lib_its_security.h 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*!
 * \File      lib_its_security.h
 * \brief     Declaration file for Security external functions.
 * \author    FSCOM
 * \copyright FSCOM Copyright Notification
 *            No part may be reproduced except as authorized by written permission.
 *            The copyright and the foregoing restriction extend to reproduction in all media.
 *            All rights reserved.
 * \version   0.1
 */
#pragma once

#ifdef _Win64
#ifdef LIBITSSECURITY_EXPORTS
#define LIBITSSECURITY_API __declspec(dllexport)
#else
#define LIBITSSECURITY_API __declspec(dllimport)
#endif
#else // _Win64
#define LIBITSSECURITY_API
#endif // _Win64

#ifdef __cplusplus
extern "C" {
#endif // !__cplusplus

#ifndef _Win64
#include <unistd.h>
#endif // !_Win32
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#include <memory.h>
#include <errno.h>

#include <openssl/err.h>
#include <openssl/ec.h>
#include <openssl/pem.h>
#include <openssl/bn.h>
#include <openssl/hmac.h>

/*!
 * \enum Supported Elliptic curves
 */
typedef enum ecc_elliptic_curves_ {
  nist_p_256,         /*!< NIST P-256, P-256, primve256v1 */
  brainpool_p_256_r1, /*!< Brainpool P256r1 */
  brainpool_p_384_r1  /*!< Brainpool P384r1 */
} ecc_elliptic_curves_t;

/*!
 * \enum Public key coordinates compression mode
 */
typedef enum ecc_compressed_mode_ {
  compressed_y_0, /*!< The last significant bit of Y-coordinate ended with 0 */
  compressed_y_1  /*!< The last significant bit of Y-coordinate ended with 1 */
} ecc_compressed_mode_t;

/*!
 * \enum Supported encryption algorithm
 */
typedef enum ecc_encryption_algorithm_ {
  aes_128_ccm,
  aes_256_ccm,
  aes_128_gcm,
  aes_256_gcm
} encryption_algorithm_t;

/*!
 * \struct ITS security context to be used in functions
 * \brief This data structure contains all the infomation required to achieve security computation such signature, ciphering...
 */
typedef struct lib_its_security_context_ {
  ecc_elliptic_curves_t  elliptic_curve;       /*! The ellicptic curve to be used */
  EC_KEY*                ec_key;               /*!< EC_KEY reference */
  EC_GROUP*              ec_group;             /*!< EC_GROUP reference */
  BN_CTX*                bn_ctx;               /*!< Pre-alocated memory used to increase OpenSSL processing */
  size_t                 key_length;           /*!< private/public keys length */
  uint8_t*               private_key;          /*!< Private key */
  uint8_t*               public_key_x;         /*!< Public key Y-coordinate */
  uint8_t*               public_key_y;         /*!< Public key Y-coordinate */
  uint8_t*               public_key_c;         /*!< Compressed Public key */
  ecc_compressed_mode_t  compressed_mode;      /*!< Compression mode */

  encryption_algorithm_t encryption_algorithm; /* Encryption algorithm currently used */
  uint8_t*               secret_key;
  uint8_t*               sym_key;
  uint8_t*               enc_sym_key;
  uint8_t*               tag;
  uint8_t*               nonce;
  size_t                 secret_key_length;
  size_t                 sym_key_length;
  size_t                 nonce_length;
  size_t                 tag_length;
} lib_its_security_context_t;

/**
 * \fn int32_t initialize(const ecc_elliptic_curves_t p_elliptic_curve, lib_its_security_context_t** p_lib_its_security_context);
 * \brief Initialize the ITS security context according to the specified elliptic curve. This function shall be called before any othe lib_its_security function.
 * \param[in] p_elliptic_curve The elliptic curve to be used
 * \param[out] p_lib_its_security_context The internal context (To be released using uninitialize function)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t initialize(const ecc_elliptic_curves_t p_elliptic_curve, lib_its_security_context_t** p_lib_its_security_context);

/**
 * \fn int32_t uninitialize(lib_its_security_context_t** p_lib_its_security_context);
 * \brief Release resources allocated by initialize fiunction
 * \param[in/out] p_lib_its_security_context The internal context
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t uninitialize(lib_its_security_context_t** p_lib_its_security_context);

/**
 * \fn int32_t hash_with_sha256(const uint8_t* p_to_be_hashed_data,const size_t p_to_be_hashed_data_length,uint8_t** p_hashed_data);
 * \brief Produces a 256-bit (32-bytes) hash value
 * \param[in] p_to_be_hashed_data The data to be used to calculate the hash value
 * \param[in] p_to_be_hashed_data_length The length of the data to be hashed
 * \param[in/out] p_hashed_data The data to be used to calculate the hash value
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t hash_with_sha256(const uint8_t* p_to_be_hashed_data, const size_t p_to_be_hashed_data_length, uint8_t** p_hashed_data);
/**
 * \fn int32_t hash_with_sha384(const uint8_t* p_to_be_hashed_data,const size_t p_to_be_hashed_data_length,uint8_t** p_hashed_data);
 * \brief Produces a 384-bit (48-bytes) hash value
 * \param[in] p_to_be_hashed_data Data to be used to calculate the hash value
 * \param[in] p_to_be_hashed_data_length The length of the data to be hashed
 * \param[in] p_hashed_data The data to be used to calculate the hash value
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t hash_with_sha384(const uint8_t* p_to_be_hashed_data, const size_t p_to_be_hashed_data_length, uint8_t** p_hashed_data);

/**
 * \fn int32_t hmac_sha256(const uint8_t* p_secret_key,const size p_secret_key_length,const OCTETSTRING& p_message,const size p_message_length, uint8_t** p_hmac);
 * \brief Generate a HMAC-SHA256 value based on the provided secret key
 * \param[in] p_secret_key The secret key used for the HMAC calculation
 * \param[in] p_message The message
 * \param[out] p_hmac The HMAC with SHA256 of the message resized to 16-bytes (To be released after use)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t hmac_sha256(const uint8_t* p_secret_key, const size_t p_secret_key_length, const uint8_t* p_message, const size_t p_message_length, uint8_t** p_hmac);

/**
 * \fn int32_t sign_with_ecdsa_nistp256_with_sha256(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_signed_secured_message,const size_t p_to_be_signed_secured_message_length,const uint8_t* p_certificate_issuer,const uint8_t* p_private_key,uint8_t** p_signature);
 * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The security context
 * \param[in] p_to_be_signed_secured_message The data to be signed
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_private_key The private key
 * \param[out] p_signature The signature of the data to be signed (To be released after use)
 * \return The signature value
 */
LIBITSSECURITY_API int32_t sign_with_ecdsa_nistp256_with_sha256(
                                                                lib_its_security_context_t* p_lib_its_security_context,
                                                                const uint8_t* p_to_be_signed_secured_message,
                                                                const size_t p_to_be_signed_secured_message_length,
                                                                const uint8_t* p_certificate_issuer,
                                                                const uint8_t* p_private_key,
                                                                uint8_t** p_signature
                                                                );

/**
 * \fn int32_t sign_with_ecdsa_brainpoolp256r1_with_sha256(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_signed_secured_message,const size_t p_to_be_signed_secured_message_length,const uint8_t* p_certificate_issuer,const uint8_t* p_private_key,uint8_t** p_signature);
 * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_signed_secured_message The data to be signed
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_private_key The private key
 * \param[out] p_signature The signature of the data to be signed (To be released after use)
 * \return The signature value
 */
LIBITSSECURITY_API int32_t sign_with_ecdsa_brainpoolp256r1_with_sha256(
                                                                       lib_its_security_context_t* p_lib_its_security_context,
                                                                       const uint8_t* p_to_be_signed_secured_message,
                                                                       const size_t p_to_be_signed_secured_message_length,
                                                                       const uint8_t* p_certificate_issuer,
                                                                       const uint8_t* p_private_key,
                                                                       uint8_t** p_signature
                                                                       );

/**
 * \fn int32_t sign_with_ecdsa_brainpoolp384r1_with_sha384(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_signed_secured_message,const size_t p_to_be_signed_secured_message_length,const uint8_t* p_certificate_issuer,const uint8_t* p_private_key,uint8_t** p_signature);
 * \brief Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signature based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_signed_secured_message The data to be signed
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_private_key The private key
 * \param[out] p_signature The signature of the data to be signed (To be released after use)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t sign_with_ecdsa_brainpoolp384r1_with_sha384(
                                                                       lib_its_security_context_t* p_lib_its_security_context,
                                                                       const uint8_t* p_to_be_signed_secured_message,
                                                                       const size_t p_to_be_signed_secured_message_length,
                                                                       const uint8_t* p_certificate_issuer,
                                                                       const uint8_t* p_private_key,
                                                                       uint8_t** p_signature
                                                                       );

/**
 * \fn int32_t verify_with_ecdsa_nistp256_with_sha256(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_verified_data,const size_t p_to_be_verified_data_length,const uint8_t* p_certificate_issuer,const uint8_t* p_signature,const uint8_t* p_ecdsa_nistp256_publicKey_compressed, const ecc_compressed_mode_t p_compressed_mode);
 * \brief Verify the signature of the specified data based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_verified_data The data to be verified
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_signature The signature
 * \param[in] p_ecdsa_nistp256_publicKey_compressed The compressed public key (x coordinate only)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t verify_with_ecdsa_nistp256_with_sha256(
                                                                  lib_its_security_context_t* p_lib_its_security_context,
                                                                  const uint8_t* p_to_be_verified_data,
                                                                  const size_t p_to_be_verified_data_length,
                                                                  const uint8_t* p_certificate_issuer,
                                                                  const uint8_t* p_signature,
                                                                  const uint8_t* p_ecdsa_nistp256_publicKey_compressed,
                                                                  const ecc_compressed_mode_t p_compressed_mode
                                                                  );

/**
 * \fn int32_t verify_with_ecdsa_nistp256_with_sha256_raw(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_verified_data,const size_t p_to_be_verified_data_length,const uint8_t* p_certificate_issuer,const uint8_t* p_signature,const uint8_t* p_ecdsa_nistp256_publicKey_compressed, const ecc_compressed_mode_t p_compressed_mode));
 * \brief Verify the signature of the specified data based on raw data
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_verified_data The data to be verified
 * \param[in] p_signature The signature
 * \param[in] p_ecdsa_nistp256_publicKey_compressed The compressed public key (x coordinate only)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t verify_with_ecdsa_nistp256_with_sha256_raw(
                                                   lib_its_security_context_t* p_lib_its_security_context,
                                                   const uint8_t* p_to_be_verified_data,
                                                   const size_t p_to_be_verified_data_length,
                                                   const uint8_t* p_signature,
                                                   const uint8_t* p_ecdsa_nistp256_publicKey_compressed,
                                                   const ecc_compressed_mode_t p_compressed_mode
                                                   );

/**
 * \fn int32_t verify_with_ecdsa_brainpoolp256r1_with_sha256(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_verified_data,const size_t p_to_be_verified_data_length,const uint8_t* p_certificate_issuer,const uint8_t* p_signature,const uint8_t* p_ecdsa_nistp256_publicKey_compressed, const ecc_compressed_mode_t p_compressed_mode);
 * \brief Verify the signature of the specified data based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_verified_data The data to be verified
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_signature The signature
 * \param[in] p_ecdsaBrainpoolp256PublicKeyCompressed The compressed public key (x coordinate only)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t verify_with_ecdsa_brainpoolp256r1_with_sha256(
                                                      lib_its_security_context_t* p_lib_its_security_context,
                                                      const uint8_t* p_to_be_verified_data,
                                                      const size_t p_to_be_verified_data_length,
                                                      const uint8_t* p_certificate_issuer,
                                                      const uint8_t* p_signature,
                                                      const uint8_t* p_ecdsaBrainpoolp256PublicKeyCompressed,
                                                      const ecc_compressed_mode_t p_compressed_mode
                                                      );

/**
 * \fn int32_t verify_with_ecdsa_brainpoolp384r1_with_sha384(lib_its_security_context_t* p_lib_its_security_context, const uint8_t* p_to_be_verified_data,const size_t p_to_be_verified_data_length,const uint8_t* p_certificate_issuer,const uint8_t* p_signature,const uint8_t* p_ecdsa_nistp256_publicKey_compressed, const ecc_compressed_mode_t p_compressed_mode);
 * \brief Verify the signature of the specified data based on standard IEEE 1609.2
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_verified_data The data to be verified
 * \param[in] p_certificate_issuer The whole-hash issuer certificate or int2oct(0,32) in case of self signed certificate
 * \param[in] p_signature The signature
 * \param[in] p_ecdsaBrainpoolp384PublicKeyCompressed The compressed public key (x coordinate only)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t verify_with_ecdsa_brainpoolp384r1_with_sha384(
                                                      lib_its_security_context_t* p_lib_its_security_context,
                                                      const uint8_t* p_to_be_verified_data,
                                                      const size_t p_to_be_verified_data_length,
                                                      const uint8_t* p_certificate_issuer,
                                                      const uint8_t* p_signature,
                                                      const uint8_t* p_ecdsaBrainpoolp384PublicKeyCompressed,
                                                      const ecc_compressed_mode_t p_compressed_mode
                                                      );

/**
 * \brief Encrypt the message using ECIES algorithm to encrypt AES 128 CCM symmetric key,as defined in IEEE Std 1609.2-2017
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_to_be_encrypted_secured_message The message to be encrypted
 * \param[in] p_recipients_public_key_compressed The Recipient's compressed public key
 * \param[in] p_compressed_mode The compressed mode,0 if the latest bit of Y-coordinate is 0,1 otherwise
 * \param[out] p_public_ephemeral_key_compressed The public ephemeral compressed key (To be released after use)
 * \param[out] p_ephemeral_compressed_mode The compressed mode,0 if the latest bit of Y-coordinate is 0,1 otherwise
 * \param[out] p_encrypted_sym_key The encrypted AES 128 symmetric key (To be released after use)
 * \param[out] p_authentication_vector The tag of the encrypted AES 128 symmetric key (To be released after use)
 * \param[out] p_nonce The nonce vector (To be released after use)
 uint8_t** p_encrypted_secured_message,
 size_t* p_encrypted_secured_message_length,
 * \return 0 on success, -1 otherwise
 * \see IEEE Std 1609.2-2017 Clause 5.3.5 Public key encryption algorithms: ECIES
 * \see https://www.nominet.uk/researchblog/how-elliptic-curve-cryptography-encryption-works/
 * \see http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf
 */
LIBITSSECURITY_API int32_t encrypt_with_ecies_nistp256_with_sha256(
                                                lib_its_security_context_t* p_lib_its_security_context,
                                                const uint8_t* p_to_be_encrypted_secured_message,
                                                const size_t p_to_be_encrypted_secured_message_length,
                                                const uint8_t* p_recipients_public_key_compressed,
                                                const ecc_compressed_mode_t p_compressed_mode,
                                                const uint8_t* p_salt,
                                                const size_t p_salt_length,
                                                uint8_t** p_public_ephemeral_key_compressed,
                                                ecc_compressed_mode_t* p_ephemeral_compressed_mode,
                                                uint8_t** p_aes_sym_key,
                                                uint8_t** p_encrypted_sym_key,
                                                uint8_t** p_authentication_vector,
                                                uint8_t** p_nonce,
                                                uint8_t** p_encrypted_secured_message,
                                                size_t* p_encrypted_secured_message_length
                                                );

/**
 * \brief Decrypt the message using ECIES algorithm to decrypt AES 128 CCM symmetric key,as defined in IEEE Std 1609.2-2017
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[in] p_encrypted_secured_message The encrypted message
 * \param[in] p_private_enc_key The private encryption key
 * \param[in] p_public_ephemeral_key_compressed The public ephemeral compressed key
 * \param[in] p_ephemeral_compressed_mode The compressed mode,0 if the latest bit of Y-coordinate is 0,1 otherwise
 * \param[in] p_encrypted_sym_key The encrypted AES 128 symmetric key
 * \param[in] p_authentication_vector The tag of the encrypted AES 128 symmetric key
 * \param[in] p_nonce The nonce vector
 * \return 0 on success, -1 otherwise
 * \see IEEE Std 1609.2-2017 Clause 5.3.5 Public key encryption algorithms: ECIES
 * \see https://www.nominet.uk/researchblog/how-elliptic-curve-cryptography-encryption-works/
 * \see http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf
 */
LIBITSSECURITY_API int32_t decrypt_with_ecies_nistp256_with_sha256(
                                                lib_its_security_context_t* p_lib_its_security_context,
                                                const uint8_t* p_encrypted_secured_message,
                                                const size_t p_encrypted_secured_message_length,
                                                const uint8_t* p_private_enc_key,
                                                const uint8_t* p_public_ephemeral_key_compressed,
                                                const ecc_compressed_mode_t p_ephemeral_compressed_mode,
                                                const uint8_t* p_encrypted_sym_key,
                                                const uint8_t* p_authentication_vector,
                                                const uint8_t* p_nonce,
                                                const uint8_t* p_salt,
                                                const size_t p_salt_length,
                                                uint8_t** p_aes_sym_enc_key,
                                                uint8_t** p_plain_text_message,
                                                size_t* p_plain_text_message_length
                                                );

LIBITSSECURITY_API int32_t encrypt_with_ecies_brainpoolp256r1_with_sha256(
                                                       lib_its_security_context_t* p_lib_its_security_context,
                                                       const uint8_t* p_to_be_encrypted_secured_message,
                                                       const size_t p_to_be_encrypted_secured_message_length,
                                                       const uint8_t* p_recipients_public_key_compressed,
                                                       const ecc_compressed_mode_t p_compressed_mode,
                                                       const uint8_t* p_salt,
                                                       const size_t p_salt_length,
                                                       uint8_t** p_public_ephemeral_key_compressed,
                                                       ecc_compressed_mode_t* p_ephemeral_compressed_mode,
                                                       uint8_t** p_aes_sym_key,
                                                       uint8_t** p_encrypted_sym_key,
                                                       uint8_t** p_authentication_vector,
                                                       uint8_t** p_nonce,
                                                       uint8_t** p_encrypted_secured_message,
                                                       size_t* p_encrypted_secured_message_length
                                                       );

LIBITSSECURITY_API int32_t decrypt_with_ecies_brainpoolp256r1_with_sha256(
                                                       lib_its_security_context_t* p_lib_its_security_context,
                                                       const uint8_t* p_encrypted_secured_message,
                                                       const size_t p_encrypted_secured_message_length,
                                                       const uint8_t* p_private_enc_key,
                                                       const uint8_t* p_public_ephemeral_key_compressed,
                                                       const ecc_compressed_mode_t p_ephemeral_compressed_mode,
                                                       const uint8_t* p_encrypted_sym_key,
                                                       const uint8_t* p_authentication_vector,
                                                       const uint8_t* p_nonce,
                                                       const uint8_t* p_salt,
                                                       const size_t p_salt_length,
                                                       uint8_t** p_aes_sym_enc_key,
                                                       uint8_t** p_plain_text_message,
                                                       size_t* p_plain_text_message_length
                                                       );

/**
 * \fn int32_t generate_key_pair(lib_its_security_context_t* p_lib_its_security_context, uint8_t** p_private_key,uint8_t** p_public_key_x,uint8_t** p_public_key_y,uint8_t** p_public_key_compressed, ecc_compressed_mode_t* p_compressed_mode);
 * \brief    Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm.
 * \param[in/out] p_lib_its_security_context The internal context
 * \param[out] p_private_key    The new private key value (To be released after use)
 * \param[out] p_public_key_x    The new public key value (x coordinate) (To be released after use)
 * \param[out] p_public_key_x    The new public key value (y coordinate) (To be released after use)
 * \return 0 on success, -1 otherwise
 */
LIBITSSECURITY_API int32_t generate_key_pair(
                          lib_its_security_context_t* p_lib_its_security_context,
                          uint8_t** p_private_key,
                          uint8_t** p_public_key_x,
                          uint8_t** p_public_key_y,
                          uint8_t** p_public_key_compressed,
                          ecc_compressed_mode_t* p_compressed_mode
                          );

#ifdef __cplusplus
}
#endif // !__cplusplus