submodule etsi-nfv-common { yang-version 1.1; belongs-to etsi-nfv { prefix nfv; } description "Common data types for ETSI data models."; revision 2018-06-19 { description "Initial revision Common data structures to support VNFD and NSD according to: ETSI GS NFV-IFA 014 Ed251v244 ETSI GS NFV-IFA 011 Ed251v243"; } /* * Identities. */ identity layer-protocol { } identity Ethernet { base layer-protocol; } identity MPLS { base layer-protocol; } identity ODU2 { base layer-protocol; } identity IPv4 { base layer-protocol; } identity IPv6 { base layer-protocol; } identity Pseudo-Wire { base layer-protocol; } identity address-type { description "Describes the type of the address to be assigned to the CP instantiated from the parent CPD. Value: • MAC address. • IP address. • … The content type shall be aligned with the address type supported by the layerProtocol attribute of the parent CPD."; reference "GS NFV IFA011: Section 7.1.3.3, AddressData information element."; } identity mac-address { base address-type; } identity ip-address { base address-type; } identity supported-operation { description "Indicates which operations are available for this DF via the VNF LCM interface. Instantiate VNF, Query VNF and Terminate VNF are supported in all DF and therefore need not be included in this list."; reference "GS NFV IFA011: Section 7.1.8.2 VnfDf information element"; } identity instantiate-vnf { base supported-operation; description "This operation instantiates a particular DF of a VNF based on the definition in the VNFD."; reference "GS NFV IFA007: Section 7.2.3 Instantiate VNF Operation"; } identity scale-vnf { base supported-operation; description "This operation provides methods to request scaling a VNF in multiple ways: • horizontal scaling: - scale out: adding additional VNFC instances to the VNF to increase capacity - scale in: removing VNFC instances from the VNF, in order to release unused capacity"; reference "GS NFV IFA007: Section 7.2.4 Scale VNF Operation"; } identity scale-vnf-to-level { base supported-operation; description "This operation scales an instantiated VNF of a particular DF to a target size. The target size is either expressed as an instantiation level of that DF as defined in the VNFD, or given as a list of scale levels, one per scaling aspect of that DF. Instantiation levels and scaling aspects are declared in the VNFD. Typically, the result of this operation is adding and/or removing Network Functions Virtualization Infrastructure (NFVI) resources to/from the VNF."; reference "GS NFV IFA007: Section 7.2.5 Scale VNF To Level Operation"; } identity change-vnf-flavour { base supported-operation; description "This operation changes the DF of a VNF instance."; reference "GS NFV IFA007: Section 7.2.6 Change VNF Flavour Operation"; } identity terminate-vnf { base supported-operation; description "This operation terminates a VNF. A VNF can be terminated gracefully or forcefully. Graceful termination means that the VNFM arranges to take the VNF out of service, e.g. by asking the VNF's EM to take the VNF out of service, and only after that shuts down the VNF and releases the resources. Forceful termination means that the VNFM immediately shuts down the VNF and releases the resources. A time interval can be specified for taking the VNF out of service, after which the VNF is shut down if taking it out of service has not completed."; reference "GS NFV IFA007: Section 7.2.7 Terminate VNF Operation"; } identity query-vnf { base supported-operation; description "This operation provides information about VNF instances. The applicable VNF instances can be chosen based on filtering criteria, and the information can be restricted to selected attributes."; reference "GS NFV IFA007: Section 7.2.9 Query VNF Operation"; } identity heal-vnf { base supported-operation; description "This operation enables the NFVO to request a VNFM to perform a VNF healing procedure."; reference "GS NFV IFA007: Section 7.2.10 Heal VNF Operation"; } identity operate-vnf { base supported-operation; description "This operation enables requesting to change the state of a VNF instance, including starting and stopping the VNF instance."; reference "GS NFV IFA007: Section 7.2.11 Operate VNF Operation"; } identity modify-vnf-information { base supported-operation; description "This operation allows updating information about a VNF instance."; reference "GS NFV IFA007: Section 7.2.12 Modify VNF Operation"; } identity cp-role { description "Identifies the role of the port in the context of the traffic flow patterns in the VNF or parent NS."; reference "GS NFV IFA011: Section 7.1.6.3 Cpd information element"; } identity root { base cp-role; } identity leaf { base cp-role; } /* * Typedefs */ typedef flow-pattern { type enumeration { enum line; enum tree; enum mesh; } } typedef affinity-type { type enumeration { enum "affinity"; enum "anti-affinity"; } } typedef affinity-scope { type enumeration { enum "nfvi-node"; enum "zone-group"; enum "zone"; enum "nfvi-pop"; } } typedef internal-lifecycle-management-script-event { type enumeration { enum "start-instantiation"; enum "end-instantiation"; enum "start-scaling"; enum "end-scaling"; enum "start-healing"; enum "end-healing"; enum "start-termination"; enum "end-termination"; enum "start-vnf-flavor-change"; enum "end-vnf-flavor-change"; enum "start-vnf-operation-change"; enum "end-vnf-operation-change"; enum "start-vnf-ext-conn-change"; enum "end-vnf-ext-conn-change"; enum "start-vnfinfo-modification"; enum "end-vnfinfo-modification"; } } grouping local-affinity-or-anti-affinity-rule { list local-affinity-or-anti-affinity-rule { key "affinity-type affinity-scope"; leaf affinity-type { type affinity-type; description "Specifies whether the rule is an affinity rule or an anti-affinity rule."; reference "GS NFV IFA011: Section 7.1.8.11, LocalAffinityOrAntiAffinityRule information element."; } leaf affinity-scope { type affinity-scope; description "Specifies the scope of the rule, possible values are 'NFVI-PoP', 'Zone', 'ZoneGroup', 'NFVI-node'."; reference "GS NFV IFA011: Section 7.1.8.11, LocalAffinityOrAntiAffinityRule information element."; } } } grouping connectivity-type { container connectivity-type { list layer-protocol { key "protocol"; leaf protocol { type identityref { base layer-protocol; } } description "Identifies the protocols that the VL uses (Ethernet, MPLS, ODU2, IPV4, IPV6, Pseudo-Wire). The top layer protocol of the VL protocol stack shall always be provided. The lower layer protocols may be included when there are specific requirements on these layers."; reference "GS NFV IFA011: Section 7.1.7.3, ConnectivityType information element."; } leaf flow-pattern { type flow-pattern; description "Identifies the flow pattern of the connectivity (Line, Tree, Mesh)."; reference "GS NFV IFA011: Section 7.1.7.3, ConnectivityType information element."; } } } grouping link-bitrate-requirements { leaf root { type uint64; units "Mbps"; mandatory true; description "Specifies the throughput requirement of the link (e.g. bitrate of E-Line, root bitrate of E-Tree, aggregate capacity of E-LAN)."; reference "GS NFV IFA011: Section 7.1.8.6, LinkBitrateRequirements information element."; } leaf leaf { type uint64; units "Mbps"; description "Specifies the throughput requirement of leaf connections to the link when applicable to the connectivity type (e.g. for E-Tree and E-LAN branches)."; reference "GS NFV IFA011: Section 7.1.8.6, LinkBitrateRequirements information element."; } } grouping monitoring-parameter { leaf name { type string; description "Human readable name of the monitoring parameter."; reference "GS NFV IFA011: Section 7.1.11.3, MonitoringParameter information element."; } leaf performance-metric { type string; description "Performance metric that is monitored. This attribute shall contain the related 'Measurement Name' value as defined in clause 7.2 of ETSI GS NFV-IFA 027"; reference "GS NFV IFA011: Section 7.1.11.3, MonitoringParameter information element and Section 7.2 of ETSI GS NFV-IFA 027."; } leaf collection-period { type uint64; units "ms"; description "An attribute that describes the recommended periodicity at which to collect the performance information. VNFM determines if this parameter is considered. The vendor may provide this information as a guidance for creating PmJobs if needed."; reference "GS NFV IFA011: Section 7.1.11.3, MonitoringParameter information element."; } } grouping security-parameters { leaf signature { type string; description "Provides the signature of the signed part of the descriptor."; reference "GS NFV IFA014: Section 6.2.5, SecurityParameters information element."; } leaf algorithm { type string; description "Identifies the algorithm used to compute the signature."; reference "GS NFV IFA014: Section 6.2.5, SecurityParameters information element."; } leaf certificate { type string; description "Provides a certificate or a reference to a certificate to validate the signature."; reference "GS NFV IFA014: Section 6.2.5, SecurityParameters information element."; } } // The following grouping is Cpd information element as defined in // IFA014. IFA011 defines its own Cpd information element, which // is defined in etsi-nfv-vnf.yang file. Do not use this grouping // for inclusion in a Vnf. grouping cpd { description "The Cpd information element specifies the characteristics of connection points attached to NFs and NSs. This is an abstract class used as parent for the various Cpd classes. It has an attribute 'trunkMode' which enables the NFVO to identify whether the Cp instantiated from the Cpd is in trunk mode or not."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; leaf id { type string; description "Identifier of this Cpd information element."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; } leaf layer-protocol { mandatory true; type identityref { base layer-protocol; } description "Identifies a protocol that the connection points corresponding to the CPD support for connectivity purposes (e.g. Ethernet, MPLS, ODU2, IPV4, IPV6, Pseudo-Wire, etc.)."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; } leaf role { type identityref { base cp-role; } description "Identifies the role of the connection points corresponding to the CPD in the context of the traffic flow patterns in the VNF, PNF or NS. For example an NS with a tree flow pattern within the NS will have legal cpRoles of ROOT and LEAF."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; } leaf description { type string; description "Provides human-readable information on the purpose of the connection point (e.g. connection point for control plane traffic)."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; } leaf trunk-mode { type boolean; description "Information about whether the Cp instantiated from this CPD is in Trunk mode (802.1Q or other). When operating in 'trunk mode', the Cp is capable of carrying traffic for several VLANs. A cardinality of 0 implies that trunkMode is not configured for the Cp i.e. It is equivalent to Boolean value 'false'."; reference "GS NFC IFA014: Section 6.6.3.1 Cpd information element"; } } }