(certificate_id, r_public_key_x, r_public_key_y) == -1) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Failed to retrieve recipient's public keys");
// TODO Setup request certificate mechanism
return -1;
}
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: r_public_key_x = ", r_public_key_x);
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: r_public_key_y = ", r_public_key_y);
std::vector<unsigned char> recipients_public_key_x(static_cast<const unsigned char *>(r_public_key_x), r_public_key_x.lengthof() + static_cast<const unsigned char *>(r_public_key_x));
std::vector<unsigned char> recipients_public_key_y(static_cast<const unsigned char *>(r_public_key_y), r_public_key_y.lengthof() + static_cast<const unsigned char *>(r_public_key_y));
// 2. Generate new Private/Public ephemeral keys
if (_ec_keys_enc.get()->generate() == -1) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Failed to generate ephemeral keys");
return -1;
}
// 3. Generate and derive shared secret
if (_ec_keys_enc.get()->generate_and_derive_ephemeral_key(encryption_algotithm::aes_128_ccm, recipients_public_key_x, recipients_public_key_y) == -1) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Failed to generate and derive secret key");
return -1;
}
// 4. Buil curve data structure
OCTETSTRING public_ephemeral_key_x(_ec_keys_enc.get()->public_key_x().size(), _ec_keys_enc.get()->public_key_x().data());
OCTETSTRING public_ephemeral_key_y(_ec_keys_enc.get()->public_key_y().size(), _ec_keys_enc.get()->public_key_y().data());
OCTETSTRING encrypt_aes_128_key(_ec_keys_enc.get()->encrypted_symmetric_key().size(), _ec_keys_enc.get()->encrypted_symmetric_key().data());
OCTETSTRING encrypt_aes_128_tag(_ec_keys_enc.get()->tag().size(), _ec_keys_enc.get()->tag().data());
IEEE1609dot2BaseTypes::EccP256CurvePoint eccP256CurvePoint;
eccP256CurvePoint.uncompressedP256().x() = public_ephemeral_key_x;
eccP256CurvePoint.uncompressedP256().y() = public_ephemeral_key_y;
IEEE1609dot2BaseTypes::EciesP256EncryptedKey ecies_key(
eccP256CurvePoint,
encrypt_aes_128_key,
encrypt_aes_128_tag
);
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: ecies_key = ", ecies_key);
// 5. AES-128 encryption of the data
std::vector<unsigned char> message(static_cast<const unsigned char*>(p_unsecured_gn_payload), p_unsecured_gn_payload.lengthof() + static_cast<const unsigned char*>(p_unsecured_gn_payload));
std::vector<unsigned char> enc_message;
if (_ec_keys_enc.get()->encrypt(encryption_algotithm::aes_128_ccm, _ec_keys_enc.get()->symmetric_encryption_key(), _ec_keys_enc.get()->nonce(), message, enc_message) == -1) {
loggers::get_instance().warning("fx__encryptWithEciesNistp256WithSha256: Failed to encrypt message");
return -1;
}
OCTETSTRING nonce = OCTETSTRING(_ec_keys_enc.get()->nonce().size(), _ec_keys_enc.get()->nonce().data());
OCTETSTRING tag = OCTETSTRING(_ec_keys_enc.get()->tag().size(), _ec_keys_enc.get()->tag().data());
OCTETSTRING enc_payload = OCTETSTRING(enc_message.size(), enc_message.data());
IEEE1609dot2::AesCcmCiphertext aes_128_ccm(nonce, enc_payload + tag); // Add tag at the end of the ciphered text
// 6. Build SymmetricCiphertext
IEEE1609dot2::SymmetricCiphertext cipher_text;
cipher_text.aes128ccm() = aes_128_ccm;
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: aes_128_ccm = ", cipher_text);
// 7. Build the recipient_id
OCTETSTRING recipient_id;
_security_db.get()->get_hashed_id(certificate_id, recipient_id); // SHA-256 of the certificate which contain the recipient's public keys
// 8. Build the encryption data
IEEE1609dot2::EncryptedDataEncryptionKey enc_data_key;
if (_params[params::cypher].compare("NISTP-256") == 0) {
enc_data_key.eciesNistP256() = ecies_key;
} else if (_params[params::cypher].compare("BP-256") == 0) {
enc_data_key.eciesBrainpoolP256r1() = ecies_key;
}
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: enc_data_key = ", enc_data_key);
// 9. Finalise the encryption
IEEE1609dot2::PKRecipientInfo cert_recipient_info(recipient_id, enc_data_key);
IEEE1609dot2::RecipientInfo recipient_info;
recipient_info.certRecipInfo() = cert_recipient_info;
IEEE1609dot2::SequenceOfRecipientInfo recipients;
recipients[0] = recipient_info;
IEEE1609dot2::EncryptedData encrypted_data(recipients, cipher_text);
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: encrypted_data = ", encrypted_data);
// 10. Encode it
IEEE1609dot2::Ieee1609Dot2Content ieee_dot2_content;
ieee_dot2_content.encryptedData() = encrypted_data;
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data(
security_services::ProtocolVersion,
ieee_dot2_content
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: ieee_1609dot2_data = ", ieee_1609dot2_data);
etsi_ts103097_data_codec codec;
codec.encode(ieee_1609dot2_data, p_enc_gn_payload);
if (!p_enc_gn_payload.is_bound()) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to encode Ieee1609Dot2Data");
return -1;
}
loggers::get_instance().log_msg("security_services::sign_gn_payload: Encoded ieee_1609dot2_data = ", p_enc_gn_payload);
return 0;
}
int security_services::sign_tbs_data(const IEEE1609dot2::ToBeSignedData& p_tbs_data, const IEEE1609dot2BaseTypes::HashAlgorithm& p_hashAlgorithm, IEEE1609dot2BaseTypes::Signature& p_signature, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_tbs_data: ", p_tbs_data);
// Encode the ToBeSignedData
etsi_ts103097_tobesigned_data_codec tbs_data_codec;
OCTETSTRING os;
tbs_data_codec.encode(p_tbs_data, os);
if (os.lengthof() == 0) {
loggers::get_instance().warning("security_services::sign_tbs_data: Failed to encode ToBeSignedData");
return -1;
}
loggers::get_instance().log_msg("security_services::sign_tbs_data: encoded tbs_data = ", os);
// Hash ToBeSignedData
OCTETSTRING hashed_data;
if (p_hashAlgorithm == IEEE1609dot2BaseTypes::HashAlgorithm::sha256) {
hash_sha256(os, hashed_data);
} else {
hash_sha384(os, hashed_data);
}
loggers::get_instance().log_msg("security_services::sign_tbs_data: encoded hashed_data = ", hashed_data);
// Sign ToBeSignedData
int result = -1;
loggers::get_instance().log("security_services::sign_tbs_data: encoded params::signature = '%s'", p_params[params::signature].c_str());
loggers::get_instance().log("security_services::sign_tbs_data: encoded params::certificate = '%s'", p_params[params::certificate].c_str());
if (p_params[params::signature].compare("NISTP-256") == 0) {
result = sign_ecdsa_nistp256(hashed_data, p_signature, p_params);
} else if (p_params[params::signature].compare("BP-256") == 0) {
//result = sign_ecdsa_brainpoolp256(hashed_data, p_signature, p_params);
loggers::get_instance().error("security_services::sign_tbs_data: TODO");
result = -1;
} else if (p_params[params::signature].compare("BP-384") == 0) {
//result = sign_ecdsa_brainpoolp256(hashed_data, p_signature, p_params);
loggers::get_instance().error("security_services::sign_tbs_data: TODO");
result = -1;
} else {
loggers::get_instance().error("security_services::sign_tbs_data: Unsupported signature algorithm");
result = -1;
}
if (result != 0) {
loggers::get_instance().warning("security_services::sign_tbs_data: Failed to sign payload");
return -1;
}
return 0;
}
int security_services::hash_sha256(const OCTETSTRING& p_data, OCTETSTRING& p_hash_data) {
loggers::get_instance().log_msg(">>> security_services::hash_sha256: ", p_data);
sha256 hash;
std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p_data), p_data.lengthof() + static_cast<const unsigned char *>(p_data));
std::vector<unsigned char> hashData;
hash.generate(tbh, hashData);
p_hash_data = OCTETSTRING(hashData.size(), hashData.data());
return 0;
}
int security_services::hash_sha384(const OCTETSTRING& p_data, OCTETSTRING& p_hash_data) {
loggers::get_instance().log_msg(">>> security_services::hash_sha384: ", p_data);
sha384 hash;
std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p_data), p_data.lengthof() + static_cast<const unsigned char *>(p_data));
std::vector<unsigned char> hashData;
hash.generate(tbh, hashData);
p_hash_data = OCTETSTRING(hashData.size(), hashData.data());
return 0;
}
int security_services::sign_ecdsa_nistp256(const OCTETSTRING& p_hash, IEEE1609dot2BaseTypes::Signature& p_signature, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_ecdsa_nistp256: ", p_hash);
std::string certificate_id = p_params[params::certificate];
loggers::get_instance().log("security_services::sign_ecdsa_nistp256: encoded certificate_id = '%s'", certificate_id.c_str());
OCTETSTRING pkey;
if (_security_db->get_private_key(certificate_id, pkey) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to get private key");
return -1;
}
std::vector<unsigned char> private_key(static_cast<const unsigned char *>(pkey), static_cast<const unsigned char *>(pkey) + pkey.lengthof());
// Hash ( Hash (Data input) || Hash (Signer identifier input) )
OCTETSTRING hash_cert;
if (_security_db->get_hash(certificate_id, hash_cert) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to get whole hash certificate");
return -1;
}
loggers::get_instance().log_msg("security_services::sign_ecdsa_nistp256: hash_issuer: ", hash_cert);
OCTETSTRING os = p_hash + hash_cert; // Hash (Data input) || Hash (Signer identifier input)
loggers::get_instance().log_msg("security_services::sign_ecdsa_nistp256: hash: ", os);
OCTETSTRING hashed_data;
hash_sha256(os, hashed_data); // Hash ( Hash (Data input) || Hash (Signer identifier input) )
std::vector<unsigned char> tbv(static_cast<const unsigned char *>(hashed_data), static_cast<const unsigned char *>(hashed_data) + hashed_data.lengthof());
security_ecc k(ec_elliptic_curves::nist_p_256, private_key);
std::vector<unsigned char> r_sig;
std::vector<unsigned char> s_sig;
if (k.sign(tbv, r_sig, s_sig) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to sign payload");
return -1;
}
IEEE1609dot2BaseTypes::EccP256CurvePoint ep;
ep.x__only() = OCTETSTRING(r_sig.size(), r_sig.data());
p_signature.ecdsaNistP256Signature() = IEEE1609dot2BaseTypes::EcdsaP256Signature(
ep,
OCTETSTRING(s_sig.size(), s_sig.data())
);
loggers::get_instance().log_msg("security_services::sign_ecdsa_nistp256: signature = ", p_signature);
return 0;
}
int security_services::verify_sign_ecdsa_nistp256(const OCTETSTRING& p_hash, const IEEE1609dot2BaseTypes::Signature& p_signature, const std::string& p_certificate_id, params& p_params) {
loggers::get_instance().log_msg(">>> security_services::verify_sign_ecdsa_nistp256: ", p_hash);
OCTETSTRING public_key_x;
OCTETSTRING public_key_y;
if (_security_db->get_public_keys(p_certificate_id, public_key_x, public_key_y) != 0) {
loggers::get_instance().warning("security_services::verify_sign_ecdsa_nistp256: Failed to get public keys");
return -1;
}
// Generate the hash to be verified: Hash ( Hash (Data input) || Hash (Signer identifier input) )
OCTETSTRING issuer;
if (_security_db->get_hash(p_certificate_id, issuer) != 0) {
loggers::get_instance().warning("security_services::verify_sign_ecdsa_nistp256: Failed to get hash of the issuer certificate");
return -1;
}
std::vector<unsigned char> hash_issuer(static_cast<const unsigned char*>(issuer), issuer.lengthof() + static_cast<const unsigned char*>(issuer)); // Hash (Signer identifier input)
loggers::get_instance().log_to_hexa("security_services::verify_sign_ecdsa_nistp256: hash_issuer: ", hash_issuer.data(), hash_issuer.size());
std::vector<unsigned char> hash_data(static_cast<const unsigned char *>(p_hash), static_cast<const unsigned char *>(p_hash) + p_hash.lengthof());
hash_data.insert(hash_data.end(), hash_issuer.cbegin(), hash_issuer.cend()); // Hash (Data input) || Hash (Signer identifier input)
loggers::get_instance().log_to_hexa("security_services::verify_sign_ecdsa_nistp256: hash: ", hash_data.data(), hash_data.size());
sha256 sha;
std::vector<unsigned char> hash_to_be_verified;
sha.generate(hash_data, hash_to_be_verified); // Hash ( Hash (Data input) || Hash (Signer identifier input) )
loggers::get_instance().log_to_hexa("security_services::verify_sign_ecdsa_nistp256: hash_to_be_verified: ", hash_to_be_verified.data(), hash_to_be_verified.size());
// Build the signature
OCTETSTRING os;
if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_x__only)) {
os = p_signature.ecdsaNistP256Signature().rSig().x__only() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
os = p_signature.ecdsaNistP256Signature().rSig().compressed__y__0() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
os = p_signature.ecdsaNistP256Signature().rSig().compressed__y__1() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
os = p_signature.ecdsaNistP256Signature().rSig().uncompressedP256().x() + p_signature.ecdsaNistP256Signature().rSig().uncompressedP256().y() + p_signature.ecdsaNistP256Signature().sSig();
} else {
loggers::get_instance().warning("security_services::verify_sign_ecdsa_nistp256: Invalid curve point");
return -1;
}
std::vector<unsigned char> signature(static_cast<const unsigned char *>(os), static_cast<const unsigned char *>(os) + os.lengthof());
std::vector<unsigned char> key_x(static_cast<const unsigned char *>(public_key_x), static_cast<const unsigned char *>(public_key_x) + public_key_x.lengthof());
std::vector<unsigned char> key_y(static_cast<const unsigned char *>(public_key_y), static_cast<const unsigned char *>(public_key_y) + public_key_y.lengthof());
security_ecc k(ec_elliptic_curves::nist_p_256, key_x, key_y);
if (k.sign_verif(hash_to_be_verified, signature) == 0) {
return 0;
}
return -1;
}
int security_services::extract_verification_keys(const IEEE1609dot2::CertificateBase& p_cert, OCTETSTRING& p_public_key_x, OCTETSTRING& p_public_key_y, OCTETSTRING& p_public_comp_key, INTEGER& p_public_comp_key_mode) {
loggers::get_instance().log("security_services::extract_verification_keys");
if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaNistP256)) {
if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().compressed__y__0();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::nist_p_256, comp_key, ecc_compressed_mode::compressed_y_0);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(0);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().compressed__y__1();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::nist_p_256, comp_key, ecc_compressed_mode::compressed_y_1);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(1);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
p_public_key_x = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().uncompressedP256().x();
p_public_key_y = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().uncompressedP256().y();
} else {
loggers::get_instance().error("security_services::extract_verification_keys: Unsupported VerificationKey");
return -1;
}
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaBrainpoolP256r1)) {
if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().compressed__y__0();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_256_r1, comp_key, ecc_compressed_mode::compressed_y_0);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(0);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().compressed__y__1();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_256_r1, comp_key, ecc_compressed_mode::compressed_y_1);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(1);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
p_public_key_x = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().uncompressedP256().x();
p_public_key_y = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().uncompressedP256().y();
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaBrainpoolP384r1)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().compressed__y__0();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_384_r1, comp_key, ecc_compressed_mode::compressed_y_0);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(0);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().ischosen(IEEE1609dot2BaseTypes::EccP384CurvePoint::ALT_compressed__y__1)) {
p_public_comp_key = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().compressed__y__1();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_comp_key), p_public_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_384_r1, comp_key, ecc_compressed_mode::compressed_y_1);
p_public_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_comp_key_mode = INTEGER(1);
} else if (p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().ischosen(IEEE1609dot2BaseTypes::EccP384CurvePoint::ALT_uncompressedP384)) {
p_public_key_x = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().uncompressedP384().x();
p_public_key_y = p_cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().uncompressedP384().y();
} else {
loggers::get_instance().error("security_services::extract_verification_keys: Unsupported VerificationKey");
return -1;
}
} else {
loggers::get_instance().error("security_services::extract_verification_keys: Unsupported VerificationKey");
return -1;
}
return 0;
}
int security_services::extract_encryption_keys(const IEEE1609dot2::CertificateBase& p_cert, OCTETSTRING& p_public_enc_key_x, OCTETSTRING& p_public_enc_key_y, OCTETSTRING& p_public_enc_comp_key, INTEGER& p_public_enc_comp_key_mode) {
loggers::get_instance().log("security_services::extract_encryption_keys");
if (p_cert.toBeSigned().encryptionKey().ispresent()) {
const IEEE1609dot2BaseTypes::PublicEncryptionKey& p = static_cast<const IEEE1609dot2BaseTypes::PublicEncryptionKey&>(p_cert.toBeSigned().encryptionKey());
if (p.publicKey().ischosen(IEEE1609dot2BaseTypes::BasePublicEncryptionKey::ALT_eciesNistP256)) {
if (p.publicKey().eciesNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
p_public_enc_comp_key = p.publicKey().eciesNistP256().compressed__y__0();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_enc_comp_key), p_public_enc_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_enc_comp_key));
security_ecc ecc(ec_elliptic_curves::nist_p_256, comp_key, ecc_compressed_mode::compressed_y_0);
p_public_enc_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_enc_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_enc_comp_key_mode = INTEGER(0);
} else if (p.publicKey().eciesNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
const OCTETSTRING& p_public_enc_comp_key = p.publicKey().eciesNistP256().compressed__y__1();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_enc_comp_key), p_public_enc_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_enc_comp_key));
security_ecc ecc(ec_elliptic_curves::nist_p_256, comp_key, ecc_compressed_mode::compressed_y_1);
p_public_enc_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_enc_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_enc_comp_key_mode = INTEGER(1);
} else if (p.publicKey().eciesNistP256().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
p_public_enc_key_x = p.publicKey().eciesNistP256().uncompressedP256().x();
p_public_enc_key_y = p.publicKey().eciesNistP256().uncompressedP256().y();
} else {
loggers::get_instance().error("security_services::extract_encryption_keys: Unsupported EncryptionKey");
return -1;
}
} else if (p.publicKey().ischosen(IEEE1609dot2BaseTypes::BasePublicEncryptionKey::ALT_eciesBrainpoolP256r1)) {
if (p.publicKey().eciesBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
p_public_enc_comp_key = p.publicKey().eciesBrainpoolP256r1().compressed__y__0();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_enc_comp_key), p_public_enc_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_enc_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_256_r1, comp_key, ecc_compressed_mode::compressed_y_0);
p_public_enc_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_enc_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_enc_comp_key_mode = INTEGER(0);
} else if (p.publicKey().eciesBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
p_public_enc_comp_key = p.publicKey().eciesBrainpoolP256r1().compressed__y__1();
std::vector<unsigned char> comp_key(static_cast<const unsigned char *>(p_public_enc_comp_key), p_public_enc_comp_key.lengthof() + static_cast<const unsigned char *>(p_public_enc_comp_key));
security_ecc ecc(ec_elliptic_curves::brainpool_p_256_r1, comp_key, ecc_compressed_mode::compressed_y_1);
p_public_enc_key_x = OCTETSTRING(ecc.public_key_x().size(), ecc.public_key_x().data());
p_public_enc_key_y = OCTETSTRING(ecc.public_key_y().size(), ecc.public_key_y().data());
p_public_enc_comp_key_mode = INTEGER(1);
} else if (p.publicKey().eciesBrainpoolP256r1().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
p_public_enc_key_x = p.publicKey().eciesBrainpoolP256r1().uncompressedP256().x();
p_public_enc_key_y = p.publicKey().eciesBrainpoolP256r1().uncompressedP256().y();
} else {
loggers::get_instance().error("security_services::extract_encryption_keys: Unsupported EncryptionKey");
return -1;
}
} else {
loggers::get_instance().error("security_services::extract_encryption_keys: Unsupported EncryptionKey");
return -1;
}
} else {
loggers::get_instance().warning("security_services::extract_encryption_keys: EncryptionKey omitted");
return 0; // Normal termination
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
}
return 0;
} // End of method extract_encryption_keys
int security_services::extract_and_store_certificate(const IEEE1609dot2::CertificateBase& p_certificate, std::string& p_certificate_id) {
loggers::get_instance().log_msg(">>> security_services::extract_and_store_certificate: ", p_certificate);
// Encode certificate
etsi_ts103097_certificate_codec codec;
OCTETSTRING enc_cert;
codec.encode(p_certificate, enc_cert);
if (enc_cert.lengthof() == 0) {
loggers::get_instance().warning("security_services::extract_and_store_certificate: Failed to encode certificate");
return -1;
}
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: Encoded certificate = ", enc_cert);
int result = -1;
if (p_certificate.issuer().ischosen(IEEE1609dot2::IssuerIdentifier::ALT_sha256AndDigest)) {
// Calculate the hash according to the hashId
OCTETSTRING hash_cert;
hash_sha256(enc_cert, hash_cert);
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: hash_cert= ", hash_cert);
const OCTETSTRING hashed_id8 = substr(hash_cert, hash_cert.lengthof() - 8, 8);
// Retrieve the certificate identifier from digest
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: Retrieve the certificate identifier from digest: ", hashed_id8);
result = _security_db.get()->get_certificate_id(hashed_id8, p_certificate_id);
if (result == -1) { // Not found in current DB
if (_security_cache.get()->get_certificate_id(hashed_id8, p_certificate_id) == -1) { // Not found in TS cache
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: Store new certificate in cache: ", p_certificate);
const std::vector<unsigned char> v(static_cast<const unsigned char*>(hashed_id8), static_cast<const unsigned char*>(hashed_id8) + hashed_id8.lengthof());
p_certificate_id = converter::get_instance().bytes_to_hexa(v);
// Add it into the cache
OCTETSTRING public_key_x, public_key_y, public_comp_key;
INTEGER public_comp_key_mode;
if (extract_verification_keys(p_certificate, public_key_x, public_key_y, public_comp_key, public_comp_key_mode) == -1) {
loggers::get_instance().error("security_services::extract_and_store_certificate: Unsupported EncryptionKey");
return -1;
}
// Add encryption keys
OCTETSTRING public_enc_key_x, public_enc_key_y, public_enc_comp_key;
INTEGER public_enc_comp_key_mode;
if (extract_encryption_keys(p_certificate, public_enc_key_x, public_enc_key_y, public_enc_comp_key, public_enc_comp_key_mode) == -1) {
loggers::get_instance().error("security_services::extract_and_store_certificate: Unsupported EncryptionKey");
return -1;
}
// And store it into the cache
_security_cache.get()->store_certificate(
CHARSTRING(p_certificate_id.c_str()),
enc_cert,
int2oct(0, 32), // No way to get the private key here
public_key_x,
public_key_y,
public_comp_key,
public_comp_key_mode,
hash_cert,
p_certificate.issuer().sha256AndDigest(),
int2oct(0, 32), // Encryption private not used
public_enc_key_x,
public_enc_key_y,
public_enc_comp_key,
public_enc_comp_key_mode
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
);
}
}
} else if (p_certificate.issuer().ischosen(IEEE1609dot2::IssuerIdentifier::ALT_sha384AndDigest)) {
// Calculate the hash according to the hashId
OCTETSTRING hash_cert;
hash_sha384(enc_cert, hash_cert);
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: hash_cert= ", hash_cert);
const OCTETSTRING hashed_id8 = substr(hash_cert, hash_cert.lengthof() - 8, 8);
// Retrieve the certificate identifier from digest
loggers::get_instance().log("security_services::extract_and_store_certificate: Retrieve the certificate identifier from digest");
result = _security_db.get()->get_certificate_id(hashed_id8, p_certificate_id);
if (result == -1) {
if (_security_cache.get()->get_certificate_id(hashed_id8, p_certificate_id) == -1) {
loggers::get_instance().log_msg("security_services::extract_and_store_certificate: Store new certificate in cache: ", p_certificate);
const std::vector<unsigned char> v(static_cast<const unsigned char*>(hashed_id8), static_cast<const unsigned char*>(hashed_id8) + hashed_id8.lengthof());
p_certificate_id = converter::get_instance().bytes_to_hexa(v);
// Add it into the cache
OCTETSTRING public_key_x, public_key_y, public_comp_key;
INTEGER public_comp_key_mode;
if (extract_verification_keys(p_certificate, public_key_x, public_key_y, public_comp_key, public_comp_key_mode) == -1) {
loggers::get_instance().error("security_services::extract_and_store_certificate: Unsupported EncryptionKey");
return -1;
}
// Add encryption keys
OCTETSTRING public_enc_key_x, public_enc_key_y, public_enc_comp_key;
INTEGER public_enc_comp_key_mode;
if (extract_encryption_keys(p_certificate, public_enc_key_x, public_enc_key_y, public_enc_comp_key, public_enc_comp_key_mode) == -1) {
loggers::get_instance().error("security_services::extract_and_store_certificate: Unsupported EncryptionKey");
return -1;
}
// And store it into the cache
_security_cache.get()->store_certificate(
CHARSTRING(p_certificate_id.c_str()),
enc_cert,
int2oct(0, 48), // No way to get the private key here
public_key_x,
public_key_y,
public_comp_key,
public_comp_key_mode,
hash_cert,
p_certificate.issuer().sha384AndDigest(),
int2oct(0,48), // Encryption private not used
public_enc_key_x,
public_enc_key_y,
public_enc_comp_key,
public_enc_comp_key_mode
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
);
}
}
} else {
loggers::get_instance().error("security_services::extract_and_store_certificate: Unsupported issuer");
return -1;
}
return 0;
} // End of method extract_and_store_certificate
int security_services::read_certificate(const CHARSTRING& p_certificate_id, OCTETSTRING& p_certificate) const {
return _security_db.get()->get_certificate(std::string(static_cast<const char*>(p_certificate_id)), p_certificate);
}
int security_services::read_certificate_digest(const CHARSTRING& p_certificate_id, OCTETSTRING& p_digest) const {
return _security_db.get()->get_hashed_id(std::string(static_cast<const char*>(p_certificate_id)), p_digest);
}
int security_services::read_certificate_hash(const CHARSTRING& p_certificate_id, OCTETSTRING& p_hash) const {
return _security_db.get()->get_hash(std::string(static_cast<const char*>(p_certificate_id)), p_hash);
}
int security_services::read_certificate_from_digest(const OCTETSTRING& p_digest, CHARSTRING& p_certificate_id) const {
std::string certificate_id;
if (_security_db.get()->get_certificate_id(p_digest, certificate_id) != -1) {
p_certificate_id = CHARSTRING(certificate_id.c_str());
return 0;
}
return -1;
}
int security_services::read_private_key(const CHARSTRING& p_certificate_id, OCTETSTRING& p_private_key) const {
return _security_db.get()->get_private_key(std::string(static_cast<const char*>(p_certificate_id)), p_private_key);
}
int security_services::read_private_enc_key(const CHARSTRING& p_certificate_id, OCTETSTRING& p_private_enc_key) const {
return _security_db.get()->get_private_enc_key(std::string(static_cast<const char*>(p_certificate_id)), p_private_enc_key);
}