ETSI ES 201 873-1 va.4.1 (2012-04)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 ETSI ES 201 873-1 V4.4.1 (2012-04)

Reference
RES/MTS-136-1 T3 ed441 core

Keywords
methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2012.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-1 V4.4.1 (2012-04)

Contents

INntellectual Property RIGNES........oiiiieeeees ettt b et b e bbb e 11
1= 11 o ST 11
1 o0 0= PP TR PRSP 12
2 L= £ 101 TR 12
21 NOFMEBLIVE FEFEIEINCEScueieeiteiterie ettt sttt h e h et et ee ekt s bt bt e ae e s e e e e s e b e sheeb e s Rt eaeene e s e abeseeebesaeenee e enrenes 12
2.2 INFOrMELIVE FEFEIEINCES..... . ittt bbb bbbt h e h et e e s e e b e s bt s a e e e e e et sheebesaeene e e ennees 13
3 Definitions and @DDreVIaLiONS...........ooveiiiririeses ettt 14
31 D= T 0T (0] 1 14
3.2 F Y o] 1= V7= 0] 1 17
4 1100 [Tox £ o o PRSP 18
4.1 The core language and pPresentation FOrMEALSciieieire i e e e sneenaeenaesreesreas 18
4.2 Unanimity of the SPECITICALIONcc.viiiceeic e e et e s te e e sneesreesneeseenseens 20
4.3 CONTOIIMNBICE ... ettt ettt eh sttt bt sh e bt bt eh e e ae e e e b e eE £ b e s Rt ehe e st e s e e e e sE e beAeeeb e e aeense e e ebenbesbeebeeneeneennen 20
5 BasiC 1anQUagE ElEMENTS ..ottt sttt s b e sbe e be s ae e e e be e e e e e sreenaenrenreas 20
51 [AENtITIErS AN KEYWOITSeceeitiieieete ettt bbbt bt bt s bt et b et b e e e 21
52 SCOPE FUIES ...ttt bbbt bt et b e s e et b e e e e e e bt AR e Rt eb e £ E e Rt e b e e E e Rt eb e b e Rt e b e e e e neebeneeneeb e s b et ebenneneeee 21
521 SCOPE Of FOIME PAFBIMELE'S ...ttt ettt sttt b e et b e et b et eb e et b et b e sbe e b e sbeneren 24
522 UNiQUENESS OF THENTITIENS ...ttt bbbt b e st b e 24
5.3 Ordering of [aNQUABGE ElEMIENLS..........ciieiieieece et e e e e s e sreesteesteeaeenseenteesaesneesreesrens 25
54 e 101 (= 74 (o] o O PUP T RPRUSTRSRPP 25
54.1 FOrMEl PAIAIMIELELSecveeieesieeie ettt ettt et e st e et e st e e be e tesaeesaeesaeesae e seenaeanseeseensaesteesseeseenseeneenneennns 25
54.1.1 Formal parameters Of KinNG VAIUE.ceieeieeieese ettt snaesnaesneennees 26
54.1.2 Formal parameters of Kind teMPIELE.c.ecouvieieieeiec e snees 28
54.1.3 Formal parameters Of Kind tIMEN ..o et e eb e 29
5414 Formal parameters Of KinO PON..........coueeiiiiiniieeee ettt b s b e e eb e seenea 30
542 ACTUBl PBIBIMELEIS ... ettt ettt e bbb b b £ b b e bt b e e e bt b e e e a e b e bt eb e bt eb e b 30
55 CYClIC DEFINMITTIONS. ...ttt bbbt b et b e b e h e b e e bt b et b e et b e se et b e st et nb e e 33
6 TYPES @MU VBIUBS ...ttt ettt et e s be et e stesse e besseentesneeneeseeeneenteseeeneensenneensenseens 33
6.1 BaSIC LYPES N0 VAIUES.........ooceeeieeteee ettt ettt st e st et e e e e e estesseesaeesteenteeneesneeessesneesseesseesseeneeensenneennns 34
6.1.0 SIMPIe basiC tYPES AN VEIUES.........ccueeieeieiie sttt ettt e e e s ae e e s teenaeasaesneesre e tansseesteeseesesneesnns 34
6.1.1 BasiC StriNg tYPES @NA VAIUES........coiueeiie ettt sttt e e e s e te e be e teenteennenneennes 35
6.1.1.1 Accessing individual StrinNg EleMENES........ccveiieiieece et e ree e e e e sreenseenaeens 37
6.1.2 SUBLYPING OF DASIC LYPES ...ttt ettt et b e et b e bbb e b snenneren 37
6.1.2.1 LiStS Of TEIMPIALES ..ottt ettt b e b e et b e e et b e s b et eb e s b e e b e sbennenea 37
6.1.2.2 IR Yo Y o= TSSOSOV P SRR PT ST RPPR 37
6.1.2.3 RENGES......cee e e e e 38
6.1.24 SUNG 1ENGEN FESIITICIIONS ...ttt bbb 38
6.1.2.5 Pattern subtyping Of CharaCter SHNQ tYPESc.eiirieirireerie et eb e 39
6.1.2.6 Mixing SUDLYPING MECNANISIMS.......ccieiieieeiee st este e e e e e e e e teeteseesseesseesseesteenteensesseesseesseesaens 39
6.1.2.6.1 Mixing patterns, lIStS aNd FANJESeccvieeeceereee e se s e teste e s e sae e te e sreesra e te e teeteeaesneennes 39
6.1.2.6.2 Using length restriction with Other CONSLraiNS..........ccccevieiieiere e 40
6.2 SEHUCLUFEd tYPES ANA VAIUES........eceieeeeecieesieee et ste et ettt et e e et eestessaesaeesaeesteenseenseenseenseeneenneenseesnens 40
6.2.1 RECOIA tYPE @NU VBIUES........ceveieieciee ettt te e sra e st e st e teesteetesneesseesseensaesteesseeseeseeneenneennes 42
6.2.1.1 Referencing fields Of @ reCOrd tYPcuveiieieee et ennaesreesnees 43
6.2.1.2 Optional ElEmMENES IN @TECONM........eeuiiuieetertei ettt bbb e b nn e 44
6.2.1.3 Nested type definitions fOr fIeld LYPESc.oiireeiieee e 44
6.2.2 SELLYPE BNA VBIUES ...ttt ettt b e et b e bbbt e bt b e s e bt b e e e bt s b e e eb e s b e ne bt ebennenea 44
6.221 Referencing fields Of & S8t TYPE.....c.ciiriiiireee bbb bbb e ene 45
6.2.2.2 OpPtioNal ElEMENES TN @ SEL ...t b et b et nn s 45
6.2.2.3 Nested type definition for field tYPES.......cviv e e 45
6.2.3 RecOords and SetS Of SINGIE LYPEScviiiiee ettt et e e s s e te e be e seenteeneesnnesnes 45
6.2.3.1 NeSted tyPe AEfiNITIONS........cce e sae e ae et e neeenaesneesreesrees 47
6.2.3.2 Referencing elements of record of and Set Of tYPEScocveeiecieci e 47

ETSI

4 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.2.4 Enumerated tYPe @nU VBIUEScoiee ettt sttt et et enaess e ste e beeteenteeneesneesnes 48
6.2.5 DO, ...ttt ettt et b bt b et e et h b e he ek oA e e e e E e SE £ b £ S H e eh £ e e e a R e AR e AR e Re Rt R e e Re e R e e e e Rt ebeeReebe e e ennennens 49
6.25.1 Referencing fields Of @ UNION TYPEcveeiieiiee et enne e reesreas 49
6.2.5.2 (@7 o 11T =T o U 0o o TS 49
6.2.5.3 Nested type definition for fIeld tYPES.......cvii e 49
6.2.6 LI S0 8 ST 50
6.2.7 N 1= Y TP U O 50
6.2.8 THE AEFAUIT LY ...ttt bbb bbbt bbbt bbb b 52
6.2.9 COMMUINI CALION POIT LYPES.....c.veieeteetereeteete sttt sttt sttt st sb e bt b se bt b e se bt b e se st beseebe et e see e ebesbe e ebesbennenens 52
6.2.10 COMPONENE TYPIES ...ttt ettt b bt se R s bt e h e e e e e e e se e Rt s bt eh e e e e s et e sreerenneene e e ennes 54
6.2.10.1 Component tYPE AEFINITION..........cuiiiiiieree e 54
6.2.10.2 REUSE Of COMPONENT LYPESvieeeceieciee sttt te ettt et e st e e e e e e e teseesaeesneesseesseenseensesneenseesseesrens 55
6.2.11 COMPONENE FEFEIEICESvi e ceeeeteete et st s e te e e st et e e e e e e atesaeesseesaeeseenteeneenseasseeseenteeneesneesnes 57
6.2.12 Addressing entitieS iNSIAE ThE SUTccveiieice e s re e sae et e ae et e enaesneesraesnens 59
6.2.13 ST 04 o g To o s 0T (N =0 Y 0= 61
6.2.13.1 Length subtyping of record of Sand Set Of S..........cceeiiiiiiii e 61
6.2.13.2 List subtyping of structured types and @nYLYPe.........ccceieeiieieeieee e nnees 62
6.2.13.3 Subtyping of the iterated type of record of Sand SEt OfS.........ccovireiiircine e 64
6.2.13.4 Mixing SUBLYPING MECNANISIMIS........coueiiiiitiriiiete sttt sttt b e et b e et et see e ebesrennenea 65
6.3 TYPE COMPELIDITTTY ..ttt b bbb b et b b se b e b e en e b neene s 65
6.3.1 Compatibility Of NON-SIFUCLUIE TYPEScveieeeiiiereeieete ettt e e sb e e b seenen 65
6.3.2 Compatibility Of SITUCIUNEH tYPES......cveiviiiterieieite ettt et et b e bbb b snennenea 66
6.3.2.1 Compatibility Of ENUMEraLEH tYPESc.ccuiriiieiietieerte e 67
6.3.2.2 Compatibility of record and reCord Of TYPESueiieiieiice e snees 67
6.3.2.3 Compatibility Of Set @and SEt Of LYPES....veeieeiee e e snaesraesnees 68
6.3.24 Compatibility Of UNION TYPES.......eciiiieiee ettt ettt e te e e sreesaeeseeneesneesneesreeneens 68
6.3.2.5 CompatibDility Of ANYLYPE LYPES ..ecveiiecie ettt ste e ae s e sreesaeeeeeneesneeenaesneesneas 69
6.3.2.6 Compatibility DEtWEEN SUD-SIIUCLUIES..........cciiieeie et s enaesneesraesnees 69
6.3.3 Compatibility Of COMPONENE LYPES. ... eeieeieeiieeiie et et et se et e et e e s e sreesteeteesaeereesse e seeseeneenneennes 70
6.34 Type compatibility of COMMUNICaLioN OPEraLiONSc.ciuirieeriiieirier s 70
6.3.5 I 8L 0 1Y/ £ oo OO P PSPPSRV 71
6.4 IR 0 L=,/ 10 01 1 TR PR 71
7 0= 0] SO S ST RUPPRUPRP P 71
7.1 (07 = (0] £ T TSRS 72
711 F N L d g 0= T oo o= = (] =SSR 73
7.1.2 LIRS0 0= = () P 74
7.1.3 e 0] 7= e 0= = (o] = 74
714 (0T [Lor] 1= 1 0] £ 76
7.15 BiTWISE OPEIGLIOIS ...ttt bbbt bt e h e b e he b s e h e e b e e bt bt b e et bbb n s 77
7.16 S ol R 0] o= = 0] £ TP P PO STPP PSPPI 77
7.1.7 L0z (ST 001 = (0] £ U PP 78
7.2 Field references and l1St BlEMENES.o et e st e b e ene e e e e es 79
8 17700 111 =TSRSS 79
8.1 DEfiNitionN Of @IMOGUIEouiiiiiieiee et e b ettt et b e bt e b e et e e et sheebesaeene e e enrees 79
8.2 K0T LB 1T =X 0 TR Y] LS o = 80
821 Ko [N Lo 7= = 1< = S 8l
8.2.2 L€ l0 1Y) o U=t 11T 0] =S 82
823 IMPOrtiNG FrOM MOTUIES ..ottt b et e b e et b e bbb 83
8231 General fOrmMat OF TMPOITo.oiiiiiirieiet et b bbb e b nn e 83
8232 IMPOrting SINGIE AEfiNITIONScoiieiitere bbbt 89
8233 [MPOITING GOUPS. ... citereeteete sttt sttt sttt ettt et st s e st et s e e st b e s e eneebese et eb e s b e st eb e s b e ae et e nb e st ebeseenesbenneneees 90
8234 Importing definitions of the SAME KING ..ot e 91
8.2.35 Importing al definitions Of @MOAUIE............coee e 92
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........cccccevvvervennns 93
8.2.3.7 Importing of import statements from TTCN-3 MOAUIES.........cccuvieiiiirieeeee e e 94
8.2.38 Compatibility of language SpecificationS iIN IMPOITS.......cccccuiieirieerieseee e 95
8.24 Definition of fFriend MOUIES............oiiiieei et sr bbb e e e 96
8.25 ViSiDility Of AEfiNITIONS......cciieeececeee et e e s e s reeteenteenaeeneesnaesaeas 96
8.3 MOAUIE CONEFOI PAIT.....c.eeueiteeeieetese ettt b e b bt e et b b e bt b e e bt b e s e st b e s e e bt b e e eb e ens 98
9 Port types, component types and test CONFIQUIaLIONScc.ererieieierirese e 98

ETSI

5 ETSI ES 201 873-1 V4.4.1 (2012-04)

9.1 (o001 01070 T¥o= 1 o I o0 €= SRS 99
9.2 TESE SYSLEM I INEEITACE.eceeeeeeeiee ettt et bt b e e bbbt sb e ae bt et et e besrenbesaeene e e ennas 101
O T B = o =T o o)1 = £ S 103
11 DeClaring VAADIES. ..ottt bbbt e et b bt b e e 103
111 RV L0 = T o= S 103
11.2 TEMPIAIE VAITADIES ...ttt b et b e bbb bbbt b e bbb 104
R D T= o = 1o L1 1= £ T OSSPSR OR VRPN 105
G T B Tc o T o 0= o (S 106
14 Declaring ProCeAUIE SIGNAEUIES.coueruerereeeieeieeseaseste s se s s ee e esesse b sse b sre s e s e e e e eneesenseareneennennens 107
15 DEClaring tEMPIELES.ceeeeeeieeieeieete ettt ettt b bbb e e s e e e et et e b nb e b e nn e n e 108
15.1 Declaring MeSSage tEMPIALESocieeeeie et e te e e s re e ste e ae e teenreenteeneesraesneas 109
15.2 Declaring SIgNature tEMPIALESoc.eecieeeee et et e e e et esraesreesteesaeeteenseenseeneessaesnnas 110
15.3 (€1T0] o> =T o M LoTor= IR (14T o] F= 1= 112
154 T TSR I 00T 0 = 1SS 112
155 MOTITIE TEMPIALES. ...ttt bttt b e b bbbt b e bbbt e e s e bt e e st nn e enis 113
15.6 Referencing elements of templates or template fIelds........c.ooiieiiiini s 116
156.1 Referencing individual String @EMENTS.........co.ciiiieee bbb 116
15.6.2 Referencing record and set fIElUS.o 116
15.6.3 Referencing record of and set of ElEMENTS........ccocie i 117
1564 Referencing SIgNature ParaMELErS.........cui ittt b et b et b s b 118
15.7 Template MatChing MECHBNISIMSccuiiieciee et esre e s e e e eteessessaesreesreesseenseensenns 119
157.1 SPECIHTIC VBIUES ...ttt ettt sttt ettt s e s et s e e bt st e se e bt sbese e e ebe st e e ebesbeneesenbeneeneas 120
15.7.2 Special symbolsthat can be used instead Of VAIUES............cceeiiiiiiie i 121
15.7.3 Special symbolsthat can be used iNSIAE VAIUES..........coueiieiiere e 121
15.74 Specia symbols which describe attributes Of ValUES.........c.ccceeveeieeiece e 122
15.8 TeMPIALE RESIIICLIONS.ciiieiieecie ettt e e e e s e s aeesaeeteeseeeseeeseeteenteenteensesneesnnesneesseanseensenns 123
159 = (o g T @ o1 = (o TSP PP 125
15.10 WV BIUEOT OPEIGLIONveeieeteieeeet ettt et et b e et b e s e et b e se e st bt se e st bt se et ebesbeneebesbeneebesbenrenen 125
1511 Concatenating templates of String and liSE tYPESc.ooviiririereer e 126
16 FUNCtions, AltStEPS aNA LESICASESoiueeieiiieee ettt e st s re e tesne e e e seesneeeeseeenes 127
16.1 FEUNCLIONS ...t e bbbttt se e e bRt eh e e heeae e s b e se e ke e bt eh e e ne e e e nbeebeebeeneese e e eneenes 127
16.1.1 120 T o R 0 0 S 129
16.1.2 PredefiNed FUNCLIONScoiiie et bttt e bt b b bt eae e e e e 130
16.1.3 EXEEINEL TUNCLIONS.eteceieee ettt bbbt bt h et e st e e e s e e sb e beeaeese e e e e 132
16.1.4 Invoking functions from SPECITiC PIACEScueiieeicece et eeeens 132
16.2 AAIESEEIDS. .ttt h bbbt h e h e bR e bR e R R e AR SRR R e Rt R R e R e e Rt R e e ebeeR e e bt nR et ebe e e enea 133
16.2.1 INVOKING @IESEEIIS. ...ttt ettt b bbbt b s s bbb et bt b et b e e st b et e 135
16.3 LIS = S = TP PPPOPPTPPP 136
A Y o o B 137
18 Overview of program statements and OPEratioNS...........ccceiuieieeieieeieseecee e re e see e ens 137
19 BasiC Program SIAEIMENTS.ccuiieiii ettt sttt s te et s e e e s tesae et e steeaaesbeeaeetesaeenaeseesneennesrennes 139
191 AASSIGINIMENES ...ttt ettt b et h b e h b e st b e s e s e bt seeaeeb e s A e s e eb e AE e s e eb e 1Eea e eb e AR e aeeh e eR et ebenh e e ebenhe e ebenrennenea 140
19.2 THE IT-€1S8 SEALEIMENL ...ttt et se et e s e se e beseeese e e e teseeseesaeeneeneeneeneas 140
19.3 The SElECE CASE STALEIMENLee ittt ettt s e et e st e e et e teseeebesaeebeeneeneeseeseesaeeneeneeneenees 141
194 QLI 0L = 07 | SRS 142
195 THEWHIIE SEBLEIMENL.......ceeieeeeieeete sttt b e bt h e bbbt bt et b e e e e b e b sbenbesaeene e e eneas 142
19.6 The DO-WHIl@ STALEIMENLcoueiiitese e bbb e bt bt et et et bt sbeeae e e e e enes 143
19.7 THE LADE] STAIEIMENL ..ottt b b bt et et b srenbesaeene e e ennas 143
19.8 THNE GOLO SEALEITIENLviteie ettt sttt et b et e e b se e bt s he e bt e e e s e beseeeb e s aeeb e e ae e b e besbenbeeaeesee e enees 144
19.9 The StOP EXECULION SLALEIMIENL..........eeieeieesteeteee et e s e e e e et e seeseeseeesaeeeeeseeeseesseesseesseensesssesneesnnesseesseansennsenns 145
19.10 LT RS (U g TR =0 | 145
1911 THE LOG SEBLEMENT ...ttt b e bt bbb e be s b e e bt b e b et eb e e et e b e s bt et et 146
19.12 I 2 = NS = 1= 1= L R 148
19.13 THe CONLINUE SEBEEIMENTeovieieeeee ettt se e e e se e teseestesseeneeneeseesbesaeeseeneenseseeseesseeneeneeneenss 148
19.14 SEAEEMENT DIOCK ...ttt et b et e e st e st e besae et e e neeneeseensesaesaeeneeneenteneens 149

ETSI

6 ETSI ES 201 873-1 V4.4.1 (2012-04)

20 Statement and operations for aternative bENAVIOUS...........c.cceoiieeciii e 149
20.1 The SNaPSNOL MECHANISIM.........oiieiie ettt e st e e te e e estesntesnaesnnesneesseenseesenns 150
20.2 THE AIL SEBEEIMENE ...ttt bt e bRt e bt R b e bt ne b b e nn et nn e 150
20.3 The REPEAL SIAIEMENT ...ttt ettt b et b e bbbt b e bt b e e et b e e et e b e b et ebe b e 154
204 The INtErTEAVE SLALEIMENTottt ettt et et et e eeseesbe s et eae e e eneeseeseesaeeneeneeneeneas 155
20.5 DEFAUIT HANAITNG ...ttt bbb bbbt b bbbt b et et eb et e st nn e enis 157
20.5.1 The default MEChANISIMottt ee ettt e e et e teseesae e e eneeneeneas 157
20.5.2 THE ACHVELE OPEIALION.ccvetieeetirt ettt bbbt b e bt b et b b e bt b e et bt st ebe e e ens 157
20.5.3 The DEACIVALE OPEIBLIONcveiviueetereeeete sttt ettt re et b et b s a bbb e st b s e st bt e e bt se e e ens 159
21 Configuration OPEIrAliONS.........ccciceeiiieeieiteeeeste st e ee e eee st e steestesteesaesbesaeessesbeeasestesneesesteensessesreensensens 159
21.1 (o la] 01 oo g @] o= = 1 o] 1 160
21.1.1 The Connect and Map OPEIALIONScccveiieieeieee e seeseesteesteesee e e e e sreesteesbe e tesssesnsesseesreesseesseanseensenns 161
2112 The Disconnect and UNMBap OPEFaLIONSeeeueriirieieriiieiereese st ss s sse e s seeneens 162
21.2 TESE CASE OPEIBLIONS....c.ee ettt sttt sttt ettt b e e a e bt h e b s e e bt b e se e bt b e se e bt e b et eb e e b e b e aeeb e b e ne e b e s b et eb e b e 163
2121 TESE CASE SIOP OPEFBLIONc.vieieitieeieet ettt ettt rb et b et b et b bbb et e bt et b s et bt e e b ne e e ens 163
213 Test COMPONENT OPEFALTONS.......eivereeierterieieete ettt sttt sttt ettt b e et b se et b e s b et b e s b et ebe s b e st ebe s b et sbenbenees 164
21.31 THE CreEate OPEIAION.eueevereeeetert ettt ettt bbbt b et b b s bbb e bt s e e e e st bt e e st bt st e e e bt nr e s ens 164
21.3.2 The Start test COMPONENE OPEIBLIONeeeuirtireeiirteriei sttt b e sb e e e b b sesbesn e ens 165
21.3.3 The Stop test PENAVIOUr OPEFELIONceeiieiieie et e e e e e te e eesreesaeesneenseenseens 166
21.34 The Kill test COMPONENE OPEFELION........cccieeieieeieeseesteetesee st e seesteete e e sseesteeste e tesseessaesseesreesseesseanseensenns 168
21.35 I Sl AN LAY 0] = = 1 o o S 168
21.3.6 The RUNNING OPEIALIONecveiieiieceeeieste et et e e e st e s e se e saeesteeteestees e esaessaesseesseesaeensesneesneesneanseansennsenns 169
21.3.7 I (=] B0 g =T o o < = (o) o S 170
21.3.8 I SN SL N L= o e o = (oo S 171
21.39 Summary of the use of any and all With COMPONENLSccooiiiiiirie e 172
22 COMMUNI CALION OPEFGETIONS. ... c.vivitiseeesteieeieeieese st st ss s e e e e eseesesse s st s bess e s e s e s e e eseeseeseebesreenenresnennennas 172
22.1 The coOMMUNICatioN MECNANISMSuiieiieeeeieieee ettt st st e ae et st e e e seeseeseesbesaees e seesbesneeneeneenees 173
22.1.1 Principles of message-hased COMMUNICALION.ccviiiiieiee e e eee e 173
22.1.2 Principles of procedure-based COMMUNICELIONc.oeiuiiieiie e sreenreeeeens 173
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION.ccvereeierierieseere e 174
22.1.4 General format of COMMUNICatioN OPEIALIONScceceeiieriieieeie e et ee e e e et e ete e sraesreesneas 174
22.1.4.1 General format of the Sending OPEralioNScooviiieiee i sreenae e ens 174
22.1.4.2 General format of the reCeiVing OPEraioNS..........ccvvieiceeieeriese e se e e e naeereens 175
22.2 M essage-based COMMUNICALION. ..ottt bbb a et b s sb et se s nn e 176
2221 THE SENA OPEIELION ...ttt ettt b et b et b et b bbb e bt s b e e e bt b e e se b et e ebene e e ens 176
2222 THE RECEIVE OPEIBLION ...ttt b bbb bbb bbb e bt b s e st bt e e bt b e e ens 177
22.2.3 THE THIQUEN OPEIELION ...ttt ettt b e bt a bt bbb et s e st bt e e e bt nn s ens 179
223 Procedure-based COMMIUNICBLION............cieeieieeie ettt e e e teseesresae e e eneeseeseesneeseeeaneeses 181
2231 THE Call OPEIALTON ...ttt bbb bbb bbb bbb bbb e e bt st e bt e e s ens 181
22.3.2 I (SY T o= o o < = (o) o S 185
22.3.3 I ST RS o Y] 1= 1o S 186
22.34 I SY i = oY 0] = 1 e oS 188
22.35 I SR R e TS ST 0] 0 = 1 o o S 189
22.3.6 QI (=Y O (e a1 e 0 = 1 o o S 190
224 The CECK OPEIALTON ..ottt ettt b e et b e et b e s bt b e bt b e et b b et e b b e b b 192
225 Controlling COMMUNICALTION POFTS.......eveueruiieiertirietertere et b ettt b et b et sb e b e st b e bt sbe b e 194
2251 The Clear POIT OPEIEHIONcueitireeeeetere ettt ettt ettt s e bt bbb e st s b e e e st s b e e e s e e b e st e e ebesnennens 194
2252 The Start POt OPEIALHONccuieetireeiet et b bbb e e b s s bbb st bt b e b sr e ens 194
2253 THe StOP POIT OPEIBLION ...ttt eb et b et b et b s b bbb e b e e e se bt e e b ne e ens 195
2254 The Halt POIT OPEIALTON.c.eiuieetirt ittt bbbt b b s bt b e s bt e b sr e ens 195
2255 The CheCKState POt OPEIELIONceceeiieseeiteeiesiesee s e seesteesteeee s e sreesse e teebeessesseessaesseesreesneenseanseensenns 196
22.6 Use Of any and all With POIES........cooiiie ittt et e te e sreeaeenteenteeneesnaesneas 197
PG T 1001 0] o= (0] 1SS 198
231 LR (0= 001= 7= T o SRS 198
23.2 The Start tiMEr OPEIALION. ..ottt b et b et b e bbb e e e et b e e et b e b e e b b 198
233 THE SLOP tIMES OPEIBLIONcueiteeete ettt ettt b et b e et b e et b e e et b e se et b e b et e be s b e e ebe b 199
234 The REAO tIMEr OPEIEHIONcecueite ettt ettt et e bbbt b e e bt b et e st e b e b et e b e s b e e ebe b e 200
235 The RUNNING tHMEN OPEIALION.ciiteiieieteetee ettt bbb bt b e e e b b 200
23.6 The TIMEOUL OPEIGLIONciviiiiiete ettt ettt b et st h e b e bt b e e et b b et e b s bbb 201
23.7 Summary of use of any and all WIth IMES ..ot 201

ETSI

7 ETSI ES 201 873-1 V4.4.1 (2012-04)

P == Y= (o ol 0] = (0] 1SR 202
24.1 The VerdiCt MECNENISIM........ooii bbbttt b e b bttt b e sb bt e e e e e et 202
24.2 LI (SRS = Y= (o [ot a0 o = 1 e o S 203
243 The GELVEITiCt OPEIELION........cvieetiiteeete sttt ettt b e et b e e b e s b e e bbb et b e b et e b e s b et ebe b 204
P2 S (= 7= = 1 0] LS 204
P2 T Y/ o LN = oo 1 (o ST 205
26.1 THE EXECULE SEALEIMENL. ... ettt e b e bbb se et e bbb et et e b sbesbeeae e e e e e eas 205
26.2 BN (ST 11 0] N o7 S 207
S o= o1 Y aTo =] o U1 209
27.1 The AttriDULE MECHANISIMot sttt e teseeebe s aeese e e enteseesresaeeneeneeneeneas 209
2711 SCOPE OF BLLITDULES ...ttt b e et b e et b et b bbb e b b 209
2712 OVerwriting rUleS fOr @LITDULES............ciiiieeiiereeer ettt et b e bbb 210
27121 Additional overwriting rules for variant attribULES.............cceceiiieiiiie e 211
27.1.3 Changing attributes of imported language ElemMENLS...........ccoccverie e 212
27.2 THE WL SEAEEIMIENL ...ttt b bbbt s e e e b e b eb e et et e b e sreebesaeene e e ennes 212
27.3 [T o] K= VA= 1] o1 S 213
27.4 Lot o T = 0T == S 213
275 VAITANE BIITDULES ...ttt e b et b et e e e se et e et eb e e st e s e e e et e s besresbeeneenneneenees 214
27.6 EXEENSION GIIITDULES ...ttt et h et et b e e bbb e e e e b e eb e sbesaees e e e e e e 216
27.7 OPLIONEL BELFTULES ...ttt bbbt bbbt b b s e b bt et b e 216
Annex A (normative): BNF and static SEMantiCS......cceeieieeieiiceccie et 218
St N I O L = | 218
A.ll Conventions for the SYNtaxX dESCITPLIONceiirieiriiere bbb 218
A.l2 Statement terminator SYMDOISc..oiiiee bbbt 218
A.13 0TS 1 = PRSP 218
Al4 (001010101 011U 218
A.1l5 B IO (0111 SRRSO 219
A.l151 Use of WhiteSpaces and NEWIINES..........cocv it te e te e ae e e saeesneenreenneens 220
A.16 TTCN-3 syntax BNF ProQUCLIONScccuieii ittt e st aesneesneesneenseenneens 222
A.1.6.0 TTCON-3 MOUUIE. ...ttt sttt sttt st et et s s e e bt sees s eb e s s e e ebess e s eseebe s eneebestaneesesennsenes 222
A.l6.1 Koo [N F SN0 T TR] LS o o S PR 222
A.1.6.1.0 LC = 0T TSRS 222
A.16.11 TyPEAEf AEfINITIONScouieiiet it e bt b et eb e 222
A.16.1.2 (00015 =T e U= 101 (o 0 R 224
A.16.1.3 TEMPIAE AEfiNITIONS.... .ttt b e b e b b b e a e ens 224
A.l6.14 FUNCLION AEfINITIONS ...t sttt e et e e s tesaeene e e et ee 226
A.16.15 SIGNAEUNE AEFINITIONS ...ttt ettt b e st b e st b e bt b e b e enesbesneneas 227
A.16.1.6 TESICASE AEFINITIONS.ccueeeeiete ettt et bbbt eesb e b bt sae e e enne e 227
A.1.6.1.7 F N NS 1 oI L= T 0] PSS 227
A.1.6.1.8 g oTo] i 1= 1T o PSS 227
A.1.6.1.9 L€ (0T8T 0] L= 1 1110 S PS 228
A.1.6.1.10 External function definitioNS............cooiiiiiiie e 228
A.16.1.11 External constant definitions.............ooiiiiiiiiiieee e e 228
A.16.1.12 Module parameter defiNItIONScocoieiiiie bbb 228
A.1.6.1.13 Friend module defiNitiONS ..ot e et e e e e 228
A.16.2 (@00] 0110 [7= SO SE TS P SRS P TSR P TSP PRS 228
A.16.3 (oo o U= 101 (o 0 229
A.16.3.1 NV ariahl € INSEANLTBLION ...ttt et e e e aeese et e seesresaeeneeneeneeneas 229
A.1.6.3.2 LIS TS =g L= o) o P RRSSN 229
A.16.4 (00110 T 229
A.164.1 COMPONENE OPEIELIONSecuveeieieeieeeeeeste et e e e e s e sae s e e steesteesseaeeeseeeseesseenseesteessesseesseesneesseesseensennsenns 229
A.1.6.4.2 Lo 0] 1 =10 230
A.1.6.4.3 I L0 0] 1= 10 PSSR 231
A.16.4.4 IES (0= 0] o 1= 1 o] o PSSR 232
A.165 I3/ oL PP 232
A.16.6 Y LSS 232
A.16.7 01 (= 174 1 o] [P 233
A.16.8 = 00T 0TSRRI 233

ETSI

8 ETSI ES 201 873-1 V4.4.1 (2012-04)

A.16.8.1 WWITh SEBEEIMIENT ... s b et b et s bt sn et n e nne 233
A.1.6.8.2 BEhaVIOUP SEAEEIMENTS ...ttt e b et e b et b s ae e e e e bt saeeae e e e b e 234
A.1.6.8.3 BSIC SEALEMENTS. ...ttt ettt bbbttt s e e bt bt bt h e e e et et b b e e e R b aeene e e nre e 235
A.16.9 MiSCEllaNEOUS PrOTUCTIONSceiueeieeiieeie e ete et e s e te e te e s e e e te et e e teestessaessaesseessesneesnnesneesneenseensenns 237
Annex B (normative): MALCNING VAIUBS ...t 238
B.1 Template MatChing MECNANISIMScoiiiieie e e e sreens 238
B.1.1 MatChing SPECITIC VBIUES........c.ee ettt ettt et e st e e e ssaesaeesaeesaeeseenteenteensesnaesanas 238
B.1.2 Matching mechanismsinStead Of VAIUEScooiiiiiiieee s 238
B.1.21 TOMPIAIE TISE .ttt bbbt bbbt b bt bt b e e bbb et bbbt n e ens 238
B.1.2.2 Complemented tEMPIALE TISE ..o bbbt 239
B.1.2.3 AANY VBIUB. ...ttt h et b et b bt h e E e b b e £ bRt e e h Rt h Rt e e n bt eea e n e ns 239
B.1.24 ANY VBIUE OF NONE. ...ttt ettt ettt sttt b et eb e e e bt s e e e b e seea s eh e e e e eb e e b e s eh e eb e b eneeb e st e e enennensens 239
B.1.25 RV U =TT S 239
B.1.2.6 SUPEISEL ...ttt sttt E s bR R R R R R R e R R R AR R e Rt e Rt R Rt R nnan 240
B.1.2.7 SUDSEL ...ttt R R R bR R R R R R e Rt e R Rt R Rt b nnan 240
B.1.2.8 (@ Tl ge e o U Lo T I = o 241
B.1.3 Matching MeChaniSMSINSIAE VAIUESocieiieieee ettt e re e te e saeenteeneeenaesnaesraesneas 241
B.1.3.1 N V= 0 0| SR 241
B.1.3.1.1 Using single CharaCter WIilACAIS...........coueiiieieiiieieeie ettt bbb 242
B.1.3.2 Any number of elementS Or NO EEMENTc..oiiie e 242
B.1.32.1 Using multiple charaCter WildCardS............couieiiireiie st 242
B.1.33 [00101 o] o SR 242
B.1.4 MaLChiNg BLLITDULES OF VBIUEScveuiitiiciiitieet ettt 243
B.14.1 LeNGEN FESIIICHIONS ...ttt bbbt b et bbb e 243
B.1.4.2 THE ITPIESENE INAICAION.........eteieeeteeeeiee ettt bbb e bbb e e e e b et sbesbe et eneeneenras 244
B.1.5 MatChing CharaCler PALLEIN.........ceeieeie et s e et e st e e et essaesaeesaeesaeeseenseenseensesnaesnnns 245
B.1.5.1 RS S 0] == o o RS 246
B.1.5.2 REFEIENCE EXPIESSIONeveeteeteete e e se st e st e s e e st e e estessaestaesteesseesseaseeaseesseeaseenseesseenseensesnsesneesaeesseanseansenns 247
B.1.5.3 MaCh EXPIrESSION NEIMIESviieeiee et e e e s e e sae e aeeaeeeaaeese e seenteenteessesneesnnesaeesaeanseensenns 248
B.1.54 MatCh areferenCet ChAraCter SEL..........coor ittt e e sr b se e e 248
B.1.55 Type compatibility rUlES fOr PALLEINS.........coueiiieee e 249
Annex C (normative): Pre-defined TTCN-3 fUNCLIONS........ccoiiciiiiceece e 250
C.0 Genera exception handling ProCEAUIEScciiieiiiiee ettt s re e s re e e e re s 250
O30 R @0 0 V7= £= o] 0 8 101 1 o 1S 250
Cl1 T 10 e =g (o o7 = S 250
Cl2 INteger tO UNIVErSal ChaIACLEScccueiie et e e s st e et e e e e eae e sreeaeenteenteenaeeneesraesneas 250
C.13 T 100 = (o 8 o 1 £ 4 o PSS 250
Cl4 Rg 10 e = (= (8]0 1= (o USSP 251
C.15 T 10 e = (o0 =6 1 o USSP 251
C.l6 T 10 e = (o 0 (= K= 1 S 251
C.l17 INEEGEY TO CNAISIIING. ... ettt ettt b e et b e s et eb e s b et ekt s e et b e sb e e ebesbe e ebesbe e enea 252
C.18 INEEGET TO FIOBL ...ttt b et b bt b bt s e bt b et b e s e et eb e s b e e eb e sb e e b e nbe e b 252
C.19 [T (o] 1= (< TSRS PP TSTURP 252
C.L.A0 ChalaCer TO IMEEOENcueiteeetertereete sttt sttt sttt sttt se et b e s e et b e s e eheebeseeae e be s e e bt e b e e eheebeseeneeb e st et ebesbe e ebenbeneens 252
C.1A1 CharaCter t0 OCLEISIIINGeeeuerteeeuerteeetestee et sttt sttt se et st se et b et b e se e bt b e se e bt s be e eb e ebeseeae et e s b et sbe b et e b e b e 252
C.112 UNiversal CharaCler 10 INTEENo iiceeceee ettt ee e et e e et e e e s re e te et e esseesseensesnensneesneesseenseansenns 253
O It =1 (= T 0T R (o 11 = PSP 253
O It = €= T a0 R (o 1= 1 1o S 253
O 0t LT =1 £ T a0 (o o 1 (= {1 o S 253
O30 e G =1 €= T o (o e 7= =1 o S 254
O It A o =TS (1 T (o111 = S 254
C.1A8 HEXSIING 10 DITSIIINGe ittt ettt bbbt b st sb e bt e b bbb 254
C.119 HEXSIING 1O OCLELSIITNG ...vueeveiteeetesteeete sttt sttt ettt eb et b e et b e se bt b se bt b e e e bt ebese et et e st et eb e b et b e b e 255
C.1.20 HEXSIING T CRAISIIITNG . .veueeteieeeete sttt sttt ettt b e et b e et b e et b e s e e st b e e e st bese et eb e s b et s b e b et b b ens 255
C.1.21 OCHELSIITNG T IMEEOEN ... iteieeieete sttt ettt ettt sttt st b e bt b e b e b e e bt s b et bt s b et e b e s b e st e b e seeaeeb e s b et eb e s b e e ebenbeneens 255
C.1.22 OCHEtSIING tO DITSIITNG. ..ottt ettt b e st sb e bbbt b b 255
C.1.23 OCHELSIIING t0 NEXSIIING ...veeeeiteieciestere ettt bbbt bbbt bt b e st eb e b et b e bbb 256
(O W27/ @ Tox (= £ Lo (o I 0= = ot = 81 1 PSR 256

ETSI

9 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.25 Octetstring to charaCter String, VErSION 11cceiieiee e se et e e et teesaesee e e e e sneenseennenns 256
O G T O 0 = (] o I (o N1 o = SR 257
C.1.27 Character StriNg tO NEXSIIING ...cveeieeie ettt s ettt et e e et eestesseessaestesnsesnessneesneesseenseansenns 257
C.1.28 Character StriNg 10 OCLELSIIINGeceeieerteeiteeteeieseesee st e steesteseese e st esseeteeseeeseesseesseesseessesnsesnessneesseesseanseansenns 257
LR B2 B O = Tox (= = 10 J (01 o T S 258
O O B = o 1W< = 10 (I 1= T SR 258
C.2 LenNGth/SIZE FUNCHIONS ...ttt bbb n e nb e n e nn e nenn e 259
c21 Length Of SENGS @NO TISESeeviieiiiteriiet et b bbbt enas 259
c22 Number of elementsin @ StrUCIUFrEd VBIUE...........c.oiuiiiie e e 260
C.3 Presence Checking fUNCLIONSc.ociiiiiecce ettt st s re e b sae e e e ne e 261
C31 THE ISPrESENT TUNCLION.......eiieeieeeeee ettt et bbb et b e ae bt et et e b e sbenbesaeese e e ennas 261
C3.2 THE ISCNOSEN FUNCLION. ...ttt et b e bt s b e ae et eb e et e b srenbesaeese e e ennas 262
C33 LI BV A= [T= 1 o o o P 263
c34 QLI (= K =TT qTo 10 TqTox i o] o 1 264
C.4 String/list haNdling fUNCLIONSc.oiiiiieieieeeeere e nr e nn e 266
c41 The REGEXP FUNCLION ...ttt ettt b e et b e bbbt b e et b bt 266
c4.2 I (SRS T oS T o N 0T o o SR 267
c43 ISR R = = o 0 o e TS 268
(O3 ST 0o = o 110 {0 LTSRN 269
C51 The enCOdiNgG FUNCLION.........couiiii bbb et b et e et b e et b e e b et e 269
C5.2 The decOdiNg FUNCLION.........c.o ittt b et b et n et b e e 269
(OF I © (107 g 11 o 1 o 0SS 269
C6.1 The random nUMbEr geNErator FUNCLIONccviiuieii et et ae e e e e sreenreeneens 269
C.6.2 The tESICASENAME FUNCLIONoiiiiie e et et b et eb et e bbb nbeeae e e e e e 270
Annex D (nor mative): PreprOCESSING MACT 0S.......cveeeieieieieeeiee sttt sre s nenees 271
D.1 Preprocessing Macro _ MODULE__ ..o 271
D.2 Preprocessing MacrO FILE oottt st ens 271
D.3 Preprocessing Macro _ BFILE_ ...t 271
D.4 Preprocessing Macro _ LINE ..o 271
D.5 Preprocessing Macro SCOPE. oceci ettt sttt st sre et b e et e s neenaesreenes 272
Annex E (informative): Library of USEfUl TYPESccveiiiiirieriestesieeee et 274
R I 10 =) 274
I U = O I O Ve B Y o= SR 274
E21 USEFUL SIMPIE DASIC LYPES ...ttt bbb bbb et b bbb b e nn e ens 274
E210 Signed and unsigned SiINGIE DY INTEJESc.oiiiiiieee et bbb 274
E211 Signed and UNSIgNEd SNOM INEEJEIS........vcveeieiie e see st esteesee e e st e s e e e steetesaeseesseesseesseenseeneeesaesseesneas 274
E.2.1.2 Signed and UNSIgNEd [ONQ INTEGEISccveeieeeee et e et sre e steereeae e e esaesteenseenaeenaessaesneas 275
E.2.1.3 Signed and unsigned 1oNgIONG INLEOEISc.veieeiie e ere et e e e e sre et e e aesnaeeraesraesneas 275
E214 577 Lo = TP 275
E.2.2 USEfUl CharaCter SEHNQ LYPESoiueeive ettt st ste et et e s e s ta e st e e e entesntesaeesaeesseeseenseenteensesnaesanns 276
E.2.2.0 UTHF-8 character String "ULfBSLING™ccveiiee et ae e s saeesneenreenneens 276
E221 BMP character string "DMPSiNG"”ooeeiiieere e 276
E222 UTF-16 character String "UFLOSIING"coerueeririeiriirieesesees e 276
E.223 ISO/IEC 10646 character string "iSO885OSIITNG"civiveerierieeriirieise et 276
E224 Status valueS fOr TTCN-3 ODJECES.......ovieiiereeeite et 277
E.2.3 USEFUL SEIUCTUNE TYDES.....eeeeeeete ettt b e bbbt b et b et b et sb et nn e enis 277
E.2.30 Fixed-point deCimal HEEIalcoiiiiiiee bbb 277
E.24 (0L U = o0 Tl T o N Y 0= S 277
E24.1 Single ITU-T Recommendation T.50 CharaCter tyPe.........ccveveeieeie it 277
E.24.2 SiNGIe UNIVErSal CRaraCler LY DB ... ettt s e st e sae et e e nteenteenaesnaesneas 278
E.243 IS0 L= o Y] oSS 278
E.24.4 T T6 L= 0= G 1Y o USSP 278

ETSI

10 ETSI ES 201 873-1 V4.4.1 (2012-04)

E.245 ST Te = o B Y o= SRS 278
Annex F (informative): Operations on TTCN-3 active ObjECES......ccevvieecereeeee e 279
e R I == oo 0 0 0] 0= KT SRR 279
F.1.1 TeSt COMPONENTE FEFEIEINCES......eueeieeeieeiee et cte et e st et e e e s e s e s e e steesteeeesseesseesseesteenteessesnsesneesneesneesseensennsenns 279
F.1.2 DynamiC DENAVIOUN OF PTICS.......uiiiiieie ettt ettt te et e sse e sneesaeesaeenteenseesaesneesraennens 280
F.1.3 Dynamic behaviour Of tNE M T C.......ceeieece et esre e s reete e e enaesneesraesaees 282
e 111 £ ST 283
T T 0 TSR 283
F.3.1 CONfIQUIaLiON OPEIALIONS.......eeteieeeteeteeie ettt sttt ettt e e bbb ae b e et e e e e e ss e besbeebesaeesee s e b e sbesaesbe e e ennesnens 283
F.3.2 POrt ControlliNg OPEraLIONScc.eeiieeieiie e st e st erte et ee e e e e e e e seesaeesteesteesseeneesseesseesseenseenseenseessesneessansans 284
F.3.3 COMMUNICBLION OPEIALTONS........eiuiiteiteeiieieee ettt sttt e e st bt s bt et e st e e e e e ss e besbeebesaeeseesensesbesaesbeeneennennens 285
Annex G (informative): Deprecated |anguage fEALUIES.........ccviiiereeeceeee s 286
G.1 Group style definition of MOdUIE PAramMELENrS.........cc.eceiieiececee et 286
G.2 RECUIMSIVE IMPOITotiiteeticte ettt et e st et e st e e te et e s ae e e e s beeaeesbesaeensesbeesaebesaeesseabeenseseeensentesteeasensesrnensensens 286
G.3 Usingall in port type defiNiTiONS.........coooeieieieinisiesiest et sr e nn e 286
(TS b= o) i Lo g 1= 0T |1 n o L ST 286
G.5 sizeoftype predefined FUNCLIONcoi et re e 286
L I (Y 1D C o o] £ TP U TSRS UR U VROPPRTPRIN 286
G.7 EXEEINGl CONSLANTSeuveueeieeiieiieiieieste st see ettt st st sttt ae bt st e b st e b et e e e st e st ebesbeebeneenaeneneas 287
G.8 PrefiXing enNUMErated VAIUESccoeiieieiecic ettt sttt sne et s re et besreeneeneens 287
G.9 Record of/arrays not compatible to record; set of not compatible with Set..........ccocviivieiiieinieeens 287
Annex H (informative): Bibliography ..o s 288
[T (TP T 289

ETSI

11 ETSI ES 201 873-1 V4.4.1 (2012-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee

can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6 "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8. "ThelDL to TTCN-3 Mapping”;

Part9: "Using XML with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

ETSI

http://webapp.etsi.org/IPR/home.asp

12 ETSI ES 201 873-1 V4.4.1 (2012-04)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2i.1]) and agraphical presentation format (ES 201 873-3 [i.2]). The specification of these formatsis
outside the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.
[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.
[2] ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".
[3] ITU-T Recommendation X.292 Series X: "Data Networks and Open System Communications,

Open Systems Interconnection - Conformance testing; OSl conformance testing methodology and
framework for protocol Recommendations for ITU-T applications - The Tree and Tabular
Combined Notation (TTCN)".

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-3: "Information technology - Open Systems
Interconnection - Conformance testing methodology and framework - Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[4] ITU-T Recommendation T.50: "Terminal Equipment and Protocols for Telematic Services;
International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or |A5);
Information technology - 7-Bit coded character set for information interchange”.

NOTE: The corresponding ISO/IEC standard is 1SO/IEC 646: "Information technology - 1SO 7-bit coded
character set for information interchange”.

ETSI

http://docbox.etsi.org/Reference

(5]

NOTE:

(6]

2.2

13 ETSI ES 201 873-1 V4.4.1 (2012-04)

ITU-T Recommendation X.290: "Data Networks and Open System Communications, Open
Systems Interconnection - Conformance testing; OSI conformance testing methodology and
framework for protocol Recommendations for ITU-T applications - General concepts’.

The corresponding | SO/IEC standard is | SO/IEC 9646-1: "Information technology - Open Systems
I nterconnection -Conformance testing methodol ogy and framework; Part 1: General concepts'.

IEEE 754: "|EEE Standard for Floating-Point Arithmetic”.

Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

[i.7]

[i.8]

[i.9]
[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

Void.

Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics®. Version 2.6, FORMAL/01-12-01.

ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Configuration and Deployment Support".

ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types".

ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

ETSI

14 ETSI ES 201 873-1 V4.4.1 (2012-04)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ITU-T Recommendation X.290 [5],
ITU-T Recommendation X.292 [3] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basic types are referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO gqueue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible types if conditionsin clause 6.3 are met.
completely initialized: values and templates of simple types are completely initialized if they are partially initialized

NOTE: Valuesand templates of structured types and arrays are completely initialized if al their fieldsand
elements are completely initialized. In case of record of, set of, and array values and templates, this means
at least the first n elements are initialized, where n is the minimal length imposed by the type length
restriction or array definition (thusin case of n equals 0, the value "{}" also completely initializes a
record of, a set of or an array).

data types. common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of al predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is a value received during run-time or depends on areceived value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and atsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (I1CS): See ITU-T Recommendation X.290 [5].
I mplementation eXtra Information for Testing (IX1T): See ITU-T Recommendation X.290 [5].

Implementation Under Test (IUT): See ITU-T Recommendation X.290 [5].

ETSI

15 ETSI ES 201 873-1 V4.4.1 (2012-04)

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

inout parameterization: kind of parameterization where the actual parameter is bound to the formal parameter when
the parameterized object isinvoked

NOTE 1: Theinvoked object uses the actual parameter directly, so that all changes made on the formal parameter
become immediately effective on the actual parameter.

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See ITU-T Recommendation X.292 [3].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1. Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: Thevalueis passed back to the actual parameter only if within the invoked object avalue is assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object compl etes.

Parallel Test Component (PTC): Seel TU-T Recommendation X.292 [3].

partially initialized: values are partialy initialized if a concrete value has been assigned to it or to at least one of its
fields or elements

NOTE 1: A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: Thus, constants and templates are always initialized at declaration. Variables (both value and template)
areinitialized if they, or at least one of their fields or elements has been used on the | eft hand side of an
assignment (including initial value assignment at declaration), except when they were uninitialized before
the assignment and the right hand side does not change any of its field or element. Module parameters are
initialized either at declaration or by the test system before test execution.

port parameterization: ability to pass aport as an actual parameter into a parameterized object viaa port parameter

NOTE: Thisactua port parameter is added to the specification of that object and may completeit.

ETSI

16 ETSI ES 201 873-1 V4.4.1 (2012-04)

qgualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified nameis the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: Theroot type of user defined record typesis record, the root type of user defined record of and array
typesisrecord of, theroot type of user defined set typesis set, the root type of user defined set of
typesisset of. Theroot type of user defined union typesisunion and the root type of anytypesis
anytype. Theroot types of special configuration types are default or component, respectively.
Port types do not have aroot type.

NOTE 2: Asaddress ismore a predefined type name than a distinct type with its own properties, the root type of
an address type and al of its derivatives are the same, as the root type was, if the type was defined
with aname different from address.

static parameterization: form of parameterization, in which actual parameters are independent of run-time events,
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1. A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equival ence with no exceptions
System Under Test (SUT): See I TU-T Recommendation X.290 [5].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1. Thisactual template parameter is added to the specification of that object and may completeit.
NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or afunction started on a test component when executing an execute or a
start component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. atest case can be seen as a collection of test behaviours).

test case: See ITU-T Recommendation X.290 [5].
test caseerror: SeelTU-T Recommendation X.290 [5].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See ITU-T Recommendation X.290 [5].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

ETSI

17 ETSI ES 201 873-1 V4.4.1 (2012-04)
timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via a timer
parameter

NOTE: Thisactual timer parameter is added to the specification of that object and may completeit.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. at assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asareturn
value of afunction)

type context: "In the context of atype" meansthat at |east one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of atyped TTCN-3 object (e.g. via a constant,
variable, formal parameter etc.).

unqualified name: unqualified name of a TTCN-3 element isits name without any qualification
user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).
value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vaues may be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavaue
parameter

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface
ASP Abstract Service Primitive

NOTE: SeelTU-T Recommendation X.290 [5].

ATS Abstract Test Suite

BER Basic Encoding Rules

BMP Basic Multilingua Plane

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

GFT Graphical presentation Format

ICS I mplementation Conformance Statement

IDL Interface Definition Language

IRV International Reference Version

IuT Implementation Under Test

IXIT I mplementation eXtra Information for Testing
MTC Main Test Component

PDU Protocol Data Unit

NOTE: SeelTU-T Recommendation X.290 [5].

PTC Parallel Test Component

SDL Specification and Description Language
SUT System Under Test

TCI TTCN-3 Control Interfaces

TFT Tabular presentation Format

TRI TTCN-3 Runtime Interfaces

TSI Test System Interface

ETSI

18 ETSI ES 201 873-1 V4.4.1 (2012-04)

TTCN-3 Testing and Test Control Notation version 3
UCs-4 Universal Coded Character Set
UTF-8 Unicode Transformation Format-8
XML eXtensible Markup Language
4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, AP
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:
e theability to specify dynamic concurrent testing configurations;
. operations for procedure-based and message-based communication;
. the ability to specify encoding information and other attributes (including user extensibility);
e theability to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
e theassignment and handling of test verdicts;
e test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
e well-defined syntax, interchange format and static semantics;
. different presentation formats (e.g. tabular and graphical presentation formats);
. a precise execution algorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats
The TTCN-3 specification is separated into several parts (seefigure 1).

Thefirst part, defined in the present document, is the core language.

The second part, defined in ES 201 873-2 [i.1], isthe tabular presentation format.

The third part, defined in ES 201 873-3[i.2], is the graphical presentation format.

The fourth part, ES 201 873-4 [1], contains the operational semantics of the language.
Thefifth part, ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).

The sixth part, ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).

ETSI

19 ETSI ES 201 873-1 V4.4.1 (2012-04)

The seventh part, ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ES 201 873-8[i.6], specifies the use of IDL definitions with TTCN-3.
The ninth part, ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.
The tenth part, ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asasandardized interchange format of TTCN-3 test suites between TTCN-3 tools,
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as an aternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other
languages with TTCN-3. The support of other languagesis not limited to those specified in the ES 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document shall apply.

Deployment Advanced Behavior TTCN-3
and Parameteri- Types e Packages K
Configuration zation
suppert B W
TTCN-3 P

ASN.1 Types .| Core -
& Values | Language Tabular

format B
IDL Types -

Graphical P R
XML Types > format -

e TTCN-3 User

Other Types . Presentation | R The shaded boxes are not
& Values,, v format r, <« defined in this document

Figure 1. User's view of the core language, its packages and the various presentation formats
The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [1]). It

contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

ETSI

20 ETSI ES 201 873-1 V4.4.1 (2012-04)

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the | atter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, al features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-4[1].

5 Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of adefinitions part and a control part. The definitions part of a modul e defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
cases, etc.

The control part of amodule calls the test cases and controls their execution. The control part may a so declare (local)
variables, etc. Program statements (such as i £-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A special kind of data structure called atemplate provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

ETSI

21

ETSI ES 201 873-1 V4.4.1 (2012-04)

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes

NOTE:

The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

5.1

Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in al lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objectsimported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules

TTCN-3 provides nine basic units of scope:

a) module definitions part;
b) control part of amodule;
C) component types,;

d) functions;

e altsteps

f) testcases;

g) statement blocks;

h)y templates;

i) user defined named types.

NOTE 1. Additional scoping rule for groupsisgiven in clause 8.2.2.

NOTE 2: Additional scoping rule for counters of £or loopsisgivenin clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

ETSI

22 ETSI ES 201 873-1 V4.4.1 (2012-04)

NOTE 4: Builtin TTCN-3typeslike integer, charstring, anytype, €tc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
atsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including al functions, test cases and atsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used in a component type extending this component type definition,
and in functions, test cases and atsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by aruns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration madein atest caseis not visible in afunction called by the test case or in an
altstep used by the test case).

Stand-alone statement blocks and statements within compound statements, likee.g. i£-else, while, do-while, Or
alt statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. an i £-else statement that is used within awhile loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsisshown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

23 ETSI ES 201 873-1 V4.4.1 (2012-04)

module
definitions part

module function without altstep without user defined
component type template
control part runs on-clause runs on-clause named type
statement block statement block statement block
testcase with
function with altstep with runs on-clause
runs on-clause runs on-clause and optional
system-clause
nested nested nested
statement block statement block statement block
E statement block statement block statement block E E
nested nested nested
statement block statement block statement block
' ' '
' ' '
' ' '
Figure 2: Hierarchy of scope units
EXAMPLE 1: Loca scopes
module MyModule
const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB
function MyBehaviourA ()
const integer A := 1; // The constant A is only visible to MyBehaviourA
function MyBehaviourB ()
const integer B := 1; // The constant B is only visible to MyBehaviourB

1
EXAMPLE 2 Component type scopes

type component MyComponentType {
const integer MyConst := 1;

}

type component MyExtendedComponentType extends MyComponentType {
var integer MyVar:= 2 * MyConst; // using MyConst of MyComponentType

ETSI

24 ETSI ES 201 873-1 V4.4.1 (2012-04)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of amodule (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers shall only
be reused for enumerated values within other enumerated types. The rules of identifier uniqueness shall also apply to
identifiers of formal parameters.

EXAMPLE 1: Nested scopes

module MyModule
{ ;onst integer A := 1;

;unction MyBehaviourA ()
{ ;onst integer A := 1; // Is NOT allowed: clash with global constant A

i€ ()

{

const boolean A := true; // Is NOT allowed: clash with local constant A

1
EXAMPLE 2: Independent scopes

// The following IS allowed as the constants are not declared in the same scope hierarchy
// (assuming there is no declaration of A in module header)
function MyBehaviourA ()

{

const integer A := 1;

}

function MyBehaviourB ()
{ ;onst integer A := 1;
}
EXAMPLE 3: Module scopes

module MyModuleB {
import from MyModuleA { .. }

function MyFunction() {
var integer MyModuleB:= 1; // Is NOT allowed: class with module name

}

type boolean MyModuleAdA; // Is NOT allowed: class with imported module name

ETSI

25 ETSI ES 201 873-1 V4.4.1 (2012-04)

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of an i f-else statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:

// This is a legal mixing of TTCN-3 declarations

var MyVarType MyVar2
const integer MyConst:
if (MyVar2+MyConst > 10)

3;
1;

var integer MyVarl:= 1;

MyVarl:= MyVarl + 10;

Declarations in the modul e definitions part and in a component type definition may be made in any order. However
inside the module control part, test case definitions, functions, altsteps, and statement blocks, al required declarations
must be given beforehand. This meansin particular, local variables, local timers, and local constants shall never be used
before they are declared. The only exceptionsto thisrule are labels. Forward references to alabel may be used ingoto
statements before the label occurs (see clause 19.8).

5.4 Parameterization
TTCN-3 alowsto parameterize modules, templates, functions, altsteps and testcases. Vaues, templates, timers, and

ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis givenin table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package[i.12].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of run-time |all basic types, all user-defined types and address
type.
template Value and template Dynamic at run-time |all basic types, all user-defined types, address type
parameterization and template.
function Value, template, port and Dynamic at run-time |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
altstep Value, template, port and Dynamic at run-time |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
testcase Value, template, port and Dynamic at run-time |all basic types and of all user-defined types,
timer parameterization address type and template.

NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the
sighatures can be parameterized, however.

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

ETSI

26 ETSI ES 201 873-1 V4.4.1 (2012-04)

Formal parameters shall be in, inout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isan in parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new val ues being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parametersin function invocations or as
actual parametersin template instances.

Formal in parameters may have default values. This default value is used when no actual parameter is provided.

NOTE: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

541.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in | inout | out)] Type ValueParIdentifier [":=" (Expression n-no)]
Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value forma parameters may bein, inout or out parameters. The default for value formal parametersis in
parameterization which may optionally be denoted by the keyword in. Using of inout or out kind of parameterization
shall be specified by the keywords inout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

TTCN-3 supports value parameterization according to the following rules:

e thelanguage e ement module allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. the language elements template, testcase, altstep and function support dynamic value
parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type default isthe type of the forma parameter.

Restrictions

a) Language elements which cannot be parameterized are; const, var, timer, control, record of,
set of, enumerated, port, component and subtypedefinitions, group and import.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
in parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for in parameters only.

€) Theexpression of the default value has to be compatible with the type of the parameter. The expression shall
not refer to elements of the component type of the optional runs on clause. The expression shall not refer to
other parameters of the same parameter list. The expression shall not contain the invocation of functions with a
runs on clause.

ETSI

27 ETSI ES 201 873-1 V4.4.1 (2012-04)

f) Default values of component type formal parameters shall be one of the special valuesnull, mtc, self,
or system.

g) Default values of default type forma parameters shall be the special valuenull.

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see al'so
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.
Examples

EXAMPLE 1: In, out and inout formal parameters

function MyFunctionl (in boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an in value parameter. The parameter can be read. It can also be set
// within the function, however, the assignment is local to the function only

function MyFunction2 (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout value parameter. The parameter can be read and set
// within the function - the assignment is not local

function MyFunction3 (out template boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an out value parameter. The parameter can be set within the function,
// the assignment is not local. It can also be read, but only after it has been set.

EXAMPLE 2. Reading and setting parameters

type record MyMessage ({
integer f1,
integer f2

}

function f MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
f1 := £ mult2 (p_int);
// parameter p_int is passed on; as the parameter of the called function f mult2 is
// defined as an inout parameter, it passes back the changed value for p_int,
f2 := p int;
return {f1, f2};

}

function f mult2 (inout integer p integer) return integer ({
p_integer := 2 * p_ integer;
// the value of the formal parameter is changed; this new value is passed back when
// £ _mult2 completes
return p integer-1

}

testcase tc_01 () runs on MTC_PT

Pl.send (f MyMessage(5))
// the value sent is { f1 := 9 , f2 := 10 }

EXAMPLE 3: Function with default value for parameter

function f comp (in integer p intl, in integer p_int2 := 3) return integer ({
var integer v := p_intl + p_int2;
return v;

function £ () {

var integer w;

w o
w o

f comp (1) ; // same as calling f comp(1,3);
f comp(1,2); // value 2 is taken for parameter p_int2 and not its default value 3

ETSI

28 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 4: Direct passing of formal parametersto functions
function f MyFunc2(in bitstring p refParl, inout integer p refPar2) return integer

}

function f MyFuncl (inout bitstring p refParl, out integer p refPar2) return integer {
return f MyFunc2 (p_refParl, p_refPar2);

// p_refParl and p refPar2 can be passed directly to a function invocation

5.4.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in | inout | out] template [Restriction] Type ValueParIdentifier
[":=" (TemplateInstance n-mo)]

Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
template shal be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisin
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictionsis explained in
clause 15.8.

Restrictions
a Only function, testcase, altstep and template definitions may have formal template parameters.

b) Formal template parameters of templates, of functions started astest component behaviour
(see clause 21.3.2) and of altsteps activated as defaults (see clause 20.5.2) shall always be in parameters.

c¢) Default templates can be provided for in parameters only.

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in aruns on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
arunson clause.

e) Default templates of component type formal parameters shall be built from the special valuesnull, mte,
self, or system.

f) Restrictions specified in clause 15 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

ETSI

29 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE 1: Template with template parameter

// The template
template MyMessageType MyTemplate (template integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.receive (MyTemplate(?)) ;

// Or as follows

pcol.receive (MyTemplate (omit)); // provided that fieldl is declared in MyMessageType as optional

EXAMPLE 2: Function with template parameter

function MyBehaviour (template MyMsgType MyFormalParameter)
runs on MyComponentType

{ .

péol.receive(MyFormalParameter);
}
EXAMPLE 3: Template with restricted parameter

// The template
template MyMessageType MyTemplatel (template (omit) integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.send (MyTemplatel (omit)) ;

// but not as follows

pcol.receive (MyTemplatel (?)); // AnyValue is not within the restriction

// the same template can be written shorter as
template MyMessageType MyTemplate2 (omit integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true
1
5.4.1.3 Formal parameters of kind timer

Functions and atsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TimerParIdentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve their current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continues to run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or atstep to which the timer is passed.

Formal timer parameters are identified by the keyword timer.
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and altstep definitions may have formal timer parameters.

ETSI

30 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples
// Function definition with a timer in the formal parameter list
function MyBehaviour (timer MyTimer)
{ .

MyTimer.start;

}

// could be used as follows
function MyBehaviour2 ()

{ :
timer t;
MyBehaviour (t) ;

5414 Formal parameters of kind port
Functions and altsteps can be parameterized with ports.

Syntactical Structure
[inout] PortTypeldentifier PortParIdentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by a runs on clause.

Ports passed in as parameters shall preserve their current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and altstep definitions may have formal port parameters.

Examples

// Altstep definition with a port in the formal parameter list
altstep MyBehaviour (MyPortType MyPort)

{

[] MyPort.receive { setverdict(fail); stop; }

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both asalist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

(Expression | // for value parameter
TemplateInstance | // for template parameter
TimerRef | // for timer parameter
Port | // for port parameter
ey // to skip a parameter with default
ParameterId ":=" (Expression | Templatelnstance | TimerRef | Port))

ETSI

31 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

Actual parametersthat are passed by value to in formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed to inout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parameters that are passed to in formal template parameters shall be literal values, module parameters,
congtants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to inout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

When aformal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a When using list notation, the order of elementsin the actual parameter list shall be the same astheir order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of aformal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
followsin the actual parameter list - either because the parameter is last or because al following formal
parameters have default values and are left out.

b) Either list notation or assignment notation shall be used in asingle parameter list. They shall not be mixed.

€) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Thetype of each actual parameter shall be compatible with the type of each corresponding formal parameter.

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If theformal parameter list of TTCN-3 objects function, testcase, signature, altstepor
external function isempty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h) Redtrictions on the use of signature parameters are given in clauses 15.2 and 22.3.

i) Redtrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

ETSI

32 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples
EXAMPLE 1: Formal and actual parameter lists have to match

// A function definition with a formal parameter list
function MyFunction (integer FormalParl, boolean FormalPar2, bitstring FormalPar3) { .. }

// A function call with an actual parameter list
MyFunction (123, true, '1100'B);

// A function call with assignment notation for actual parameters
MyFunction (FormalParl := 123, FormalPar3 := '1100'B, FormalPar2 := true);

EXAMPLE 2: In parameters

function MyFunction (in template MyTemplateType MyValueParameter){ .. };
// MyValueParameter is in parameter, the in keyword is optional

// A function call with an actual parameter
MyFunction (MyGlobalTemplate) ;

EXAMPLE 3: Inout and out parameters

function MyFunction (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout parameter

// A function call with an actual parameter
MyFunction (MyBooleanVariable) ;
// The actual parameter can be read and set within the function

function MyFunction (out template boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an out parameter

// A function call with an actual parameter

MyFunction (MyBooleanVariable) ;
// The actual parameter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists

// A function definition with an empty parameter list shall be written as
function MyFunction(){ .. }

// and shall be called as
MyFunction () ;
// A record definition with an empty parameter list shall be written as

type record MyRecord ({

// and shall be used as
template MyRecord Mytemplate := { .. }

EXAMPLES5: Nested parameter lists

// Given the message definition
type record MyMessageType

{

integer fieldl,
charstring field2,
boolean field3

}

// A message template might be
template MyMessageType MyTemplate (integer MyValue) :=

fieldl := MyValue,
field2 := pattern "abc*xyz",
field3 := true

}

// A test case parameterized with a template might be
testcase TCO0l (template MyMessageType RxMsg) runs on PTCl system TS1 {

MyPCO.receive (RxMsg) ;

ETSI

33 ETSI ES 201 873-1 V4.4.1 (2012-04)

// When the test case is called in the control part and the parameterized template is
// passed as an actual parameter, the template's actual parameters must be provided
control

{

execute (TC001 (MyTemplate (7))) ;

5.5 Cyclic Definitions
Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and atstep definitions (i.e. recursive function or altstep calls);
¢) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples
EXAMPLE 1: Module with cyclic constant definition that is not allowed
module MyModule {
;ype record ARecordType { integer a, integer b };
// Tﬁe following two lines include a cycle that is not allowed

const ARecordType cConst : { 1, dConst.b}; // cConst refers to dConst
const ARecordType dConst : { 1, cConst.b}; // dConst refers to cConst

1
EXAMPLE 2: Modules with cyclic import that is allowed

module MyModuleA {
import from MyModuleB { type MyInteger }
type record of MyInteger MyIntegerList;

}

module MyModuleB {
type integer MyInteger;
import from MyModuleA { type MyIntegerList }

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype. Structured types such as record types, set types and union types can be constructed from these
basic types. enumerated types are specific structured types being constructed of enumerated values.

The specia datatype anytype is defined as the union of all known data types and the address type within a module.

Specia types associated with test configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The specia type default may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI

34 ETSI ES 201 873-1 V4.4.1 (2012-04)

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package [i.13].

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) integer: atype with distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
valueis 0; the value zero shall be represented by a single zero.

b) float: atype to describe floating-point numbers and special float values.
In general, floating point numbers can be defined as;<mantissa> x <base> <exponent>

where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x102),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°6); or

" by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

ETSI

35 ETSI ES 201 873-1 V4.4.1 (2012-04)
NOTE 1: In contrast to the genera definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, alows decimal numbers as well.

The special values of the float type consist of infinity (positiveinfinity), -infinity (negativeinfinity) and the
valuenot a number. For the ordering of special values see clauses7.1.1 and 7.1.3.

NOTE 2. -not_a number (i.e. minus not a number) is not to be used.
C) boolean: atype consisting of two distinguished values.
Values of boolean type shall be denoted by true and false.

d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. VVal ues of
verdicttype shal be denoted by pass, fail, inconc, none and error.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1. The general term string or string typein TTCN-3 referstobitstring, hexstring, octetstring,
charstring anduniversal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebitstring shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B.

b) hexstring: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexstring shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: 'aBo1D'H
'ab01d'H
'Ab01D'H

C) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight hits).

Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters ' o; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3: 'Fr96'0
"f£96'0
"F£96'0

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
ITU-T Recommendation T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of ITU-T Recommendation T.50 [4].

ETSI

36 ETSI ES 201 873-1 V4.4.1 (2012-04)

NOTE 2: ThelRV version of ITU-T Recommendation T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - [A5), described in ITU-T Recommendation
T.50[4].

Values of charstring type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (). Graphical characters
include the range from SP(32) to TILDE (126). Values of charstring type can aso be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
var charstring vl char:= """ab""cd""";

€) The character string type preceded by the keyword universal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [2].

universal charstring values can aso be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote ("), calculated using a predefined conversion function
(see clause C.1.2) with the positive integer value of their encoding as argument or by a "quadruple”.

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the
Hungarian character "i"). In cases where it is necessary to denote the character double quote (") ina
string assigned according to the first method (within double quotes), the character is represented by a
pair of double quotes on the same line with no intervening space characters. The two methods may be
mixed within a single notation for a string value by using the concatenation operator.

EXAMPLES: Theassignment : "the Braille character” & char (0, O, 40, 48) & "looks like this' represents the
literal string: the Braille character & looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, universal charstring shall conform to the UCS-4 coded representation form
specified in clause 14.2 of 1SO/IEC 10646 [2].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

ETSI

37 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.1.1.1 Accessing individual string elements

Individual elementsin a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used asindex.

EXAMPLE 1. Accessing an existing element

// Given

MyBitString := '11110111'B;
// Then doing
MyBitString[4] := '1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring MyBitStringA, MyBitStringB, MyBitStringC;
MyBitStringA := '010'B;
MyBitStringA[l] := '11'B; //causes an error as only individual elements can be accessed

MyBitStringB := '1'B;
MyBitStringB[4] '1'B; //causes an error as the index is larger than the length of the lhs

MyBitStringC := ''B;
MyBitStringC[0] := '1'B; // value of MyBitStringC is '1'B
MyBitStringC[1l] := '0'B; // value of MyBitStringC is '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword type. With user-defined typesit is possible to create subtypes
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of templates

TTCN-3 permits the specification of alist of distinguished templates as listed in table 3. The templatesin the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by thislist restricts the allowed val ues of the
subtype to those values matching at least one of the templatesin the list. The templatesin the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictionsin clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);
type float pi (3.1415926) ;

type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Specialletters
(char(0, 0, 1, 111), char(o, 0, 1, 112), char(0, 0, 1, 113));
6.1.2.2 Lists of types

TTCN-3 permits the specification of alist of subtypes aslisted in table 3 for value lists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:
type bitstring BitStringsl ('0'B, '1'B);

type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);
type bitstring BitStrings 1 2 (Bitstringsl, Bitstrings2);

ETSI

38 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for thetypes integer, charstring, universal
charstring and £loat (or derivations of these types). For integer and f£loat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -infinity or infinity can be used instead of avalue
indicating that thereis no lower or upper boundary; -infinity shall not be used as the upper bound and infinity
shall not be used as the lower bound for integer ranges.

Alsofor £loat, -infinity or infinity can be used asthe boundsin range restrictions. Using the special value
-infinity asthelower bound shall indicate that the allowed numerical values are not restricted downward and the
special value -infinity isalso included. If both the lower and upper bounds denote -infinity, no numerical
values are included, only the special value -infinity. Using the special value infinity asthe upper bound shall
indicate that the allowed numerical values are not restricted upward and the special value infinity isaso included.
If both the lower and upper bounds denote infinity, no numerical values are included, only the special value
infinity. If exclusivebounds(linfinity or!-infinity) isused instead, only the respective numerical float
values are included in the range. In case of £loat, the special valuenot _a number isnot alowed in arange
constraint.

Inthe case of charstring and universal charstring types, the range restrictsthe allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE 1:
type integer MyIntegerRange (0 .. 255); // range from 0..255
// (with inclusive boundaries)
type integer MyIntegerRange (-infinity .. -1); // all negative integer numbers
type integer MyIntegerRange (0 .. [256); // the same range as above (with left
// inclusive and right exclusive boundary)
type integer MyIntegerRange (!-1 .. 255); // the same range as above (with left
// exclusive and right inclusive boundary)
type integer MyIntegerRange (!-1 .. 1256); // the same range as above
// (with exclusive boundaries)
type float piRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Numbers (-infinity .. infinity); //includes all float values but not a number
type float Wrong (-infinity .. not_a number); // causes an error as not_a number is not
// allowed in range subtyping
EXAMPLE 2:
type charstring MyCharString ("a" .. "z");
// Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. I"z");

// Defines a string type of any length with each character within the range from a to y

// (character codes from 97 to 121), like "abxy";

// strings containing any other character (including control characters), like

// "abc2" are disallowed.

type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

// Defines a string type of any length with each character within the range specified using
// the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to nhon-negative integer values (or derived integer values).

ETSI

39 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:
type bitstring MyByte length(8); // Exactly length 8
type bitstring MyByte length(8 .. 8); // Exactly length 8
type bitstring MyNibbleToByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity may also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of charstring and
universal charstring types. Thetype constraint shall usethe pattern keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictionsin clause 10.

NOTE: Pattern subtyping can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
// all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MyUString (pattern "*\r\n")
// all permitted values of MyUString are terminated by CR/LF

type charstring MyString2 (pattern "abc?\g{0,0,1,113}");
// causes an error because the character denoted by the quadruple {0,0,1,113} is not a
// legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

// causes an error because the type MyString does not contain a value starting with the
// character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Within integer and £1loat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

EXAMPLE 1:
type integer MyIntegerRange (1, 2, 3, 10 .. !20, 99, 100);
type float lessThanPiAndNaN (-infinity .. 3142E-3, not_a number);

Within charstring and universal charstring subtype definitionsitisnot alowed to mix pattern, template
list, type list, or range constraints.

ETSI

40 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2:

type charstring MyCharStr0 ("gr", "xyz");
// contains character strings gr and xyz;

type charstring MyCharStrl ("a".."z");
// contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");

// contains character strings of length form 3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Withinbitstring, hexstring, octetstring subtype definitionslists and length restriction may be mixed in
the same subtype definition.

Within charstring and universal charstring subtype definitionsitisallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
// contains the character strings gr and xyz;

type charstring MyCharStré ("a".."z") length (3..9);
// contains character strings of length from 3 to 9 characters and containing characters
// a to z

type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);

// contains character strings of length form 3 to 9 characters containing characters a to z

type charstring MyCharStr8 (pattern "[a-z]#(3,9)") length (1..8);
// contains character strings of length form 3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length form 1 to 8 characters containing characters
// a to z

type charstring MyCharStrl0 ("gr", "xyz") length (4);

// causes an error as it contains no value

6.2 Structured types and values

The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated typesand union types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1.

const MyRecordType MyRecordValue: //assignment notation

{

fieldl := '11001'B,
field2 := true,
field3 := "A string"
1
// or
const MyRecordType MyRecordValue:= {'11001'B, true, "A string"} //value list notation

ETSI

41 ETSI ES 201 873-1 V4.4.1 (2012-04)

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Fields not mentioned are implicitly left
unspecified. It isalso possible to leave fields explicitly unspecified using the not used symbol "-*. Using the value list
notation all fieldsin the structure shall be specified either with a value, the not used symbol "-" or the omi t keyword.

EXAMPLE 2:
var MyRecordType MyVariable:= //assignment notation
fieldl := '11001'B,
// field2 implicitly unspecified
field3 := "A string"
}
// or
var MyRecordType MyVariable:= //assignment notation
{
fieldl := '11001'B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}
// or
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

// This is disallowed
const MyRecordType MyRecordValue:= {MyIntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit omit value
for the relevant field. The omi t keyword shall not be used for mandatory fields. When re-assigning a previously
initialized value, using the not used symbol or skipping afield in assignment notation will cause the relevant fieldsto
remain unchanged.

EXAMPLE 4:

var MyRecordType MyVariable :=

{

fieldl := '111'B,
field2 := false,
field3 := -
1
MyVariable := { '10111'B, -, - }

// after this, MyVariable contains { '10111'B, false /* unchanged */, <undefined> }

MyVariable :=

{

field2 := true
// after this, MyVariable contains { '10111'B, true, <undefined> }

MyVariable :=
{
fieldl :
field2
field3

false,

// after this, MyVariable contains { '10111'B, false, <undefineds }

When using value list notation in a scope wherethe optional attributeisset to "implicit omit™, for each
mandatory field there shall be an actual element. Optional fields wished to be omitted by the implicit mechanism, but
followed by fields to which avalue or template is assigned explicitly, shall be skipped by using the not used symbol "-".
When all remaining fields at the end of the type definition are optional and they are wished to be omitted by the implicit
mechanism, either the not used symbol "-" can be used for some or al of them or they can ssimply be left out from the

notation.

ETSI

42 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 5:

type record R {
integer f1,
integer f2 optional,
integer £f3,
integer f4 optional,
integer f5 optional

}

var R x := { 1, -, 2 } with { optional "implicit omit" }
// after the assignment x contains { 1, omit, 2, omit, omit }
var R x2 := { 1, 2 } with { optional "implicit omit" }

// after the assignment x2 contains { 1, 2, <undefineds>, omit, omit }

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 6:

// Valid recursive record type definition
type record MyRecordl

{
FieldTypel fieldl,
MyRecordl field2 optional,
FieldType3 field3

}

// Invalid recursive record type definition causing an error
type record MyRecord2

FieldTypel fieldl,
MyRecord2 field2,
FieldType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 7:

// Valid recursive union type definition
type union MyUnionl

{
MyUnionl choicel,
charstring choice2

}

// Invalid recursive union type definition causing an error
type union MyUnion2

{

MyUnion2 choicel,
MyUnion2 choice2

6.2.1 Record type and values

TTCN-3 supports ordered structured types known as record. The elements of a record type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of a record shall be compatible
with the types of the record fields. The element identifiers are local to the record and shall be unique within the
record (but do not have to be globally unique).

EXAMPLE 1.

type record MyRecordType

{

integer fieldl,
MyOtherRecordType field2 optional,
charstring field3

}

type record MyOtherRecordType

ETSI

43 ETSI ES 201 873-1 V4.4.1 (2012-04)

bitstring fieldl,
boolean field2

}

Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

type record MyEmptyRecord {}

A record valueisassigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MyIntegerValue := 1;
const MyOtherRecordType MyOtherRecordValue:=

fieldl :
field2 :

'11001'B,
true

}

var MyRecordType MyRecordValue :=

fieldl := MyIntegerValue,
field2 := MyOtherRecordValue,
field3 := "A string"

}

The same val ue specified with avalue list.

EXAMPLE 4:

MyRecordvValue:= {MyIntegerValue, {'11001'B, true}, "A string"};

6.2.1.1 Referencing fields of a record type

Elements of arecord shall be referenced by the dot notation Type 1dOrExpression. Element Id, where
TypeIdOrExpression resolvesto the name of astructured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. E1ement 1d shall resolveto
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1.

MyVarl := MyRecordl.myElementl;
// If a record is nested within another type then the reference may look like this
MyVar2 := MyRecordl.myElementl.myElement2;

EXAMPLE 2:

type record MyType

{

integer fieldl,
MyType.field2 field2 optional, // this circular reference is NOT ALLOWED
boolean field3

}

If afieldinarecord type or asubtype of arecord typeis referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:

type record MyType2

{

integer fieldl (1 .. 10),
charstring field2 optional

}

type MyType2 MyType3 ({1, omit}, {2, "foo"}, {3, "bar"}) ;

ETSI

44 ETSI ES 201 873-1 V4.4.1 (2012-04)

type MyType3.fieldl MyType4; // MyType4 is the integer type constrained to
// the values 1..10
type MyType3.field2 MyType5; // MyType5 is the charstring type
type MyType2.fieldl MyTypeé6; // MyType6 is the integer type constrained to
// the values 1..10
type MyType2.field2 MyType7; // MyType7 is the charstring type
6.2.1.2 Optional elements in a record

Optional elementsin arecord shall be specified using the optional keyword.
EXAMPLE 1:

type record MyMessageType

FieldTypel fieldl,
FieldType2 field2 optional,

FieldTypeN fieldN

1
Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:

MyRecordvValue:= {MyIntegerValue, omit , "A string"};

// Note that this is not the same as writing,
// MyRecordvalue:= {MyIntegerValue, -, "A string"};
// which would mean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the record definition. Both the definition of
new structured types (record, set, enumerated, set of, record of, and union) and the specification of
subtype constraints are possible.

EXAMPLE:

// record type with nested structured type definitions
type record MyNestedRecordType

{

record
{
integer nestedFieldl,
float nestedField2
} outerFieldl,
enumerated {
nestedEnuml,
nestedEnum2
} outerField2,
record of boolean outerField3

}

// record type with nested subtype definitions
type record MyRecordTypeWithSubtypedFields

{

’

integer fieldl (1 .. 100)
(2 .. 255)

charstring field2 length

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:

type set MySetType

{

ETSI

45 ETSI ES 201 873-1 V4.4.1 (2012-04)

integer fieldl,
charstring field2

1
Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.2.2.1 Referencing fields of a set type

Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the samerules apply asin clause 6.2.1.1 for fields of
record types.

EXAMPLE:

MyVar3 := MySetl.myElementl;

// If a set is nested in another type then the reference may look like this

MyVar4 := MyRecordl.myElementl.myElement2;

// Note, that the set type, of which the field with the identifier 'myElement2' is referenced,
// is embedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsin a set shall be specified using the optional keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword o£. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: Subtyping of record of and set of types seein clause 6.2.13.

EXAMPLE 1:

type set of boolean MySetOfType; // is an unlimited set of boolean values

Thevalue notation for record of and set of can be both the value list notation and the assignment notation
(usable to address multiple el ements) or an indexed notation (usable to address an individual element), which isthe
same value notation as for arrays (see clause 6.2.7). There is one exception from this general rule: in the case of
defining modified templates, the assignment notation is also allowed to be used (see clause 15.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list valueis
assigned to the second element, etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped in the list by use of the not-used-symbol "-".

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantic or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
valueremainsinvisible). Sending arecord of or set of value with undefined elements shall cause a dynamic
testcase error.

ETSI

46 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2:

// Given

type record of integer MyRecordOf;

var integer MyVar;

// Using the value list notation

var MyRecordOf MyRecordOfvar := { 0, 1, 2, 3, 4 };

// The same record of, defined with the assignment notation
var MyRecordOf MyRecordOfVarAssignment :=

[0] := O,
[1] := 1,
[2] := 2,
[3] := 3,
[4] := 4

}i

//Using an indexed notation
MyVar := MyRecordOfVar[0]; // the first element of the "record of" value (integer 0)
// is assigned to MyVar

// Indexed values are permitted on the left-hand side of assignments as well:
MyRecordOfVar [1] := MyVar; // MyVar is assigned to the second element
// value of MyRecordOfvar is { 0, 0, 2, 3, 4 }

// The assignment

MyRecordOfvar := { 0, 1, -, 2 };

// will change the value of MyRecordOfvar to{ 0, 1, 2 <unchangeds, 2};

// Note, that the 3™ element would be undefined if had had no previous assigned value.

// The assignment

MyRecordOfvar[6] := 6;

// will change the value of MyRecordOfvVar to{ 0, 1, 2 , 2, <undefineds, <undefined>, 6 };
// Note the 5 and 6™ elements (with indexes 4 and 5) had no assigned value before this

// last assignment and are therefore undefined.

MyRecordOfvar[4] := 4; MyRecordOfvar([5] := 5;
// will complete MyRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5, 6 };

NOTE 2: Theindex notation makes it possible e.g. to copy record of values element by element in afor loop.
For example, the function below reverses the elements of arecord of vaue:

function reverse (in MyRecordOf src) return MyRecordOf

{

var MyRecordOf dest;

var integer i, srcLength := lengthof (src);
for(i := 0; i < srcLength; i:= i + 1) {
dest [srcLength - 1 - i] := srcl[i];

return dest;

}

Embedded record of and set of typeswill result in a data structure similar to multidimensional arrays
(seeclause 6.2.7).

EXAMPLE 3:

// Given
type record of integer MyBasicRecordOfType;
type record of MyBasicRecordOfType My2DRecordOfType;

// Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:
var My2DRecordOfType myRecordOfArray;

// and reference to a particular element would look like this

// (value of the second element of the third 'MyBasicRecordOfType' construct)

myRecordOfArray [2] [1] := 1;

ETSI

a7 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested with the record of or set of definition. Both the
definition of new structured types (record, set, enumerated, set of and record o£) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enumerated { red, green, blue } ColorList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParameters;

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference the inner type of record of and set of types by using the index notation but with a
dash. The notation TypeId (-], where TypeId resolvestothe nameof arecord of or set of type, references
theinner type of TypeId. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

//Provided the definitions below
type record of integer MyRecordOfInt;
type record of record

integer f1,

set { integer sl, boolean s2 } f2
} MyRecordOfRecord;
type record of record of integer MyRecordOfRecordOfInt;
type record of record

integer f1,

record of boolean f2
} MyRecordOfRecord?2;

// Referencing the inner integer type
type MyRecordOfInt[-] MyInteger;
const MyRecordOfInt[-] c_MyInteger:= 5;

// Referencing the nested record type
type MyRecordOfRecord[-] MyInnerRecord;
const MyRecordOfRecord[-] ¢ MyRecord := { f1 = 5; f2 := { sl := 0; s2 := true }}

// Referencing the set type nested in the inner record
type MyRecordOfRecord[-].f2 MyNestedSet;
const MyRecordOfRecord[-].f2 ¢ MySet := { sl := 0; s2 := true }

// Referencing the innermost boolean
type MyRecordOfRecord[-].f2.s2 MyBoolean;
const MyRecordOfRecord[-].f2.s2 c_MyBool := false;

// Referencing the inner record of
type MyRecordOfRecordOfInt [-] MyInnerRecordOflInt;
const MyRecordOfRecordOfInt[-] ¢ MyInnerRecordOfInt := { 0, 1, 2, 3 };

// Referencing the integer type within the inner record of
type MyRecordOfRecordOfInt [-] [-] MyInteger2;
const MyRecordOfRecordOfInt [-] [-] c_MyInteger2 := 1;

// Referencing the boolean type within the nested record

type MyRecordOfRecord2[-].£f2[-] MyInnermostBoolean;

const MyRecordOfRecord2[-].f2[-] c_MyInnermostBoolean := true ;

type record length (5) of record of integer ConstrainedRecordOfInt (1 .. 10);
type ConstrainedRecordOfInt[-] ConstrainedInt;

// defines the type record of integer, where the integer values are restricted
// to the range 1 .. 10 but the record of has no length restriction

ETSI

48 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.2.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier. Operations
on enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering
operators. The identifiers of enumerated values shall be unique within the enumerated type (but do not have to be
globally unique) and are consequently visible in the context of the given type only. The identifiers of enumerated values
shall only be reused within other structured type definitions and shall not be used for identifiers of local or global
visibility at the same or alower level of the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1: Declaration of enumerated types and values

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
i

type integer Monday;
// This definition does not clash with the previous one
// as Monday in MyFirstEnumType is of local scope

type enumerated MySecondEnumType {
Saturday, Sunday, Monday

// This definition is legal as it reuses the Monday identifier within
// a different enumerated type

type record MyRecordType {
integer Monday
Vi

// This definition is legal as it reuses the Monday identifier within
// a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
MyFirstEnumType firstField,
integer secondField

}i

var MyNewRecordType newRecordvValue := { Monday, 0 }
// MyFirstEnumType is implicitly referenced via the firstField element of MyNewRecordType

Each enumerated value may optionally have a user-assigned integer value, which is defined after the name of the
enumerated value in parenthesis. Each user-assigned integer number shall be distinct within asingle enumerated
type. For each enumerated value without an assigned integer value, the system successively associates an integer
number in the textual order of the enumerated val ues, starting at the left-hand side, beginning with zero, by step 1 and
skipping any number occupied by any of the enumerated values with a manually assigned value. These values are only
used by the system to allow the use of relational operators. The user shall not directly use associated integer val ues but
can access them and convert integer values into enumerated values by using the predefined functions enum2int and
int2enum (Seeclauses16.1.2, C.1.29 and C.1.4).

NOTE 2: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributesto TTCN-3 items).

For any instantiation or value reference of an enumerated type, the given type shall beimplicitly or explicitly
referenced.

NOTE 3: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced viathe given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation, etc.

EXAMPLE 2: Using enumerated types (see also example 4 of clause 8.2.3.1)

// Valid instantiations of MyFirstEnumType and MySecondEnumType would be
var MyFirstEnumType Today := Tuesday;
var MySecondEnumType Tomorrow := Monday;

// The following statements however cause an error as the two variables are instances
// of different enumeration types

Today := Tomorrow;

Today == Tomorrow;

ETSI

49 ETSI ES 201 873-1 V4.4.1 (2012-04)

// The following operation is correct
if (Today == Monday) {...}

// the type of variable Today identifies the type context of MyFirstEnumType for the
// equality operator

// But the following causes an error

if (Tuesday == Wednesday) {...}

// there is no TTCN-3 type(d) object to establish the type context for the equality operator
// Please note that the values Tuesday and Wednesday are defined within the type

// MyFirstEnumType only, but this is not sufficient to establish the type context

When a TTCN-3 global or local definition is declared using an imported enumerated type, the name of that definition
shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

TTCN-3 supports the union type. The union typeisacollection of aternatives, each oneidentified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE:

type union MyUnionType
integer number,
charstring string

}i

// A valid instantiation of MyUnionType would be
var MyUnionType age, oneYearOlder;
var integer ageInMonths;

age.number := 34; // value notation by referencing the field. Note, that this
// notation makes the given field to be the chosen one

oneYearOlder := {number := age.number+l};

ageInMonths := age.number * 12;

The value list notation for setting values shall not be used for values of union types.

6.2.5.1 Referencing fields of a union type

Alternatives of aunion type shall be referenced by the dot notation (see clause 6.2.1.1). The same rules for the
referenced field type asin clause 6.2.1.1 apply. Alternatives of union type definitions shall not reference themselves.

EXAMPLE:

MyVar5 := MyUnionl.myChoicel;

// If a union type is nested in another type then the reference may look like this
MyVaré := MyRecordl.myElementl.myChoice2;

// Note, that the union type, of which the field with the identifier 'myChoice2' is referenced,
// is embedded in a record type

6.2.5.2 Option and union

Optional fields are not allowed for the union type, which means that the optional keyword shall not be used with
union types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union aternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

ETSI

50 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.2.6 The anytype

The specia type anytype is defined as a shorthand for the union of all known data types and the addresstypein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anytype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) cannot be reached
viathe anytype of the importing module.

EXAMPLE:

// A valid usage of anytype would be
var anytype MyVarOne, MyVarTwo;
var integer MyVarThree;

MyVarOne.integer := 34;
MyVarTwo := {integer := MyVarOne.integer + 1};
MyVarThree := MyVarOne.integer * 12;

The anytype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anytype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anytype "contains' al typesimported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to apositive integer vaues. Constants used in the
constant expressions shall meet with the restrictionsin clause 10.

EXAMPLE 1.

type integer MyArrayTypel[3]; // A type with 3 integer elements
type record length (3) of integer MyRecordOfTypel; // The corresponding record of

var MyArrayTypel al:= { 7, 8, 9 };
var MyRecordOfTypel rl:= al; // MyArrayTypel and MyRecordOfTypel are compatible
var integer myArrayl[3]:= rl; // Instantiates an integer array of 3 elements

// with the index 0 to 2
// being compatible to MyArrayTypel and MyRecordOfTypel

var integer myArray2[2] [3]; // Instantiates a two-dimensional integer array of 2 x 3 elements
// with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation (1), which must specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

MyArrayl[l] := 5;

MyArray2[1] [2] := 12;

MyArrayl[4] := 12; // ERROR: index must be between 0 and 2
MyArray2 [3] [2] := 15; // ERROR: first index must be 0 or 1

ETSI

51 ETSI ES 201 873-1 V4.4.1 (2012-04)

Array dimensions may al so be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range define the lower and upper index values. Such an array is corresponding to arecord of with a
fixed length restriction computed as the difference between upper and lower index bound plus 1 and indexing starting
from the lower bound of the array definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // A type with 4 integer elements, indices starting with 2
type record length (4) of integer MyRecordOfType2; // The corresponding record of

var integer MyArray3 [l .. 5]; // Instantiates an integer array of 5 elements
// with the index 1 to &5

MyArray3 [1] := 10; // Lowest index
MyArray3 [5] := 50; // Highest index
var integer MyArray4[l1 .. 5][2 .. 3]; // Instantiates a two-dimensional integer array of

// 5 x 2 elements with indexes from (1,2) to (5,3)

NOTE: Itisnot possible to define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by avalue list notation or indexed notation or more than one or all at once by avalue list notation.
When the value list notation is used, the first value of thelist is assigned to the first element of the array (the element
with index O or the lower bound if an index range has been given), the second value to the next element, etc. Elements
to be left out from the assignment shall be explicitly skipped in the list by using dash.

Indexed value notation can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations
given by either the length or the upper bound of the index. If the value of the element indicated by the index at the right-
hand of an assignment is undefined, this shall cause an error. Sending an array value with undefined elements shall
cause an error. All elementsin an array value that are not set explicitly, are undefined.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array dlices of
multi-dimensional arrays, i.e. when the number of indexes of the array value isless than the number of dimensionsin
the corresponding array definition, is alowed. Indexes of array dlices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice correspondsto the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
MyArrayl[0] := 10;
MyArrayl[1] := 20;
MyArrayl[3]:= 30;

// or using an value list
MyArrayl:= {10, 20, -, 30};

MyArray4:= {{1, 2}, {3, 4}, {5, &}, {7, 8}, {9, 10}};
// the array value is completely defined

var integer MyArray5[2] [3] [4] :=
{
{
2, 3, 4}, // assigns a value to MyArray5 slice [0] [0]
6, 7, 8}, // assigns a value to MyArray5 slice [0] [1]
0]

10, 11, 12} // assigns a value to MyArray5 slice [
}, // end assignments to MyArray5 slice [0]

{1,
{5,
{9, [2]

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to MyArray5 slice [1]

}i

MyArray4 [2] := {20, 20};
// yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
MyArray5[1] := { {o, o, o, o}, {o, o, o, 0}, {0, 0, O, O}};
// vields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
// {{O, 0, 0, O}, {O, 0, 0, O}, {O, 0, 0, O}}}i
MyArray5[0] [2] := {3, 3, 3, 3};

ETSI

52 ETSI ES 201 873-1 V4.4.1 (2012-04)

// vields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}},
// {{o, o, o, 0o}, {0, o, 0, 0}, {0, 0, O, O}}};

var integer MyArrayInvalid[2] [2];
MyArrayInvalid := { 1, 2, 3, 4 }

// causes an error as the dimension of the value notation

// does not correspond to the dimensions of the definition
MyArrayInvalid[2] := { 1, 2 }

// causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by a test component when an
atstep is activated as a default, i.e. a default referenceis the result of an activate operation (see clause 20.5.2).

Default references have the special and predefined type default. Variables of type default can be used to handle
activated defaults in test components. The special value null represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default references are used in deactivate operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to adefault variable in test component instance "al" of type "A" has no meaning in test component instance
Ila2ll Of type IIAII .

The actual data representation of the default type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out
direction) and inout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where in identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters must be value parameters.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this
port. Whenever asignature is defined in the in direction for a procedure-based port, the types of al its inout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
alowsto bind an address type to aport. Vaues of thistype may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation isexplained in clause 6.2.12.

ETSI

53 ETSI ES 201 873-1 V4.4.1 (2012-04)

Syntactical Structure

M essage-based port:

type port PortTypeldentifier message "{"
{ (address Type ";") |

(map param " (" { FormalValuePar [","] }+ ")") |
(unmap param " (" { FormalValuePar [","] }+ ")") |
((in | out | inout) { MessageType ["," 1 }+ ";") }
n } n
Procedure-based port:

type port PortTypeIdentifier procedure "{"
{ (address Type ";") |

(map param " (" { FormalValuePar [","] }+ ")") |
(unmap param " (" { FormalValuePar [","] }+ ")") |
((in | out | inout) { Sigmature ["," 1 }+ ";") }
n } n
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type should be bound to a port type.
b) At most one map parameter list should be defined for a port type.
c) At most one unmap parameter list should be defined for a port type.
Examples
EXAMPLE 1: Message-based port

// Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
// sent via and any integer value to be send and received over the port
type port MyMessagePortTypeOne message

{

in MsgTypel, MsgType2;
out MsgType3;
inout integer

1
EXAMPLE 2: Procedure-based port

// Procedure-based port which allows the remote call of the procedures Procl, Proc2 and Proc3.
// Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePortType procedure

{
}

EXAMPLE 3: Message-based port with address type definition

out Procl, Proc2, Proc3

type port MyMessagePortTypeTwo message

address integer; // if addressing is used on ports of type MyMessagePortTypeTwo
// the addresses have to be of type integer
inout MsgTypel, MsgType2;

1
NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting

from expressions. Thus, the list restricting what may be used on a message-based port issimply alist of
type names.

ETSI

54 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 4: Usage of paramin port declaration

// Message based port which allows MsgType4 to be send and received over the port
// and MsgType5 and MsgTypeé as configuration parameter type
type port MyMessagePortType message

inout MsgType4 ;

map param (in MsgTypeb5 pl, out MsgTypeé p2);

// Procedure based port which allows the remote call of the procedure Procl
// and MsgType5 as configuration parameter type
type port MyProcedurePortType procedure

out Procl;
unmap param (MsgType5 pl);

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall al have unigue names.

PCO2 PCO3
MyMTC MyPTC p—
/I of MyMTCType r— 11 of MyPTCType —
PCO4
PCO1 PCO1

Figure 3: Typical components

It is also possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and altsteps that run on an instance of the given component type. This shall be
explicitly stated using the runs on keyword (see clause 16) in the testcase, function or altstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated). Constants used in the constant expressions of type declarations
for variables, constants or ports shall meet with the restrictions in clause 10, however constants used in the constant
expressions of initial values for variables, constants or timers do not have to obey these restrictions.

Syntactical Structure

type component ComponentTypeldentifier "{"
{ (PortInstance
| VarInstance
| TimerInstance
| ConstDef) }

n } n
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used as the main
test component, as the test system interface or as a parallel test component. Every instance of a component type has its
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

55 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE 1. Component type with port instances only

type component MyPTCType

{

port MyMessagePortType PCO1, PCO4;
port MyProcedurePortType PCO2;
port MyAllMesssagesPortType PCO3

}
EXAMPLE 2: Component type with variable, timer and port instance
type component MyMTCType

var integer MyLocallnteger;
timer MyLocalTimer;
port MyMessagePortType PCOl

1
EXAMPLE 3: Component type with port instance arrays

type component MyCompType

{

port MyMessageInterfaceType PCO[3]

port MyProcedurelInterfaceType PCOm[3] [3]

// Defines a component type which has an array of 3 message ports and a two-dimensional
// array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure

type component ComponentTypeldentifier extends ComponentTypeIdentifier "{"
{ (PortInstance
| VarInstance
| TimerInstance
| ConstDef) }

n } n
Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
extends keyword isreferred to as the parent type. The effect of this definition is that the extended type will implicitly
aso contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may aso be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is aso defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, iscompatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on
clauses can be executed on ¢ (see clause 6.3.3).

ETSI

56 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

©)

When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

It isallowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1. A component type extension and its effective type definition

type component MyMTCType

{

}

var integer MyLocallInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1

type component MyExtendedMTCType extends MyMTCType

{

}

var float MyLocalFloat;
timer MyOtherLocalTimer;
port MyMessagePortType PCO2;

// effectively, the above definition is equivalent to this one:
type component MyExtendedMTCType

{

}

/* the definitions from MyMTCType */
var integer MyLocallInteger;

timer MyLocalTimer;

port MyMessagePortType PCO1l

/* the additional definitions */
var float MyLocalFloat;

timer MyOtherLocalTimer;

port MyMessagePortType PCO2;

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type component MTCTypeA extends MTCTypeB { /*

type component MTCTypeB extends MTCTypeC { /* .
type component MTCTypeC extends MTCTypeA { /* .. *x/
type component MTCTypeD extends MTCTypeD { /*

w */
. *x/

7

e

; // ERROR - cyclic extension
i

.x/ // ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes

type component MyExtendedMTCType extends MyMTCType

}

var integer MyLocallInteger; // ERROR - already defined in MyMTCType (see above)
var float MyLocalTimer; // ERROR - timer with that name exists in MyMTCType
port MyOtherMessagePortType PCOl; // ERROR - port with that name exists in MyMTCType

type component MyBaseComponent { timer MyLocalTimer };
type component MyInterimComponent extends MyBaseComponent { timer MyOtherTimer };
type component MyExtendedComponent extends MyInterimComponent

timer MyLocalTimer; // ERROR - already defined in MyInterimComponent via extension

ETSI

57 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 4: Component type extension from several parent types

type component MyCompB { timer T };
type component MyCompC { var integer T };
type component MyCompD extends MyCompB, MyCompC {}
// ERROR - name clash between MyCompB and MyCompC

// MyCompB is defined above

type component MyCompE extends MyCompB {
var integer MyVarl := 10;

}

type component MyCompF extends MyCompB {
var float MyVar2 := 1.0;
}

type component MyCompG extends MyCompB, MyCompE, MyCompF {
// No name clash.
// All three parent types of MyCompG have a timer T, either directly or via extension of
// MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,
// which make this form of collision legal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.

Syntactical Structure

system | mtc | self | VariableRef | FunctionInstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acreate operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
system (returns the component reference of the test system interface, which is automatically created when testcase
execution is started), mtc (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel £ (returns the component reference of the component in which self iscalled).

Component references are used in the configuration operations such as connect, map and start (see clause 21) to
set-up test configurations and in the £rom, to and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the special valuenull isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references must use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

ETSI

58 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE 1: Component references with component type variables
// A component type definition
type component MyCompType {
port PortTypeOne PCO1;
port PortTypeTwo PCO2

1
// Declaring one variable for the handling of references to components of type MyCompType

// and creating a component of this type
var MyCompType MyCompInst := MyCompType.create;

EXAMPLE 2: Usage of component referencesin configuration operations
// referring to the component created above
connect (self:MyPCOl1, MyCompInst:PCO1) ;

map (MyCompInst:PCO2, system:ExtPCOl) ;
MyCompInst.start (MyBehavior (self)); // self is passed as a parameter to MyBehavior

EXAMPLE 3: Usage of component referencesin from- and to- clauses
MyPCOl.receive from MyCompInst;

M;PCOZ.receive(integer:?) -> sender MyCompInst;
M;Pcol.receive(MyTemplate) from MyCompInst;

MyPCO2.send (integer:5) to MyCompInst;

EXAMPLE 4: Usage of component references in one-to-many connections

// The following example explains the case of a one-to-many connection at a Port PCO1l

// where values of type M1l can be received from several components of the different types
// CompTypel, CompType2 and CompType3 and where the sender has to be retrieved.

// In this case the following scheme may be used:

var M1 MyMessage, MyResult;

var MyCompTypel MyInstl := null;
var MyCompType2 MyInst2 := null;
var MyCompType3 MyInst3 := null;

alt

] PCOl.receive(M1:?) from MyInst2 -> value MyMessage sender MyInst2 {}

{
[] PCOl.receive(M1:?) from MyInstl -> value MyMessage sender MyInstl {}
[
[] PCOl.receive(M1:?) from MyInst3 -> value MyMessage sender MyInst3 {}

}

MyResult := MyMessageHandling(MyMessage) ; // some result is retrieved from a function
if (MyInstl != null) {PCOl.send(MyResult) to MyInstl};
if (MyInst2 != null) {PCOl.send(MyResult) to MyInst2};
if (MyInst3 != null) {PCOl.send(MyResult) to MyInst3};

EXAMPLES: Usage of self

var MyComponentType MyAddress;
MyAddress := self; // Store the current component reference

ETSI

59 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 6: Usage of component arrays

// This example shows how to model the effect of creating, connecting and running arrays of
// components using a loop and by storing the created component reference in an array of
// component references.

testcase MyTestCase() runs on MyMtcType system MyTestSystemInterface

{

var integer i;
var MyPTCTypel MyPtc[11];

for (i:= 0; i<=10; 1i:=1i+1)

{
MyPtc[i] := MyPTCTypel.create;
connect (self:PtcCoordination, MyPtc[i] :MtcCoordination) ;
MyPtc [i] .start (MyPtcBehaviour()) ;

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global addr ess data type may be used
if only one datatype is needed. If several datatypes at different ports are needed for addressing SUT entities, the type
used for addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

TemplateInstance
Semantic Description

The actual data representation of the global address typeisresolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
address typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an address typeisbound to a port type definition, addressing of SUT instances (i.e. to- and £from-directivesin
communication operations) viainstances of that port type shall be restricted to values of the bound address type.

If several address types exist within atest suite, ambiguities shall be resolved by means of the dot notation. For
example, atype reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or amodule identifier. If both a global address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the special valuenull isavailable for the address type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of atype that shall be used for addressing SUT entities, only values of
that type shall beused in to, £rom and sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type address or of the type of the address declaration in a port type definition.
If Templatelnstance is of type address, it and can be an address type value, an address type variable, etc.

ETSI

60 ETSI ES 201 873-1 V4.4.1 (2012-04)

b) For addressing purposes, the address datatype shall only be used in the to, £rom and sender parts of
receive and send operations of ports mapped to the test system interface.

Examples

EXAMPLE 1: Global addresstype

// Associates the type integer to the open type address
type integer address;

// new address variable initialized with null
var address MySUTentity := null;

// receiving an address value and assigning it to variable MySUTentity
PCO.receive (address:?) -> value MySUTentity;

// usage of the received address for sending template MyResult
PCO.send (MyResult) to MySUTentity;

// usage of the received address for receiving a confirmation template
PCO.receive (MyConfirmation) from MySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { // user-defined type
integer fieldl;
boolean field2;

1

type port MyPortType message {
address MyAddressType; // address declaration
inout integer;

1

type component MyComponentType

port MyPortType PCO;
1
function myFunction () runs on MyComponentType {
var MyAddressType SUT_Address := { 5, true}; // address value for addressing via ports
// of MyPortType

PCO.send(integer: 5) to SUT Address; // use of address value in to

PCO.receive (integer: ?) from SUT Address; // use of address value in from

1
EXAMPLE 3: Elaborated address example
type AddressTypel address; // address type definition on module level

type port MyPortTypel message {
inout MsgTypel;
}

// address types bound to port types
type port MyPortType2 message
address AddressType2; // values of type AddressType2 can be
// used to address SUT entities.
inout MsgType2;
1
type port MyMessagePort3 message {
address AddressType3; // values of type AddressType3 can be
// used to address SUT entities.
inout MsgType3;
1
// component type definition
type component MyComponentType

{

port MyPortTypel PCO1;
port MyPortType2 PCO2;
port MyPortType3 PCO3

// The following behaviour is considered to be executed on an instance of MyComponentType.
// Furthermore, it is considered that the ports PCOl, PCO2 and PCO3 are mapped ports, i.e.
// used for the communication with the SUT.

ETSI

61 ETSI ES 201 873-1 V4.4.1 (2012-04)

// new address variable initialized with null

var address MySUTentityl := null; // type of MySUTentityl is AddressTypel
var MyPortType2.address MySUTentity2 := null; // type of MySUTentity2 is AddressType2

var MyPortType3.address MySUTentity3 := null; // type of MySUTentity3 is AddressType3

// receiving an address values and assigning them to variables
PCOl.receive (MsgTypel:?) from address:? -> sender MySUTentityl;
// Address type of module scope,
// no prefix needed
PCO2.receive (MsgType2:?) from MyPortType2.address:? -> sender MySUTentity2;
// Resolution of address type
// by means of a prefix
PCO3 .receive (MsgType3:?) from MyPortType3.address:? -> sender MySUTentity3;

// usage of the received address values for addressing purposes
PCO1.send (MyResult) to MySUTentityl;

PCO2.receive (MyConfirmation) from MySUTentity2;

PCO3.send (MyRequest) to MySUTentity3;

6.2.13 Subtyping of structured types

TTCN-3 alows subtyping of structured types as given in table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsin instances of record of and set of types.

The 1length keyword followed by avalue or arange (with inclusive boundaries only) within brackets and used
betweenthe record or set andtheof keywords, restrictsthe allowed lengths of the given record of or set
of type. The value or the bounds within the brackets shall be non-negative integer values, except whenthe infinity
keyword is used at the place of the upper bound, in which case the maximum number of the elementsis not constrained.

Record of and set of type definitions may be used to define new record of or set of subtypes. In thiscasethe
rules of the previous paragraph apply, except that the 1length keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

type record length(10) of integer MyRecordOfTypelO;
// is a record of exactly 10 integers

type record length(0..10) of integer MyRecordOfTypeO 10;
// is a record of a maximum of 10 integers

type record length(10..infinity) of integer MyRecordOfTypelOup;
// record of at least 10 integers

type record length(0..infinity) of integer MyRecordOfTypeOup;
// an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlimited record of, each element shall be a charstring

type StringArray StringArray34 length(4 .. 5);

// is a record of 4 or 5 elements, each element is a charstring
// it is equivalent to

// type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
// the same as StringArray34

type StringArray34 StringArrayé length(6) ;
// causes an error as record ofs with 6 elements are not legal values of StringArray34

ETSI

62 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 3: Length subtyping of referenced set of types

type record MyCapsule ({
set of integer mySetOfInt
1

type MyCapsule.mySetOfInt MySetOfIntSub length(5..10);
// unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by alist subtyping restrict the allowed values of the subtype to the values matched by at least one of
the templatesin the list. In case of list subtyping of record, set, record of, set of,union and anytype
types, the list may contain both templates and subtypes of the parent types of the type being constrained. The collection
of templates denoted by the type(s) referenced in the list become instances of the new subtype. When constraining
record of, set of,union and anytype types, all templates of the expanded list (i.e. after resolving the type
references) shall be valid (i.e. complete) templates of the first parent type, except in the case of field assignment
notations for constrained record or set types where the fields that are not explicitly present in the value notation are seen
as containing Any for mandatory fields and AnyOrOmit for optional fields of the type.

In case of enumerated types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types

type record MyRecord {

integer f1 optional,
charstring £f2,
charstring £3

}

type MyRecord MyRecordSubl (
{ f1 := omit, f2 := "user", £3 := "password" },
{ f1 := 1, £2 := "User", £3 := "Password" }
) // a valid subtype of MyRecord containing 2 values

type MyRecord MyRecordSub2 (

MyRecordSubl,
{ f1 := 2, £2 := "uname", £3 := "pswd" },
{ £f1 := 3, £2 := "Uname", £f3 := "Pswd" }

) // a valid subtype of MyRecord, containing 4 values; notice that values of
// MyRecordSubl are identified by referencing MyRecordSubl

type MyRecordSubl MyRecordSub3

(
{ f1 := 1, £2 := "user", £3 := "password" },
{ £f1 := 1, f2 := "User", £3 := "Password" }
) // invalid type as { f1 := 1, f2 := "user", £3 := "password" } is not a legal value of

// MyRecordSubl (notice field f1)

type MyRecord MyRecordSub4 (

{ £2 := "user", £3 := "password" },
f2 := "User", f3 := "Password"
{
) // any valid value of MyRecord, where the combination of f2 and f3 is
// £2 := "user" AND f3 := "password" or f2 := "User" AND f3 := "Password"

type MyRecord MyRecordSub5 (

{ £2 := "user", £f3 := pattern "password|Password" },
{ f1 := (1 .. 10), f2 := "User" }
) // a valid subtype of MyRecord containing all values which match one of the given templates
// { £1 := *, £2 := "user", f3 := pattern "password|Password" } or
// { £1 := (1 .. 10), f2 := "User", £3 := ? }

EXAMPLE 2: List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArrayListl (
{ nga" },
{ "bbb", "cc" },
{ nddd", "ee", "ffn }

); // valid subtype of StringArray

ETSI

63 ETSI ES 201 873-1 V4.4.1 (2012-04)

type StringArraylListl StringArrayList2 (
{ "aa” },
{ nbbbn, negn }

); // valid subtype of StringArrayListl

type StringArraylListl StringArrayList3 (
StringArrayList2,
{ nddd", "eem, "ffn }

); // valid, but equivalent to StringArrayListl

type StringArrayListl StringArrayList4 (

StringArrayList2,
{ nddd", "ee", "Effn }
); // empty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl

// (notice the extra character f in the third element)

EXAMPLE 3: List subtyping of union types

type union MyUnion ({

integer cl,
charstring c2,
charstring c3

}i

type MyUnion MyUnionSubl (
{ c1 := 0},
{Cl::l}
); // a valid subtype of MyUnion containing two values

type MyUnion MyUnionSub2 (

MyUnionSubl,
{ c2 := "mine" },
{ 3 := "yours" }

); // a valid subtype of MyUnion containing four values; notice that values of
// MyUnionSubl are identified by referencing MyUnionSubl

type MyUnionSubl MyUnionSub3 (

{ c1 := 0},
{ c1 := 2}
); // causes an error as { ¢l := 2 } is not a value of MyUnionSubl

EXAMPLE 4: List subtyping of enumerated types
type enumerated MyEnum { first, second, third, fourth, fifth };

type MyEnum EnumSubl (first, second, third);
// a valid subtype of MyEnum

type EnumSubl EnumSub2 (first, second) ;
// a valid subtype of EnumSubl

type EnumSubl EnumSub3 (first, second, fourth);
// causes an error as fourth is not a value of EnumSubl

type MyEnum EnumSub4 (EnumSubl, fourth);

// causes an error as type references are not allowed in the template list
// of enumerated types

EXAMPLES5: List subtyping of anytype

type anytype MyAnySubl (

{ integer := 5 },

{ boolean := false },

{ bitstring := '0011'B },
{ charstring := "mine" },
{ MyEnum := first }

); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (

{ integer := 5 },
{ boolean := false },
{ bitstring := '0011'B }

); // a valid subtype of MyAnySubl, consisting of 3 wvalues
type anytype MyAnySub3 (

MyAnySub2,
{ octetstring := 'FF'O }

ETSI

64 ETSI ES 201 873-1 V4.4.1 (2012-04)

); // a valid subtype of anytype, consisting of 4 values, 3 of which are defined
// by referring to MyAnySub2

type MyAnySubl MyAnySub4 (

{ integer := 5 },
{ boolean := false },
{ MyEnum := second }
); // causes an error as { MyEnum := second } is not a value of MyAnySubl

type MyAnySubl MyAnySub5 (

MyAnySub3,
{ MyEnum := first }
); // causes an error as { octetstring := 'FF'O } (defined via referencing MyAnySub3) is

// not a value of MyAnySubl

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of anewly defined record of or set of type (i.e. when the keywords
record and of or set and of are used in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is abasic type, the subtyping rulesin

clause 6.1.2shall apply. If the innermost type is referencing a structured type or anytype, therulesin clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
// is an unlimited record of, each element shall be a charstring of 2 or 3 characters

type record length(0..10) of charstring Stringl2Arrayl0 length(12) ;
// is a record of a maximum of 10 strings each with exactly 12 characters

type record of record of charstring Stringl2Array2D length(12);
// is a two-dimensional unlimited array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring Stringl2Array2D56 length(12);
// is an unordered two-dimensional array of the size 5%6 strings, each with
// exactly 12 characters

const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };
// valid, all charstrings are 2 or 3 characters long

const String23Array c_str23arr b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
// causes an error as "a" and "bbbb" are not 2 or 3 characters long

{

const Stringl2Array2D56 c_strl2arr2D56_a
{ l|aal| , l|aaal| , l|bbl| , l|bbbl| , "CC" , "CCC"
{ l|ddl|, l|dddl|, l|eel|, l|eeel|, l|ffl|, l|fffl|
{ l|ggl|, l|gggl|, l|hhl|, l|hhhl|, l|iil|, l|iiil|
{
{

l|jjl|, l|jjjl|, l|kkl|, l|kkkl|, l|lll|, l|llll|
l|mml| , l|mmml| , n nn" , n nnn" , "OO" , "OOO"
}; // valid, a 5*6 matrix of charstrings being 2 or 3 characters long

{

e e ||

const Stringl2Array2D56 c_strl2arr2D56_ b
{ l|al| , l|aaal| , l|bbl| , l|bbbbl| , "CC" , "CCC"
{ l|ddl|, l|dddl|, l|eel|, l|eeel|, l|ffl|, l|fffl|
{ l|ggl|, l|gggl|, l|hhl|, l|hhhl|, l|iil|, l|iiil|
{
{

’

’

1

e |

l|jjl|, l|jjjl|, l|kkl|, l|kkkl|, l|lll|, l|llll| ,
l|mml| , l|mmml| , n nn" , n nnn" , "OO" , "OOO" , l|pp n }
}; // causes an error as "a" and "bbbb" are not 2 or 3 characters long and
// the 5th inner record of has 7 elements

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

// is a two-dimensional array, the first dimension is unlimited,

// the second dimension is restricted to 4 or 5 elements and each element
// is a charstring of 2 or 3 characters. It is equivalent to:

// type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);
const String23Array45 c_str23arrd5 a := {

{ "aa", "bbb", "cc", "ddd" },

{ neen, Wfffm, "gg", "hhh", m"iin }

}; // valid, 4 or 5 elements in the inner record of, all containing 2 or 3 characters

ETSI

65 ETSI ES 201 873-1 V4.4.1 (2012-04)

const String23Array45 c_str23arrd5 b := {

{ "ga" , "bbb", "cc" }
}; //causes an error as there are only 3 elements in the inner record of
const String23Array45 c_str23arrd5 c := {

{ "aa", "bbbb", "cc", "dd" }

}; //causes an error as "bbbb" contains 4 characters

type record length(0 .. 1) of String23Array String23Array0145 length(4 .. 5);

// is a two-dimensional array, the first dimension is limited to 0 or 1 elements,
// the second dimension is restricted to 4 or 5 elements, each element is a

// charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145 a :=

{ "aa", "bbb", "o, ndddr },
}; // a valid 1*4 array of charstrings, each of 2 or 3 characters
const String23Array0145 c_str23arr0145 a :=

{ "aa", "bbb", neet, ndddr },

{ neen, nfffn, nggn, nhhhn, niqim }
}; // causes an error as there are two elements in the outer record of
const String23Array0145 c_str23arr0145 b :=

{ "aa" , nbbbn, negn }
}; // causes an error as there are only 3 elements in the inner record of
const String23Array0145 c_str23arr0145 c :=

{ "aa", nbbbbn, neet, ndgdgn }
}; // causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Arrayé length(6) ;

// empty type as String23Array45 is restricted to 4 or 5 elements,
// thus length restriction 6 is outside the allowed range

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anytype, it isforbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., iscalled value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type"A".

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an address type and to its derivatives as the rules were if the type was
defined with a name different from address.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type"B" resolves to the same root type astype "A" (e.g. integer) and it does not violate subtyping
(e.g. ranges, length restrictions) of type "A".

EXAMPLE 1. Compatibility of integers

// Given
type integer MyInteger(l .. 10);

var integer x;
var MyInteger y;

// Then
y :=5; // is a valid assignment

ETSI

66 ETSI ES 201 873-1 V4.4.1 (2012-04)

X =Y;

// is a valid assignment, because y has the same root type as x and no subtyping is violated
x := 20; // is a valid assignment

Yy = X

// is NOT a valid assignment, because the value of x is out of the range of MyInteger

x :=5; // is a valid assignment

Yy = X

// is a valid assignment, because the value of X is now within the range of MyInteger

EXAMPLE 2. Compatibility of floats

// Given
type float PositiveFloats (0.0 .. infinity);

var PositiveFloats x;
var float y;

// Then

y := 5.0; // is a valid assignment

X =Y;

// is a valid assignment, because y has the same root type as x and no subtyping is violated

y := -20.0; // is a valid assignment
X =Y
// causes an error, because the value of y is out of the range of PositiveFloats

y := not_a number; // is a valid assignment
X =Y
// causes an error, because the value not_a number is out of the range of PositiveFloats

EXAMPLE 3: Compatibility of charstrings

//Given

type charstring MyChar length (1) ;

type charstring MySingleChar length (1) ;
var MyChar myCharacter;

var charstring myCharString;

var MySingleChar mySingleCharString := "B";

//Then

myCharString := mySingleCharString;

//is a valid assignment as charstring restricted to length 1 is compatible with charstring.
myCharacter := mySingleCharString;

//is a valid assignment as two single-character-length charstrings are compatible.

//Given

myCharString := "abcd";

//Then

myCharacter := myCharStringl[1l];

//is valid as the r.h.s. notation addresses a single element from the string

//Given

var charstring myCharacterArray [5] := {"A", wgm", "C", "D", "E"}
//Then

myCharString := myCharacterArray[1l];

//is valid and assigns the value "B" to myCharString;

For variables, constants, templates etc. of charstring type, value'b' is compatible with auniversal
charstring type'A’ unlessit violates any type constraint specification (range, list or length) of type"A".

For variables, constants, templates etc. of universal charstring type, value'b'iscompatible with a
charstring type'A'if al characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type charstring and it does not violate any type constraint
specification (range, list or length) of type "A".

6.3.2 Compatibility of structured types

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

ETSI

67 ETSI ES 201 873-1 V4.4.1 (2012-04)

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

6.3.2.2 Compatibility of record and record of types

record types are compatible if the number, and optional aspect of the fields in the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type"A".

EXAMPLE 1:
// Given
type record AType
integer a(0..10) optional,
integer b(0..10) optional,
boolean c

}

type record BType

integer a optional,
integer b(0..10) optional,
boolean c
1
type record CType // type with different field names
integer d optional,
integer e optional,
boolean £
1
type record DType // type with field c optional
integer a optional,
integer b optiomnal,
boolean c optional
1
type record EType // type with an extra field d
integer a optional,
integer b optional,
boolean c,
float d optional
1
var AType MyVarA : , 1, true};

omit, 2, true};

3, omit, true};

4, 4, true};

5, 5, true, omit};

var BType MyVarB :
var CType MyVarC :
var DType MyVarD :
var EType MyVarE :

| | | N | R
Pl letn et

// Then
MyVarA := MyVarB; // is a valid assignment,
// new value of MyVarA is (a :=omitted, b:= 2, c:= true)
MyVarC := MyVarB; // is a valid assignment
// new value of MyVarC is (d :=omitted, e:= 2, f:= true)
MyVarA := MyVarD; // is NOT a valid assignment because the optionality of fields does not
// match
MyVarA := MyVarE; // is NOT a valid assignment because the number of fields does not match
MyVarC := { d:= 20 };// actual value of MyVarC is { d:=20, e:=2,f:= true }
MyVarA := MyVarC // is NOT a valid assignment because field 'd' of MyVarC violates subtyping

// of field 'a' of AType

record of types and arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of the record of type"A" or dimensions of the array type. Values of elements of the value "b" shall
be assigned sequentially to the instance of type"A", including undefined elements.

Two array types are compatible if their corresponding record of typesare compatible.

ETSI

68 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2:

// Given

type record HType
integer a,
integer b optional,
integer c

}

type record of integer IType

var HType MyVarH := { 1, omit, 2};
var IType MyVarI;
var integer MyArrayVar[2];

// Then

MyArrayVar := MyVarH;
// is NOT a valid assignment as type of MyArrayVar and HType are incompatible

MyVarI := MyVarH;
// is NOT a valid assignment as the types are incompatible

MyVarI := { 3, 4 };
MyVarH := MyVarI;
// is NOT a valid assignment as the mandatory field 'c' of Htype receives no value

6.3.2.3 Compatibility of set and set of types

set typesare only compatible with other set typesand set of typesare only compatible with other set of types.
For set types the same compatibility rules shall apply asto record typesand for set of typesthe same
compatibility rules shall apply asto record of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: In set valuesthe order of fields may be arbitrary, however this does not affect type compatibility asfield
names unambiguoudly identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

// Given

type set FType ({
integer a optional,
integer b optional,
boolean c

}

type set GType {
integer d optional,
integer e optional,
boolean f

}

var FType MyVarF := { a:=1, c:=true };
var GType MyVarG := { f:=true, d:=7};
// Then
MyVarF := MyVarG; // is a valid assignment as types FType and GType are compatible
MyVarF := MyVarA; // is NOT a valid assignment as MyVarA is a record type
6.3.2.4 Compatibility of union types

union types are only compatible with other union types. A union value"a" of union type"A" is compatible with union
type "B" if the dternative selected in "a" has a corresponding alternative with identical namein "B" and the value of the
selected alternativein "a" is compatible to the type of the corresponding alternative in "B".

ETSI

EXAMPLE:

69 ETSI ES 201 873-1 V4.4.1 (2012-04)

type union Ul {integer i};
type union U2 {integer i, boolean b};

var Ul ul := {i := 1};
var U2 u2 := ul; // correct
ul:= u2; // correct as the alternative i is selected in u2 and is compatible
// to i in U1l
u2:= {b := true};
ul:= u2; // incorrect as ul has no alternative b
var anytype x := ul; // incorrect as the anytype is not a union type.
6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "a" of anytype type "A" is compatible
with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical namein "B" and
the value of the selected alternativein "a' is compatible to the type of the corresponding alternativein "B". Identical
alternative namesin this case mean the name of a TTCN-3 basic type or the name of the same user defined type
definition (considering also the module in which the type is defined).

EXAMPLE:

module A

type integer I
type float F;
type anytype Atype //anytype composed of TTCN-3 built-in basic types, I, and F

}

(0.

.2);

module B {
type integer I (0..2);
type anytype Atype
}
module C {
import from A all;
import from B all;
type union U ({
integer I (0..2)
}
control
var A.Atype aa;
var A.Atype aal := { I := 1 }
var A.Atype aaF := { F := 1.0 }
var B.Atype ba := { integer := 1 }
var B.Atype bal := { I := 1 }
var Uu := { I :=1 }
aa := ba; // correct, the value of aal becomes { integer := 1 }
aa := baIl; // incorrect, type B.I is not present in the anytype A.Atype
aa := u; // incorrect, type of u is not anytype but a user defined union type
ba := { float := 1.0 }; // correct, assigning a literal value
ba := aal; // incorrect, type A.I is not present in the anytype B.Atype
ba := aaF; // incorrect, type A.F is not present in the anytype B.Atype
}
}
6.3.2.6 Compatibility between sub-structures

The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.

EXAMPLE:

// Given
type record
HType

JType {
H,

integer b optional,

integer

(¢}

ETSI

70 ETSI ES 201 873-1 V4.4.1 (2012-04)

var JType MyVarJ

// If considering the declarations above, then

MyVarJd.H := MyVarH;

// is a valid assignment as the type of field H of JType and HType are compatible

MyVarI := MyVardJ.H;
// is a valid assignment as IType and the type of field H of JType are compatible

6.3.3 Compatibility of component types
Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference valueto a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitionsin
"B".

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

¢) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this meansthat either the values are missing in both definitions or are the same).

d) For loca template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, receive, trigger, call, getcall, reply, getreply
and raise are exceptionsto the weaker rule of type compatibility and reguire strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also appliesto storing the received value, address or component reference during areceive
or trigger operation.

EXAMPLE:

type record MyRec {...} // user defined type

type MyRec MyRecAlias; // a type alias

type port MyPort message { inout MyRec, MyRecAlias; } // port that can transport both types
type component MyComponent { port MyPort P; }

template MyRecAlias t MyRecAlias:= {...} // a template of the alias type

var MyComponent myCompl := MyComponent.create, myComp2 := MyComponent.create;

connect (myCompl:P, myComp2:P) // two connected PTCs via ports that can

// transport the user-defined and the alias type

// in myCompl:
P.send (t_MyRecAlias); // sending of template of alias type

// in myComp2 :

P.receive (MyRec:?);

// shall not match as the transmitted template is of the alias type and
// not of the user-defined type

ETSI

71 ETSI ES 201 873-1 V4.4.1 (2012-04)

// in myComp2 :

var MyRec x;

P.receive (MyRecAlias:?) -> value Xx;

// shall cause an error since also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

// To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex (123, 4);

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for al kinds of types. Synonym
types are compatible.

EXAMPLE:

type MyTypel MyType2; // MyType2 is synonym to MyTypel

7 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure

SingleExpression |
w{m { (FieldReference ":=" (Expression | "-")) [","] } "}" | // compound expression
w{v [{ (Expression | "-") [","] }] n"}v // compound expression

Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Operands of operators used in expressions shall be completely initialized values except where explicitly stated
otherwise in the specific clause of the operator.

b) Theroot types of the operands shall be the types specified for the appropriate operand.

This means also that all fields and elements of structured types referenced in an expression shall contain compl etely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omi t.

Examples
(x + y - increment (z)) *3 // single expression
{ a:= 1, b:= true } // compound expression, field expression list
{ 1, true } // compound expression, value list

ETSI

72 ETSI ES 201 873-1 V4.4.1 (2012-04)

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators;
d) logical operators;
€) bitwise operators;
f) shift operators,
g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Values used as the operands of operators shall be completely initialized, except for those operands for which it
is explicitly allowed to be partially initialized (see clause 11.1).

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

ETSI

73 ETSI ES 201 873-1 V4.4.1 (2012-04)

The precedence of these operatorsis shown in table 6. Within any row in thistable, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest |Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of integer values (including derivations of integer) or floating-
point numbers (including derivations of £1loat, containing numeric values only), except for mod and rem which shall
be used with integer (including derivations of integer) typesonly.

NOTE: Thespecia float values infinity, -infinity andnot_a number are not to be used with
arithmetic operators.

With integer types, the result type of arithmetic operationsis integer. With float types, the result type of
arithmetic operationsis float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer valuesgivesthewhole integer part of the value resulting from dividing the first integer by
the second (i.e. fractions are discarded);

b) numeric £loat valuesgivesthe £loat valueresulting from dividing the first £1loat by the second (i.e.
fractions are not discarded).

The operators rem and mod compute on operands of type integer and have aresult of type integer. The
operationsx rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem v and x mod y have the same result but for
negative arguments they differ.

Formally, mod and rem are defined as follows:

X remy =X -y * (x/y)

xmod y = x rem |y]| when x >= 0
=0 when x < 0 and x rem |y| = 0
= |y| + x rem |y]| when x <0 and x rem |y| < 0

ETSI

74 ETSI ES 201 873-1 V4.4.1 (2012-04)

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
X mod 3 0 1 2 0 1 2 0
X rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, record of, set of, or array of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: In case of thelist types, both the outer type (i.e. record of, set of or array) and theiterated inner
type need to have the same root type in a recursive manner.

NOTE 2: Itisalso possible to concatenate two or more value list notation expressions if the result isto be used asa
record of or array of the same root type as the concatenated expressions.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B
{1,2} & {3,4} & {5,6} gives the following record of integer {1,2,3,4,5,6}

7.1.3 Relational operators

The predefined relational operators are equality (==), lessthan (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and lessthan or equal to (<=). The result type of all these operationsisboolean.

The relational operators less than (<), greater than (=), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type integer (including derivations of integer), £loat (including derivations of £loat),
or instances of the same enumerated type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references of type
compatible root types and the values or field references being compared shall obey the following rules. Thisimplies that
instances of types not mentioned below shall not be operands of equality and non-equality.

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same rules
apply to an address type and to its derivatives as the rules were if the type was defined with a name
different from address.

. Two field references are equal if the referenced fields are both optional fields and both fields are set to
omit or if both referenced fields (regardless if they are optional or not) are initialized with values and these
values are equal. A field referenceis equal to avalueif the referenced field isinitialized with avalue and both
values are equal.

. Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

e Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero isless than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
special values -infinity, infinity andnot a number areequal to themselves only. The specia
value -infinity islessthan any other float value. The special value infinity isgreater than any
numerical float valuesand - infinity. The special valuenot a number isgreater than any other float
value (including infinity).

. Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at al positions are the same.

ETSI

75 ETSI ES 201 873-1 V4.4.1 (2012-04)

For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3) and the actual values of all their elements are
equal. Record of values and array values may also be compared, in which case the corresponding record of
type of the array is being considered.

Vaues of the same union type, and values of different union typesin which at least one of the alternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible aternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected alternatives.

Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

It isalso possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If there is a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type.

EXAMPLE:

// Given

type set S1
integer al optional,
integer a2 optional,
integer a3 optional
i

type set s2
integer bl optional,
integer b2 optional,
integer b3 optional
Vi

type set S3
integer cl optional,
integer c2 optional,
i

type set of integer SI;

type union Ul
integer di,
integer d2,
Vi

type union U2
integer el,
integer e2,
Vi

type union U3 {

integer di,
integer d2,
boolean d3

}i

ETSI

76 ETSI ES 201 873-1 V4.4.1 (2012-04)

// And
const S1 s1 := { al := 0, a2 := omit, a3 := 2 };
// Notice that the order of defining values of the fields does not matter
const S2 s2a := { bl := 0, b3 := 2, b2 := omit };
const S2 s2b := { b2 := 0, b3 := 2, bl := omit };
const S3 s3 := { cl :=0, c2 :=2 };
var SI v si:= {0, -, 2 };
const SI si := {0, 2 };
const Ul wul := { dl:= 0 };
const U2 u2 := { el:=0 };
const U3 u3; := { di:= 0 };
// Then
sl == s2a;
// returns true
sl == s2b;

// returns false, because neither al nor a2 are equal to their counterparts

// (the corresponding element is not omitted)
sl == s3;

// returns false, because the effective value structures of sl and s3 are not compatible
sl == V_Si;

// causes test case error as v_si is not completely initialized

// (2nd element is left uninitialized)
sl == si;

// returns false, as the counterpart of the omitted a2 is 2,

// but the counterpart of a3 is undefined

s3 == si;

// returns true
ul == u2;

// causes error as Ul and U2 have no common subset of alternatives
ul == u3;

// returns true, as alternatives with the same names are chosen and
// the actual values in the selected alternatives are equal

{ 0, omit, 2 } == s1;
// returns true
s2a == { bl := 0, b2:= omit, b3 := 2 };
// returns true
{ s1, s2b } == { s2a, sl };
// returns false because s2b != sl
{ s1, s2b, s2a } == { s1 };
// returns false because of different length
sl.al == s2a.bl;
// returns true, both fields are initialized with values and the values are equal
sl.a2 == s2a.b2;
// returns true, both fields are omit
sl.al == s2a.b2;
// returns false, value vs. omit
sl.al == omit;
// error, omit is neither a value nor a field reference
sl.a2 == ;

// false, omit vs. value

7.1.4 Logical operators

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xox. Their
operands shall be of root type boolean. The result type of logical operationsisboolean.

Thelogical not isthe unary operator that returns the value true if its operand was of value £alse and returnsthe
value false if the operand was of value true.

Thelogical and returnsthe value true if both its operands are true; otherwiseit returnsthe value false.

Thelogica or returnsthe value true if at least one of its operandsis true; it returnsthe value £alse only if both
operands are false.

Thelogica xor returnsthe value true if one of itsoperandsis true; it returnsthe value £alse if both operands are
false orif both operands are true.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto £alse, then the right
argument is not evaluated and the whole expression evaluatesto false. In the case of the or operator, if the left
argument evaluates to true, then the right argument is not evaluated and the whole expression evaluates to true.

ETSI

77 ETSI ES 201 873-1 V4.4.1 (2012-04)

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known asnot4b, and4b, or4b and xor4b respectively.

NOTE: Toberead as"not for bit", "and for bit", etc.

Their operands shall be of root type bitstring, hexstring or octetstring. Inthe case of and4b, or4b and
xor4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 hit is
settoOand aObitissetto 1. That is:

not4b 'l1'B gives '0'B
not4b '0'B gives '1'B

EXAMPLE 1.

not4b '1010'B gives '0101'B
not4b 'l1A5'H gives 'ESA'H
not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'1'B and4b '1'B gives '1l'B

'1'B and4b '0'B gives '0'B

'0'B and4b '1'B gives '0'B

'0'B and4b '0'B gives '0'B

EXAMPLE 2:

'1001'B and4b '0101'B gives '0001'B
'B'H and4b '5'H gives '1l'H
'FB'O and4b '15'0 gives '11'0

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'1'B or4b '1'B gives 'l1l'B

'1'B or4b '0'B gives 'l1l'B

'0'B or4b 'l'B gives '1l'B

'0'B or4b '0'B gives '0'B

EXAMPLE 3:

'1001'B or4b '0101'B gives '1101'B
'9'H or4b '5'H gives 'D'H
'A9'0O or4b 'F5'0O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bitsare set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

'1'B xor4b 'l1'B gives '0'B

'0'B xor4b '0'B gives '0'B

'0'B xor4b '1'B gives '1'B

'1'B xor4b '0'B gives '1'B

EXAMPLE 4:
'1001'B xor4b '0101'B gives '1100'B

'9'H xor4b 'S5'H gives 'C'H
'39'0 xor4b '15'0 gives '2C'0O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bitstring, hexstring or octetstring. Their right-hand operand shall be a non-negative
integer. Theresult type of these operators shall be the same as the root type of the left operand.

ETSI

78 ETSI ES 201 873-1 V4.4.1 (2012-04)

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thenthe shift unit appliedisl bit;
b) hexstring then the shift unit applied is 1 hexadecimal digit;
C) octetstring thenthe shift unit appliedis1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1.
'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H
'1122334455'0 << (1+1) gives '3344550000'0O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left-hand side of the left operand.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123'H
'1122334455'0 >> (1+1) gives '0000112233'0

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall be of root typebitstring, hexstring, octetstring, charstring, universal charstring,
record of, or set of. Their right-hand operand shall be anon-negative integer. The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE: Please note that the root types of arraysisrecord of, therefore arrays are allowed as left-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their |eft-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedisl bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

C) octetstring then therotate unit appliedis1 octet;

d) charstringoruniversal charstring then therotate unit applied isone character;
€) record of, set of, Or array thentherotate unit applied isone element.

Therotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
arere-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1.

'101001'B <@ 2 gives '100110'B

'12345'H <@ 2 gives '34512'H

'1122334455'0 <@ (1+2) gives '4455112233'0
"abcdefg" <@ 3 gives "defgabc"

ETSI

79 ETSI ES 201 873-1 V4.4.1 (2012-04)

Therotateright (@>) operator accepts two operands. It rotates the |eft-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
arere-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @> 2 gives '011000'B

'12345'H @> 2 gives '45123'H

'1122334455'0 @> (1+2) gives '3344551122'0
"abcdefg" @> 3 gives "efgabcd"

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . £ield". Elements of record
of, set of, array and string types are referenced with the index notation " [index] ". Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

8 Modules

The principal building blocks of TTCN-3 are modules. A module may define afully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: Theterm test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

module ModuleIdentifier [language FreeText { "," FreeText } 1 "{"
[ModuleDefinitionsPart]
[ModuleControlPart]

n } n
Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The moduleidentifier istheinformal text name of the module.

In addition, a module specification can carry an optional attribute identified by the Language keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN-3:2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN-3:2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN-3:2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).

ETSI

80 ETSI ES 201 873-1 V4.4.1 (2012-04)

"TTCN-3:2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN-3:2008 Amendment 1" - to be used with modules complying with version 3.4.1 of the present document
(see annex H).

"TTCN-3:2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN-3:2010" - to be used with modules complying with version 4.2.1 of the present document (see annex H).
"TTCN-3:2011" - to be used with modules complying with version 4.3.1 of the present document (see annex H).
"TTCN-3:2012" - to be used with modules complying with the present document.

Furthermore, the optional attribute identified by the language keyword may identify package versions being used by
this module. The package tags are defined in ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12], and
ES 202 785 [i.13]. The language identifier and the package identifier are to be written as a comma-separated list.

Restrictions
In addition to the general static rulesof TTCN 3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

module MyTestSuite language "TTCN-3:2003"

{.)

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visihility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible modul e definitions may be imported by other modules.

Syntactical Structure

{

[Visibility 1 (
TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
GroupDef |
ExtFunctionDef |
FriendDef

) [WithStatement]

["’."]

b+

Semantic Description
Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. Thisincludes identifiersimported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

ETSI

81 ETSI ES 201 873-1 V4.4.1 (2012-04)

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
module MyModule
{ // This module contains definitions only
const integer MyConstant := 1;

type record MyMessageType { .. }

function TestStep(){ .. }

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at run-time. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

Syntactical Structure

Single type, single module parameter form:

[Visibility] modulepar ModuleParType ModuleParIdentifier [":=" ConstantExpression] ";"

Single type, multiple module parameter form:

[Visibility] modulepar ModuleParType
{ ModuleparIdentifier [":=" ConstantExpression] "," }
ModuleParIdentifier [":=" ConstantExpression] ";"

Semantic Description
Module parameters behave as global constants at run-time.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modulepar.

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual run-time value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual run-time values shall be literals
only.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an
optional attribute with thevalue"implicit omit" (see clause 27.7) shall be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) During test execution these values shall be treated as constants.

b) Module parameters shall not be of port type, default type or component type.

ETSI

82 ETSI ES 201 873-1 V4.4.1 (2012-04)

¢) A module parameter shall only be of type addressif the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) More than one occurrence of module parameters declaration is alowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples
module MyTestSuiteWithParameters

{

// single type, single module parameter, which is per default public
modulepar boolean TS Par0 := true;

// single type, multiple module parameters with an explicit public visibility
public modulepar integer TS Parl, TS Par2 := 1 + char2int("a");

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group GroupIdentifier "{"
{ Modulepefinition [";" 1 }
||}||

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiers and all group identifiers of subgroups of a single group shall be unique.

b) Only public visihility can be defined for groups as they are always public.

Examples

module MyModule {
// A collection of definitions
group MyGroup {
const integer MyConst:= 1;

type record MyMessageType { .. };

group MyGroupl // Sub-group with definitions
type record AnotherMessageType { .. };
const boolean MyBoolean := false

ETSI

83 ETSI ES 201 873-1 V4.4.1 (2012-04)

}

// A group of altsteps
group MyStepLibrary ({
group MyGroupl // Sub-group with the same name as the sub-group with definitions
altstep MyStepll() { ..}
altstep MyStepl2() { .. }

altstep MyStepln() { .. }
1
group MyGroup2 {
altstep MyStep21() { .. }
altstep MyStep22() { .. }

altstep MyStep2n() { .. }

}

// An import statement that imports MyGroupl within MyStepLibrary
import from MyModule {

group MyStepLibrary.MyGroupl
1

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the import statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default public (see clause 8.2.5).

NOTE: Groupsarepublic only. Importing agroup meansthat only the visible elements of the group are being
imported.

8.2.3.1 General format of import
Animport statement can be used anywhere in the module definitions part.

Syntactical Structure

[Visibility] import from ModuleId
(
(all [except "{" ExceptSpec "}" 1)

("{" ImportSpec "}")
)
[||,.||]

Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. afunction name), a specification (e.g. atype specification or asignature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE la
Name Specification Behaviour description
function MyFunction |(inout MyTypel MyPar) return MyType2 {
runs on MyCompType const MyType3 MyConst := ..;
: // further behaviour

ETSI

84 ETSI ES 201 873-1 V4.4.1 (2012-04)

Specification Name Specification
type record MyRecordType |{

fieldl MyType4,
field2 integer

}

Specification Name Specification
template |MyType5 MyTemplate =
fieldl := 1,
field2 := MyConst, // MyConst is a module constant
field3 := ModulePar // ModulePar is module parameter

}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |fieldl, field2 MyType4, integer
template |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Thelocal definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individua fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via My Typeb.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

ETSI

85 ETSI ES 201 873-1 V4.4.1 (2012-04)

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (runs
on clause)
Test case Parameter names Parameter types, component types (runs on- and
system clause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distingui shes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier.

module A
type record MyRecl
integer fieldl,
charstring field2
}
}

module B {
import from A all;
type record MyRec2
MyRecl myFieldl,
// "myFieldl" is the local definition, "MyRecl" is a referenced definition;
// the name "MyRecl" shall be imported in this case as is directly referenced
boolean myField2

}
}

module C
import from B all;
const MyRec2 t MyRec2 := {
myFieldl := { fieldl := 5, field2 := "A" },

// to define myFieldl of MyRec2 the name "MyRecl" is not needed, the
// information necessary for the usage is its type information,
// i.e. names and types of its fields fieldl and field2
// which is embeddded in the imported definition of MyRec2
myField2 := true

}
}

If an imported definition has attributes (defined by means of awi th statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

ETSI

86 ETSI ES 201 873-1 V4.4.1 (2012-04)

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All import statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot (".").

Thereis one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated val ue shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 4 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in afunction) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

NOTE 5: A local definition, e.g. afield name of a user-defined record type or an enumerated value, has only
meaning in the context of the definitionsin which it is defined, e.g. afield name of arecord type can only
be used to access afield of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

d) A definitionisimported together with all information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses a type reference defined in module A, the
corresponding information necessary for the usage of that type is automatically imported into module C
(see example 5 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or local definitions (e.g. formal parameters of templates, functions, etc., or constants and
variables of component types) of an enumerated type from module B, the enumerated values of thistype
(i.e. theidentifiers) areimplicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or avalueis assigned to a component variable). Note that thisimplicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

e) If thereferenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (seeclause 8.2.3.7).

f) Whenimporting a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

ETSI

9)

h)

87 ETSI ES 201 873-1 V4.4.1 (2012-04)

The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided alanguage specification is defined

in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1. Selected import examples

module MyModuleA

{

}

// Scope of the imported definitions is global to MyModuleA
import from MyModuleB all; // import of all definitions from MyModuleB

import from MyModuleC ({ // import of selected definitions from MyModuleC
type MyTypel, MyType2; // import of types MyTypel and MyType2
template all // import of all templates

}
function MyBehaviourC ()

{
// import cannot be used here
1

control

{

// import cannot be used here

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them

module ModuleONE {

modulepar integer ModParl := ..;

type record RecordType Tl
integer Fieldl T1,

}

type record RecordType_ T2 {
RecordType_ T1 Fieldl T2,

const integer MyConst := ..;

template RecordType T2 Template T2 (RecordType Tl TempPar T2):= { // parameterized template
Fieldl T2 := ..,

}

} // end module ModuleONE

module ModuleTWO {

import from ModuleONE {
template Template T2

// Only the names Template T2 and TempPar T2 will be visible in ModuleTWO. Please note, that
// the identifier TempPar T2 can only be used when modifying Template T2. All information

// necessary for the usage of Template T2, e.g. for type checking purposes, are imported

// for the referenced definitions RecordType T1l, Fieldl T2, etc., but their identifiers are
// not visible in ModuleTWO.

// This means, e.g. it is not possible to use the constant MyConst or to declare a

// variable of type RecordType Tl or RecordType T2 in ModuleTWO without explicitly importing
// these types.

ETSI

88 ETSI ES 201 873-1 V4.4.1 (2012-04)

import from ModuleONE {
modulepar ModPar2
}

// The module parameter ModPar2 of ModuleONE is imported from ModuleONE and
// can be used like an integer constant

} // end module ModuleTWO

module ModuleTHREE {
import from ModuleONE all; // imports all definitions from ModuleONE
type port MyPortType message {

inout RecordType T2 // Reference to a type defined in ModuleONE
1

type component MyCompType {
var integer MyComponentVar := ModPar2;
// Reference to a module parameter of ModuleONE

}

function MyFunction () return integer ({
return MyConst // Reference to a module constant of ModuleONE
1

testcase MyTestCase (out RecordType T2 MyPar) runs on MyCompType {

MyPort.send (Template T2); // Sending a template defined in ModuleONE

}

} // end ModuleTHREE

module ModuleFOUR {
import from ModuleTHREE {

testcase MyTestCase

// Only the name MyTestCase will be visible and usable in ModuleFOUR.

// Type information for RecordType T2 is imported via ModuleTHREE from ModuleONE and
// Type information for MyCompType is imported from ModuleTHREE. All definitions

// used in the behaviour part of MyTestCase remain hidden for the user of ModuleFOUR.

} // end ModuleFOUR

EXAMPLE 3: Handling of name clashes
module MyModuleA {

t;pe bitstring MyTypeh;

import from SomeModuleC {

type MyTypeA, // Where MyTypeA is of type character string
MyTypeB // Where MyTypeB is of type character string

}

control ({

var SomeModuleC.MyTypeA MyVarl := "Test String"; // Prefix must be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA
var MyTypeB MyVar3 := "Test String"; // Prefix need not be used ..

var SomeModuleC.MyTypeB MyVar3 := "Test String"; // .. but it can be if wished

ETSI

89 ETSI ES 201 873-1 V4.4.1 (2012-04)

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Name clash between enumerated values and global definitions

module A
type enumerated MyEnumType {enumX, enumY, enumZ}
type enumerated MyEnumType2 {enumX, enumY, enumZ}

}

module B
import from A all;
const MyEnumType enumY := enumX; // this is not allowed as enumerated values restrict
// global names (see clause 6.2.4)

const MyEnumType2 enumX := enumX;// this is likewise not allowed
const integer enumZ := 0;
modulepar MyEnumType px_ MyModuleParl := enumY

// the default value of the module parameter will be the value enumY, as the type of

// px_MyModuleParl creates the context of MyEnumType and in this context enumerated values
// take precedence over global definition names; note that for the same context reason there
// in no name clash between the enumerated values defined in MyEnumType and in MyEnumType2

modulepar MyEnumType px MyModulePar2 := B.enumY
// the default value of the module parameter will be the value enumX, as the prefix
// identifies the constant definition enumY unambiguously, which has the value enumX

modulepar integer px_ IntegerPar := enumZ;
// the default value of the module parameter will be 0 as this assignment is not in the
// context of an enumerated type, hence no name clash occurs

modulepar MyEnumType px MyModulePar3 := B.enumX
// causes an error as px MyModulePar3 and the constant enumX has different types

1
EXAMPLES5: Importing local definitions transitively
module A

type enumerated MyEnum Type { enumX, enumY, enumZ}
type record MyRec { integer a, integer b }

type component MyComp { var MyRec v Rec := { a := 5 } }
}
module B {

import from A all;

modulepar MyEnum Type px_MyModulePar := enumY;

type component MyCompUser extends MyComp {}

}

module C
import from B all;
testcase TC() runs on MyCompUser {
if (px MyModulePar == enumY)
// the enumerated value enumY is know in C without explicitly importing it from A
setverdict (pass)
1
if (v_Rec.a == 5) {
v_Rec.b := v_Rec.a;
// Both the variable name v_Rec and the record field names are known in C without
// explicitly importing them from A
setverdict (pass)

8.2.3.2 Importing single definitions
Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of

single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

ETSI

90 ETSI ES 201 873-1 V4.4.1 (2012-04)

Syntactical Structure

[Visibility] import from ModuleId "{"

{
(

(type { TypeDefIdentifier [Lv,m1 1}
(template { TemplateIdentifier [S D
(const { constIdentifier L1}
(testcase { TestcaseIdentifier L1} |
(altstep { AltstepIdentifier L1} |
(function { FunctionIdentifier [S B
(signature { SignatureIdentifier [I D
(modulepar { ModuleParIdentifier L, 1 3}

[n H n]
1
n } n [non]
Semantic Description
See clause 8.2.3. Import of an invisible definition shall cause an error.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it isto be imported and shall be visible
to the importing module.

b) Seetherestrictions givenin clause 8.2.3.

Examples

import from MyModuleA ({
type MyTypel // imports one type definition from MyModuleA only
}

import from MyModuleB {

type MyType2, Mytype3, MyType4; // imports three types,
template MyTemplatel; // imports one template, and
const MyConstl, MyConst2 // imports two constants
1
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. The all keyword is also alowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] import from ModuleId "{"
{
(group { QualifiedIdentifier [except "{" ExceptSpec "}" 1 ["," 1 })
[n ’. n]

||}|| [non]

ETSI

91 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

The effect of importing agroup isidentical to an import statement that listsall visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; al statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thegroup to beimported shall be defined in the module from which it is to be imported.
b) Seetherestrictions givenin clause 8.2.3.

Examples
import from MyModule { group MyGroup } // includes all visible definitions from MyGroup

import from MyModule ({
group MyGroup except
type MyType3, MyType5; // excludes the two types from the import statement,
template all // excludes all templates defined in MyGroup
// from the import statement
// but imports all other visible definitions of MyGroup

}

import from MyModule ({
group MyGroup
except { type MyType3 };// imports all visible types of MyGroup except MyType3
type MyType3 // imports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

The all keyword may be used to import all visible definitions of the same kind of amodule. Theall keyword used
with the constant keyword identifies all visible constants declared in the definitions part of the module the import
statement refersto. Similarly the all keyword used with the function keyword identifies al visible functions and
all visible external functions defined in the module the import statement denotes.

If some visible declarations of akind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] import from ModuleId "{"

{
(

(type all [except { TypeDefIdentifier L1311 |
(template all [except { TemplateIdentifier L1311 |
(const all [except { ConstIdentifier L, 1 311 |
(testcase all [except { TestcaseIdentifier L, 1 311 |
(altstep all [except { AltstepIdentifier L1311 |
(function all [except { FunctionIdentifier L1311 |
(signature all [except { SignatureIdentifier ["," 1 } 1) |
(modulepar all [except { ModuleParIdentifier ["," 1 } 1)

[||,.||]

n}n [v;m]

ETSI

92 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

The effect of importing definitions of the ssme kind isidentical to an import statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictionsgivenin clause 8.2.3.

Examples
import from MyModule {
type all; // imports all types of MyModule
template all // imports all templates of MyModule

}

import from MyModule ({

type all except MyType3, MyType5; // imports all types except MyType3 and MyTypeb
template all // imports all templates defined in Mymodule
}
8.2.35 Importing all definitions of a module

All visible definitions of a module definitions part may be imported using the a11 keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within apair of curly brackets following the except keyword. The all keyword is also alowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing al definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

Syntactical Structure
[Visibility] import from ModuleId
all
[

except "{"

(group { OQualifiedIdentifier v, 1} all)
(type { TypeDefIdentifier [m,m 1} all)
(template { TemplateIdentifier v, 1} all) |
(const { constIdentifier [v,m 1} all)
(testcase { TestcaseIdentifier v, 1} all) |
(altstep { AltstepIdentifier [v,m 1} all) |
(function { FunctionIdentifier v, 1} all) |
(signature { SignatureIdentifier [v,m1} all) |
(modulepar { ModuleParIdentifier v, 1} all)

||}||
[";n]

]
[||,.||]

Semantic Description

The effect of importing all visible definitions of amodule isidentical to an import statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

ETSI

93 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If dl visible definitions of a module are imported by using the al keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) isallowed.

Examples
import from MyModule all; // includes all definitions from MyModule

import from MyModule all except
type MyType3, MyType5; // excludes these two types from the import statement and
template all // excludes all templates declared in MyModule,
// from the import statement
// but imports all other definitions of MyModule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with aversion number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of the 1language keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from

ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12] and ES 202 785 [i.13] can be used in addition. Identifiers for
other languages are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [i.5], ES 201 873-8 [i.6] and
ES 201 873-9[i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec] .. [";" 1]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of agiven edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on astructured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when a base typeis a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of aversioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e toimport fromaTTCN-3 module of another edition of from a non-TTCN-3 module the import statement shal
contain an appropriate language identifier string;

ETSI

94 ETSI ES 201 873-1 V4.4.1 (2012-04)

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the al directive, in which case al importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ES 201 873-7 [i.5], ES 201 873-8 [i.6] or
ES 201 873-9 [i.7], respectively).

Examples

module MyNewModule {
import from MyOldModule language "TTCN-3:2003" {
type MyType

}

module MyNewestModule {
import from MyNewModule language "TTCN-3:2010" { import all };
// the language specifications shall be identical, see clause 8.2.3.8

1
NOTE: Theimport mechanismis designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.
8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] import from ModuleIdentifier [LanguageSpec]
||{|| import all [non] ||}|| [non]

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, isalso imported by B. If another module C imports all import statements from B, then
Cimportsall what A isimporting - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Therestrictions givenin clause 8.2.3.6 apply.

¢) Importing of import statementsis only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

ETSI

95 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE: Importing of visible import statements

module A {
type integer T1;
type integer T2;
template T1 t1 :
template T2 t2 :

? .
T
* .

7

module B {
public import from A { type T1 }
type charstring T2;

template T1 t1 := (1, 2, 3);

module C
public import from B { import all } // imports the import statements only
public import from B { type T2 } // imports the type B.T2

import from A { template all }

module D
private import from C { import all } // imports the import statements only

module E
import from D { import all }

// yields the following
// module A knows

// A.T1 (defined)

// A.T2 (defined)

// A.tl (defined)

// A.t2 (defined)

//

// module B knows

// A.T1 (imported)

// B.T2 (defined)

// B.tl (defined)

!/

// module C knows

// A.T1 (imported from B importing it from A)
// B.T2 (imported)

// A.tl (imported)

// A.t2 (imported)

!/

// module D knows

// A.T1 (imported from C importing it from B importing it from A)
// B.T2 (imported from C importing it from B)
// A.t2 and A.t2 are not imported as their imports are private to C
//

// module E "knows" nothing
// as the imports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

ETSI

96 ETSI ES 201 873-1 V4.4.1 (2012-04)

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both alanguage specification, then they shall be
identical. If none of the two has alanguage specification, the language specification has to be known from
other sources, which istool specific.

¢) The TTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language
specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of
TTCN-3 but not from later editions.

8.2.4 Definition of friend modules

Modules can define other modules to be friends.

Syntactical Structure
[private] friend module ModuleIdentifier { "," ModuleIdentifier } ";™"
Semantic Description

Friendship to modulesis defined by the exporting module (the modul e that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, al top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend moduleis
missing.

Restrictions
In addition to the general static rulesof TTCN 3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

module MyModuleA ({
friend module MyModuleB,MyModuleC;
1

// MyModuleB and MyModuleC are friends of MyModuleA

module MyModuleB {
friend module MyModuleA;
1

// MyModuleA is friend of MyModuleB

module MyModuleC ({

}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
public except for imported and friend definitions. Import definitions are by default private. Friend definitions are
private only. Group definitions are public only.

Syntactical Structure

[public | friend | private]
Semantic Description

The visibility controls whether atop-level definition or an import statement isimportable by another module.

ETSI

97 ETSI ES 201 873-1 V4.4.1 (2012-04)

Three visibilities are distinguished:

e Atop-level definition or an import statement with public visihility isimportable by any other module.

e A top-level definition or an import statement with £riend visibility isimportable by friend modules only
(seeclause 8.2.4).

A top-level definition or an import statement with private visibility cannot be imported at all.

NOTE: Asspecifiedinrestriction €) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis

not visible in the importing TTCN-3 module.

The visibility of groupsis awayspublic. Thevisibility of imported definitionsis by default private. All other
module definitions are by default public.

The visibility of atop-level definition or an import statement defines their importability by another module. If the top-
level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of

import statementsin table 10.

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition [Module definition [Module definition
module definition importable importable importable via importable via
directly by a directly by a [group import by afgroup import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyModuleA {

friend module MyModuleC;

private type integer MyInteger;
// MyInteger is not visible to other modules
friend type charstring MyString;
// MyString is visible to friend modules
public type boolean MyBoolean;
// MyBoolean is visible to all modules

module MyModuleB {

import from MyModuleA all;
// MyString and MyInteger are not visible and are not imported
// MyBoolean is imported

ETSI

98 ETSI ES 201 873-1 V4.4.1 (2012-04)

module MyModuleC {
import from MyModuleA all;
// MyInteger is not visible and is not imported
// MyString and MyBoolean are imported

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisis explained in more detail in clause 26.

EXAMPLE:
module MyTestSuite
{ // This module contains definitions ..

const integer MyConstant := 1;
type record MyMessageType { .. }
template MyMessageType MyMessage := { .. }
function MyFunctionl() { ..}
function MyFunction2() { ..}

testcase MyTestcasel() runs on MyMTCType { .. }
testcase MyTestcase2() runs on MyMTCType { .. }

// .. and a control part so it is executable
control

{

var boolean MyVariable; // local control variable

execute (MyTestCasel()); // sequential execution of test cases
execute (MyTestCase2()) ;

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package[i.11].

TTCN Test system

<4+“—>
MTC PTC,

‘l_, PTC, —T

+ Abstract Test System Interface V*

J J
Real Test System Interface

SUT

Figure 4: Conceptual view of a typical TTCN-3 test configuration

ETSI

99 ETSI ES 201 873-1 V4.4.1 (2012-04)

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called paralel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of the create
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop al PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords component and port, shal be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of themap operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC m‘— PTC
>

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6 (g) or figure 6 (h)).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thefollowing connections are not alowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 7 (a) and 7 (e)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 7 (b) and 7 (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (9)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

ETSI

test component

A

test component
B

@

test component

A

[
A

test component

B

test component

] B

test component

C

(c)
test component
A
(e)
test component
A
(9)

100

ETSI ES 201 873-1 V4.4.1 (2012-04)

test system

test component

test system interface

-0

(b)

test system

test component

test system interface

(d)

test component
A

®

test system

test component

test component
A B

=

2

test system interface

Ao

Figure 6: Allowed connections

ETSI

p——

(h)

101 ETSI ES 201 873-1 V4.4.1 (2012-04)

test system

test component
test component

A

test system interface

@ (b)

test system

test component test component
test component :| B A

Il] /E&\
>

test system interface

N
(

(c) (d)

test component test system
A -
[é test system interface /_I\ A

(e) ®

test system
Y test component test component

A B

test system interface f\/
—/

(@)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in ageneral way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definition, i.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

102 ETSI ES 201 873-1 V4.4.1 (2012-04)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.10 and 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceis system. This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same asfor component type definitions (see clauses 6.2.10 and 6.2.10.1).

Examples

EXAMPLE 1. Explicit definition of atest system interface

type component MyMTCType

{
var integer MyLocallInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1

type component MyTestSystemInterface

{
port MyMessagePortType PCO1, PCO2;
port MyProcedurePortType PCO3

}

// MyTestSystemInterface is the test system interface
testcase MyTestcasel () runs on MyMTCType system MyTestSystemInterface {
// establishing the port connections
map (mtc:PCO1l, system:PCO2) ;
// the testcase behaviour
/]
}

EXAMPLE 2 Implicit definition of atest system interface

// MyMTCType is the test system interface
testcase MyTestcase2 () runs on MyMTCType ({
// map statements are not needed
// the testcase behaviour

/]

ETSI

103 ETSI ES 201 873-1 V4.4.1 (2012-04)

10 Declaring constants

TTCN-3 constants are run-time constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure
const Type { ConstIdentifier [ArrayDef] ":=" ConstantExpression ["," 1 } [";"]
Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multipletimesin a TTCN-3 module.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an optional attribute with thevalue "implicit
omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: Theonly value that can be assigned to constants of default and component typesis the special value
null.

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of rnd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

Examples

const integer MyConstl :
const boolean MyConst2 :

1;
true, MyConst3 := false;

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variablesto store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

11.1 Value variables

A TTCN-3 vaue variable stores values. It is declared by the var keyword followed by atype identifier and a variable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
return keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

ETSI

104 ETSI ES 201 873-1 V4.4.1 (2012-04)

Syntactical Structure

var Type VarIdentifier [ArrayDef] [":=" Expression]
{ [", 1 varIdentifier [ArrayDef 1 [":=" Expression 1 } [";"]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto a value variable. The value variable can be referenced
multipletimesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Vauevariablesshal store valuesonly.

¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized value variables at other places than the left hand side of assignments or as actual
parameters passed to formal parameters shall cause an error.

€) Useof partialy initialized value variables at other places than the left hand side or the right hand side of
assignments, as actual parameters passed to formal parameters, in return statements, or the left operand to the
rotate operator or the operands of the list concatenation (&) operator shall cause an error.

Examples

var integer MyVaroO;
var integer MyVarl :
var boolean MyVar2 :

1;
true, MyVar3 := false;

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by the var template keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
return keyword in bodies of functions defining atemplate-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var template [restriction] Type VarIdentifier [ArrayDef] ":=" TemplateBody
{ [", 1 VarIdentifier [ArrayDef] ":=" TemplateBody } [";"]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
severa timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.

ETSI

105 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is alowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized template variables at other places than the left hand side of assignments or as actual
parameters passed to formal parameters shall cause an error.

€) Useof partidly initialized template variables at other places than the left hand side or the right hand side of
assignments, as actual parameters passed to formal parameters, or in return statements shall cause an error.

f) If thetemplate variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Templatevariables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templatesin clause 15 shall apply.

Examples
var template integer MyVarTempl := ?;
var template MyRecord MyVarTemp2 { fieldl := true, field2 := * },
MyVarTemp3 := { fieldl := ?, field2 := MyVarTempl };

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negative £loat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can aso be declared. Default duration(s) of the elements of atimer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol ("-").

Syntactical Structure

timer { TimerIdentifier [ArrayDef] ":=" TimerValue ["," 1 } [";"]
Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the el apsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timersdeclared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit isleft.

NOTE 2: Itisnot possible to define atimer array as type.

ETSI

106 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value (i.e.
the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction @) above of the same
Size as the size of the timer array.

Examples

EXAMPLE 1. Singletimer

timer MyTimerl := 5E-3;
// declaration of the timer MyTimerl with the default value of 5ms

timer MyTimer2; // declaration of MyTimer2 without a default timer value i.e. a value has
// to be assigned when the timer is started

EXAMPLE 2: Timer array

timer t Mytimer1[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }
// all elements of the timer array get a default duration.

timer t Mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }
// the second timer (t_Mytimer2([1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

// a structured, ordered message with two fields
type record ARecord { integer i, float f }

ETSI

107 ETSI ES 201 873-1 V4.4.1 (2012-04)

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or in the test system (i.e. the SUT performsthe call).

Syntactical Structure

signature SignatureIdentifier

"(" { [in | inout | out] Type ValueParIdentifier [","] } ")"
[(return Type) | noblock]
[exception " (" ExceptionTypeList ")"]

Semantic Description

For all used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure signature shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the noblock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Within a signature definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. in, out, or inout. Thedirection inout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
areturn clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation istool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usualy only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the noblock keyword, shall only have in
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component or default type or of structured types having fields of
port, component or default type.

Examples
signature MyRemoteProcOne () ; // MyRemoteProcOne will be used for blocking
// procedure-based communication. It has neither
// parameters nor a return value.
signature MyRemoteProcTwo () noblock; // MyRemoteProcTwo will be used for non blocking

// procedure-based communication. It has neither
// parameters nor a return value.

signature MyRemoteProcThree (in integer Parl, out float Par2, inout integer Par3);

// MyRemoteProcThree will be used for blocking procedure-based communication. The procedure
// has three parameters: Parl an in parameter of type integer, Par2 an out parameter of

// type float and Par3 an inout parameter of type integer.

ETSI

108 ETSI ES 201 873-1 V4.4.1 (2012-04)

signature MyRemoteProcFour (in integer Parl) return integer;

// MyRemoteProcFour will be used for blocking procedure-based communication. The procedure
// has the in parameter Parl of type integer and returns a value of type integer after its
// termination

signature MyRemoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2) ;
// MyRemoteProcFive will be used for blocking procedure-based communication. It returns a
// float value in the inout parameter Parl and an integer value, or may raise exceptions of
// type ExceptionTypel or ExceptionType2

signature MyRemoteProcSix (in integer Parl) noblock

exception (integer, float);
// MyRemoteProcSix will be used for non-blocking procedure-based communication. In case of
// an unsuccessful termination, MyRemoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatesshall not be of default type.

b) Structured type or signature templates shall not include afield of default type, neither directly, nor by
nesting or referencing a structured type or signature that contains a default field.

NOTE: The anytype type doesnot include the default type (see clause 6.2.6), so that restriction b) does not
apply to anytype templates.

Examples

type record MyRecord ({
default def
1
type union MyUnion
integer choicel,
MyRecord choice2
1
template MyUnion t_integerChosen := { choicel := 5 }
// shall cause an error as the type MyUnion contains MyRecord, which includes
// a field of default type.

ETSI

109 ETSI ES 201 873-1 V4.4.1 (2012-04)

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A template used in areceive, trigger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetime of a send operation, the used template shall be completely initialized and all fields shall resolveto
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At thetime of areceiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an optional attribute with the
value "implicit omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

}

// a message template could be
template MyMessageType MyTemplate:=

fieldl := omit,
field2 := "My string",
field3 := true

}

// and a corresponding send operation could be
MyPCO.send (MyTemplate) ;

EXAMPLE 2: Template for receiving messages

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

ETSI

110 ETSI ES 201 873-1 V4.4.1 (2012-04)

// a message template might be
template MyMessageType MyTemplate:=

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

// and a corresponding receive operation could be
MyPCO.receive (MyTemplate) ;

EXAMPLE 3: Template for receiving messages

// When used in a receiving operation this template will match any integer value
template integer Mytemplate := ?;

// This template will match only the integer values 1, 2 or 3
template integer Mytemplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used inacall or reply operation defines a complete set of field valuesfor all in and inout
parameters. At the time of the call operation, al in and inout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersis simply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in agetcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeof acall, reply and raise operation, the used template shall be completely initialized and all
in/inout parametersinacall, al out/inout parametersin areply Or raise operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof agetcall, getreply and catch operation, the matching template shall be completely initialized.

c¢) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an optional attribute with thevalue "implicit
omit" (see clause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

ETSI

111 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples
EXAMPLE 1. Templates for invoking and accepting procedures

// signature definition for a remote procedure
signature RemoteProc (in integer Parl, out integer Par2, inout integer Par3) return integer;

// example templates associated to defined procedure signature
template RemoteProc Templatel:=

{

Parl := 1,
Par2 := 2,
Par3 := 3

}

template RemoteProc Template2:

{

Parl := 1,
Par2 := ?,
Par3 := 3

}

template RemoteProc Template3:

{

Parl := 1,
Par2 := ?,
Par3 := ?

}

template RemoteProc Template4:=?;
EXAMPLE 2: In-line templates for invoking procedures
// Given example 1 in this clause

// Valid invocation since all in and inout parameters have a distinct value
MyPCO.call (RemoteProc:Templatel) ;

// Valid invocation since all in and inout parameters have a distinct value
MyPCO.call (RemoteProc:Template2) ;

// Invalid invocation causing an error
// since the inout parameter Par3 has a matching attribute not a value

MyPCO.call (RemoteProc:Template3) ;

// Templates never return values. In the case of Par2 and Par3 the values returned by the
// call operation must be retrieved using an assignment clause at the end of the call statement

EXAMPLE 3: In-line templates for accepting procedure invocations
// Given example 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 == 3
MyPCO.getcall (RemoteProc:Templatel) ;

// Valid getcall, it will match if Parl == 1 and Par3 == 3
MyPCO.getcall (RemoteProc:Template2) ;

// Valid getcall, it will match on Parl == 1 and Any value of Par3
MyPCO.getcall (RemoteProc:Template3l) ;

EXAMPLE 4: In-line templates for accepting procedure replies
// Given example 1 in this clause

// Valid getreply, in parameters will be ignored, matches if return value is 4
MyPCO.getreply (RemoteProc:Template2 value 4);

// Valid getreply, accepting any reply for RemoteProc
MyPCO.getreply (RemoteProc:?) ;

// Valid getreply, also accepting any reply for RemoteProc
MyPCO.getcall (RemoteProc:Template4 value ?);

ETSI

112 ETSI ES 201 873-1 V4.4.1 (2012-04)

15.3 Global and local templates
TTCN-3 alows defining global templates and local templates.

Syntactical Structure

template [restriction] Type TemplateIdentifier [" (" TemplateFormalParList ")"]
[modifies TemplateRef] ":=" TemplateBody

NOTE: The optional restriction part is covered by clause 15.8.
Semantic Description

Globa templates can be defined in the module definitions part. Local templates can be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates scoping rules specified in clause 5

apply.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

At the time of their use (e.g. in communication operations send, receive, call, getcall, etc),itisalowedto
change template fields by in-line modified templates, to passin values via value parameters as well asto passin
templates viatemplate parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Thedot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Redtrictions on referencing elements of templates or template fields are described in clause 15.6.

c) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

// The template
template MyMessageType MyTemplate (integer MyFormalParam) :=

fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows
pcol.send (MyTemplate (123)) ;

15.4 In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":" 1 [modifies TemplateRefWithParList ":="] TemplateBody

NOTE 1. Anin-linetemplate is an argument of a communication operation or an actual parameter of atestcase,
function or atstep call, i.e. it isaways placed within parenthesis and potentially separated with a comma.

Semantic Description

In-line templates can be defined directly at the place of its use.

ETSI

113 ETSI ES 201 873-1 V4.4.1 (2012-04)

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port and default types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

NOTE 2: For litera in-line templates, the following types may be omitted: integer, float, boolean,
bitstring, hexstring, octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

¢) In-linetemplates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. receive, trigger, check,
getcall, getreply and catch), in arguments of thematch and select case operations, in actual
template parameters, at the right hand side of assignments (when there is atemplate variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
contai ning matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

MyPCO.receive (charstring: "abcxyz") ;

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the origina
template, either directly or indirectly. As well as creating explicitly named modified templates, TTCN-3 allows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
modifies TemplateRef ":=" TemplateBody

NOTE: The optional restriction part is covered by clause 15.8.
In-line modified template:

[Type ":"] modifies TemplateRefWithParList ":=" TemplateBody
Semantic Description

Themodifies keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

ETSI

114 ETSI ES 201 873-1 V4.4.1 (2012-04)

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or a modified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished;

3) if thedash (don't change) symbol is used at the place of adefault value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

¢) Resdtrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1:

// Given

type record MyRecordType

{
integer fieldl optional,
charstring field2,
boolean field3

}

template MyRecordType MyTemplatel :=

fieldl := 123,
field2 := "A string",
field3 := true

// then writing
template MyRecordType MyTemplate2 modifies MyTemplatel :=

fieldl :
field2 :

omit, // fieldl is optional but present in MyTemplatel
"A modified string"

// £ield3 is unchanged

// is the same as writing
template MyRecordType MyTemplate2 :=

fieldl :
field2

omit,
"A modified string",

ETSI

115 ETSI ES 201 873-1 V4.4.1 (2012-04)

field3 := true

1
EXAMPLE 2: Modified record of template

template MyRecordOfType MyBaseTemplate := { o, 1, 2, 3, 4, 5, 6, 7, 9
template MyRecordOfType MyModifTemplate modifies MyBaseTemplate := { [2]
// MyModifTemplate shall match the sequence of values { 0, 1, 3, 2, 5

EXAMPLE 3: Modified in-line template

// Given
template MyMessageType Setup :=
{ fieldl := 75,

field2 := "abc",

field3 true

}

// Could be used to define an in-line modified template of Setup
pcol.send (modifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template

// Given
template MyRecordType MyTemplatel (integer MyPar) :=

fieldl := MyPar,
field2 := "A string",
field3 true

}

// then a modification could be
template MyRecordType MyTemplate2 (integer MyPar) modifies MyTemplatel :=

{ // fieldl is parameterized in Templatel and remains also parameterized in Template2
field2 := "A modified string"

}

EXAMPLES: Default values of modified parameterized templates

// Given
template MyRecordType MyTemplatell (integer p _int := 5):= {
// p_int has the default value 5
fieldl := p_int,
field2 := "A string",
field3 := true

}

// then possible template modifications are

template MyRecordType MyTemplatel2 (integer p int) modifies MyTemplatell := {
// p_int had a default value in MyTemplatell but has none in this template
field2 := "B string"

}

template MyRecordType MyTemplatel3 (integer p_int := 0) modifies MyTemplatel2 := {
// p_int has the default value 0
// no change is made to the template's content, but only to the default value of p_int

}

template MyRecordType MyTemplatel4 (integer p int := -) modifies MyTemplatel3 := {
// p_int inherits the default value 0 from its parent MyTemplatel3
field2 := "C string"

}

template MyRecordType MyTemplatel5 (integer p int := -) modifies MyTemplateld := {
// p_int inherits the default value 0 from MyTemplatel3 via MyTemplatel4
field2 := "D string"

}

template MyRecordType MyTemplatel6 (integer p int) modifies MyTemplatel5 := {

// p_int has no default value

template MyRecordType MyTemplatel7 (integer p int := -) modifies MyTemplatel6 := {
// causes an error as p_int has no default value in the parent template MyTemplatelé6
field2 := "E string"

ETSI

116 ETSI ES 201 873-1 V4.4.1 (2012-04)

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It isnot alowed to reference individua string elementsinside templates or template fields. Instead, the substr
function (see clause C.4.2) shall be used.

EXAMPLE:

var template charstring t_ Charl := "MYCHAR";
var template charstring t_Char2;

t_Char2 := t_Charl[1l];
// shall cause an error as referencing individual string elements is not allowed

15.6.2 Referencing record and set fields

Both templates and template variables alow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a Omit, AnyVaueOrNone, template lists and complemented lists. referencing a subfield within a structured field
to which Omit, AnyVaueOrNone, atemplate list or a complemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively up
to and including the depth of the referenced subfield. During this expansion an AnyVa ue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

type record R1 {
integer f1 optional,
R2 f2 optional

}

type record R2 {
integer gil,

R2 g2 optional
}
var template R1 t_R1 := {
f1 := 5,
f2 := omit
}
var template R2 t_R2 := t_R1.f2.92;
// causes an error as omit is assigned to t_R1.f2
t R1. f2 := *;
t R2 := t_R1.f2.92;
// causes an error as * is assigned to t_R1.f2
t Rl := ({fl:=omit, £2:={gl:=0, g2:=omit}}, {fl:=5, f2:={gl:=1, g2:={gl:=2, g2:=omit}}});
t R2 := t_R1.f2;
t_R2 := t_R1.f2.92;
t_R2 := t_R1.f2.92.92;

// all these assignments cause error as a template list is assigned to t_R1

t R1 :=
complement ({fl:=omit, f2:={gl:=0, g2:=omit}}, {f1:=5, f2:={gl:=1, g2:={gl:=2, g2:=omit}}});

t R1.£2;
t R1.f2.92;

ETSI

117 ETSI ES 201 873-1 V4.4.1 (2012-04)

t R2 := t _R1.f2.92.92;
// all these assignments cause errors as a complemented list is assigned to t_R1

b) AnyVaue: when referencing a subfield within a structured field to which AnyValueis assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyVaueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyVaueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2
t Rl := {f1:=0, f2:=?}
t R2 := t R1.f2.92;
// after the assignment t R2 will be {gl:=?, g2:=*}
t R1.£2.92.92 := ({gl:=1, g2:=omit}, {gl:=2, g2:=omit});

// first the field t R1.f2 has hypothetically be expanded to {gl:=?,g92:={gl:=?,g2:=*}}
// thus after the assignment t_R1 will be:
// {f1:=0, f2:={gl:=?,92:={gl:=?,92:=({gl:=1, g2:=omit}, {gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which i fpresent is appended).

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of arecord of, array or set of template or field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases.

a Omit, AnyVaueOrNone, template lists, complemented lists, subset and superset: referencing an element
within arecord of or set of field to which Omit, AnyValueOrNone with or without alength attribute, a
template list, a complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:

type record of integer RoOI;

var template RoI t_RoI;
var template integer t_ Int;
t RoI := ({},{0},{0,0},{0,0,0});
t Int := t_RoI[0];
// shall cause an error as template list is assigned to t_RoI

b) AnyVaue: when referencing an element of arecord of or set of template or field to which AnyVaueis
assigned (without alength attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue, theindex of the reference shall not violate the length attribute.
When referencing an element withinarecord of or set of template or field to which AnyVaueis
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to al elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyVal ue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

EXAMPLE 2:

type record of integer RoOI;
type record of RoI RoOROI;

var template RoI t_ RoI;
var template RORoI t_RoOROI;
var template integer t_Int;

t_RolI ?
t_Int := t_RoI[5];
// after the assignment t_Int will be AnyValue (?) ;

2.
i

ETSI

118 ETSI ES 201 873-1 V4.4.1 (2012-04)

t_RoRoOI := ?;
t_RoI := t_RoRoI[5];

// after the assignment t RoI will be AnyValue (?) ;
t_Int := t_RoRoI[5].[3];

// after the assignment t_Int will be AnyValue (?);

t_RoI := ? length (2..5);
t Int := t_RoI[3];

// after the assignment t_Int will be AnyValue (?) ;
t_Int := t _RoI[5];

// shall cause an error as the referenced index is outside the length attribute
// (note that index 5 would refer to the 6 element);

t RoRoI[2] := {0,0};

// after the assignment t RoRoI will be {?,?,{0,0},*};
t_ROROI[4] = {l,l};

// after the assignment t RoRoI will be {?,?,{0,0},?,{1,1},*};
t_RoI[0] := -5;

// after the assignment t RoI will be {-5,*} length(2..5);
t_RoI := ? length (2..5);
t_ROI[l] = 1;

// after the assignment t RoI will be {?,1,*} length(2..5);
t RoI[3] := ?

// after the assignment t RoI will be {?,1,?,?,*} length(2..5);
t RoI[5] := 5

// after the assignment t RoI will be {?,1,?,?,?,5,*} length(2..5); note that t RoI
// becomes an empty set but that shall cause no error;

c) Permutation: when referencing an element of arecord of template or field, which islocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyVaueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 3:
t RoI := {permutation(0,1,3,?),2,?}
t_Int := t_RoI[5];

// after the assignment t_ Int will be AnyValue (?)

t RoI := {permutation(0,1,3,?),2,*}
t Int := t_RoI[5];

// after the assignment t Int will be * (AnyValueOrNone)
t_Int := t_RoI[2];

// causes error as the third element (with index 2) is inside permutation

t Rol := {permutation(0,1,3,%*),2,?}

t_Int := t _RoI[5];
// causes error as the permutation contains AnyValueOrNone (*) that is able to
// cover any record of indexes

d) Ifpresent attribute: referencing an element withinarecord of or set of fieldtowhichthe ifpresent
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
ifpresent isappended).

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such areference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Vauelistsand complemented lists: referencing a parameter of a signature template to which avaluelist or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:
signature MySignature (in integer parl, in integer par2) ;
template MySignature t mySignl := ({ parl := 1, par2 := 2 }, { parl := 2, par2 := 1 });
template MySignature t mySign2 modifies t mySignl := { parl := ? };

// shall cause an error as t_mySignl contains a value list template

ETSI

119 ETSI ES 201 873-1 V4.4.1 (2012-04)

b) AnyVaue: when referencing a parameter within a signature to which AnyVaueis assigned, at the left hand
side of an assignment, the signature template is implicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to all parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

EXAMPLE 2:
template MySignature t mySign3 := ?;
template MySignature t mySign4 modifies t mySign3 := { parl := 3 };
// t _mySign3 is expanded to { parl := ?, par2 := ? }, then 3 is assigned to parl,
// thus t mySign4 will be { parl := 3, par2 := ? }

15.7 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values;
. special symbolsthat can be used instead of values;
. specia symbols that can be used inside values,
. special symbols which describe attributes of values;
Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
intable 11. The left-hand column of thistable lists all the TTCN-3 types to which these matching mechanisms apply. A
full description of each matching mechanism can be found in annex B.

ETSI

120 ETSI ES 201 873-1 V4.4.1 (2012-04)

Table 11: TTCN-3 Matching Mechanisms

Used with values |Value Instead of values Inside values Attributes
of

S (0] C T A A R S S P A A P L |
p m o) e n n a u u a n n e e f
e i m m y y n p b t y y r n P
c t p p \% \% g e S t E E m g r
i I I a a e r e e I I u t e
f e a | | s t r e e t h s
i m t u u e n m m a R e
c e e e e t e e t e n
\% n L | O n n i S t

a t i r t t 0 t

I e S N (? S n r

u d t 0] (0] i

e L n r c

i e N t

S * o] i

t n)

e n

*)

boolean Yes | Yes® | Yes | Yes | Yes | ves! Yes'
integer Yes | Yes' | Yes | Yes | Yes |ves'| Yes Yes'
float Yes | Yes' | Yes | Yes | Yes |ves'| Yes Yes'
bitstring Yes | Yes' | Yes | Yes | Yes | yves® Yes | Yes Yes | Yes®
octetstring Yes | Yes® | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes'
hexstring Yes | Yes® | Yes | Yes | Yes | ves! Yes | Yes Yes | Yes'
character strings Yes | Yes® | Yes | Yes | Yes | ves| Yes Yes | Yes® | Yes® Yes | Yes®
record Yes | Yes' | Yes | Yes | Yes | Yes! Yes'
record of Yes | Yes' | Yes | Yes | Yes | yves® Yes | Yes | Yes | Yes | Yes®
array Yes | Yes' | Yes | Yes | Yes | yves® Yes | Yes | Yes | Yes | Yes®
set Yes | Yes' | Yes | Yes | Yes |yves! Yes'
set of Yes | Yes® | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes'
enumerated Yes | Yes® | Yes | Yes | Yes | ves® Yes™
union Yes | Yes® | Yes | Yes | Yes | ves® Yes™
anytype Yes | Yes® | Yes | Yes | Yes | ves® Yes'

NOTE 1: Can be assigned to templates, however when used shall be applied to optional fields of record and set types
only (without restriction on the type of that field).
NOTE 2: Have matching mechanism meaning within character patterns only.

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

SingleExpression
Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.
For further details please refer to clause 6 and to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictionsgivenintable 11 and in annex B.

ETSI

121 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

MyPCO.receive (charstring: "abcxyz") ;
MyPCO.receive ('AAAA'O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omit |

n(v { TemplateInstance [","] } ")" |

complement " (" { TemplateInstance [","] } ")" |

nomn |

mxn

" (" (ConstantExpression / -infinity) ".." (ConstantExpression / infinity) ")"
superset " (" { ConstantExpression [","] } ")" |

subset " (" { ConstantExpression [","] } ")" |

pattern Cstring
Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:

e omit: theoptiona field, in which it is used, is not present;

(...): alist of values or templates;

. complement (...): complement of alist of values or templates,

. ?:. wildcard for any value;

e *:wildcard for any value or no value a al, i.e. the field is not present;

. (lowerBound . . upperBound): arange of integer or float val ues between and including the lower- and upper
bounds;

. superset: at least al of the elementslisted, i.e. possibly more;
. subset: at most the elements listed, i.e. possibly less;
. pattern: acharstring or universal charstring that matches this format.
For further details please refer to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.

Examples

MyPCO.receive (integer:complement (1, 2, 3));

15.7.3 Special symbols that can be used inside values
These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

|

nxn |

.permutation " (" { (TemplateBody | "?" ma) [n]} omyn

ETSI

122 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description
The matching mechanisms for special symbols that can be used inside values are:
. ?: wildcard for any single element in astring, array, record of or set of;

. *: wildcard for any number of consecutive elementsin astring, array, record of or set of, Or no
element at al (i.e. an omitted element);

. permutation: al of the elementslisted but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list).

For further details please refer to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictions givenintable 11 and in annex B.

Examples
template bitstring b := '10???'B; // where each "?" may either be 0 or 1
type record of integer RI;
template RI ri := {1, 2, 3} // where ? may be any integer value

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length " (" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent]
ifpresent

Semantic Description
The matching mechanisms which describe attributes of values are:

e length: restrictions for string length of string types and the number of elementsfor record of, set of
and arrays,

e ifpresent: for matching of optional field values (if not omitted).

For further details please refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.

Examples

type record R ({
record of integer ri optional
}

template R r:=

{
ri := * length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
// 5 or 6 elements, provided it is present

ETSI

123 ETSI ES 201 873-1 V4.4.1 (2012-04)

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

template " (" (omit | present | value) ")" Type

Semantic Description
The restrictions mean in case of:

. (omit) thetemplate shall resolve to a value matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
afield of arecord and set template and the latter one could still be used in a send statement.

. (value) thetemplate shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used in a send statement.

. (present) thetemplate as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such atemplate can be used to define a
mandatory field of arecord or set template.

NOTE: Templaterestrictionsallow TTCN-3 toolsto check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
codeisrejected or whether the checks are performed at execution time and dynamic errors areraised, is
outside the scope of the present document.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.

Table 12: Using matching mechanisms with restricted templates

Used with
template Value Instead of values Inside values Attributes
restriction
S o C T A A R S S P A A P L I
p m o] e n n a u u a n n e e f
e i m m y y n p b t y y r n P
c t p p \% \% g e S t E E m g r
i \Y, I I a a e r e e I I u t e
f a e a | | S t r e e t h S
i I m t u u e n m m a R e
c u e elL e e t e e t e n
\% e n i | O n n i S t
a t S r t t o] t
I e t N ? S n r
u d o 0] i
e L n r c
i e N t
S *) o] i
t n o]
e n
. (*)
omit Yes | Yes
value Yes | Note
present Yes | Note Yes | Yes |Note| Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Note
NOTE: It is allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.

ETSI

124 ETSI ES 201 873-1 V4.4.1 (2012-04)

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 13.

Table 13: Restrictions of formal and actual template parameters

Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

c) A restricted, modified template has to have the same or more restrictive restriction as the base template. A
restricted parameter of a modified template has to have the same or a more restrictive restriction as the
corresponding parameter of the base template. The allowed restrictions are listed in table 14.

Table 14: Restricting modified templates

Restriction in base template Allowed restrictions in modified template
template template, template(present), template(omit), template(value)
template(present) template(present), template(value)

template(omit) template(omit), template(value)

template(value) template(value)

Examples

// definitions of restricted templates
type record ExampleType

integer a,

boolean b optional

}

template (omit) ExampleType exampleOmit := omit;

template (omit) ExampleType exampleOmitValue:= { 1, true };

template (omit) ExampleType exampleOmitAny := ?; // incorrect

template (value) ExampleType exampleValueomit := omit; // incorrect

template (value) ExampleType exampleValue := { 1, true };

template (value) ExampleType exampleValueOptional := { 1, omit };
// omit assigned to a field is correct

template (present) ExampleType examplePresent := {1, ?};

template (present) ExampleType examplePresentIfpresent := { 1, true } ifpresent;
// incorrect

template (present) ExampleType examplePresentAny := ?;

// restricted template usage

var template (omit) ExampleType v_omit;

var template (present) ExampleType v_present;
var template (value) ExampleType v_value;

ETSI

125 ETSI ES 201 873-1 V4.4.1 (2012-04)

v_omit := exampleOmit;

v_omit := exampleValueOptional;

v_omit := examplePresentAny; // incorrect, not a specific value
v_present := exampleOmit; // incorrect, must not be omit
v_present := examplePresent;

v_value := exampleOmit; // incorrect, must not be omit
v_value := examplePresentAny; // incorrect, must be a single value

// template modification
template (present) ExampleType exampleBase(template (omit) boolean p) := { ?, p };
//correct, template and its parameter are more restrictive
template (value) ExampleType exampleModified(template (value) boolean p)
modifies exampleBase := { a := 1 };
//incorrect, modified template is less restrictive
template ExampleType exampleModified(template (value) boolean p)
modifies exampleBase := { a := 1 };
//incorrect, parameter of modified template is less restrictive

template (present) ExampleType exampleModified(template (present) boolean p)
modifies exampleBase := { a := 1 };

15.9 Match Operation

Thematch operation allows to compare a val ue (specified in form of an expression) with atemplate.

Syntactical Structure

match " (" Expression "," TemplateInstance ")"
Semantic Description

Thematch operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returns false. If the types are compatible, the return
value of thematch operation indicates whether the value matches the specified template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of thematch operation shall not evaluate to atemplate, i.e. the match operation
cannot be used to compare two templates.

Examples
template integer LessThanlO := (-infinity..9);

MyPort .receive (integer:?) -> value RxValue;
if (match(RxValue, LessThanl0)) { .. }
// true if the actual value of Rxvalue is less than 10 and false otherwise

15.10 Valueof Operation

Thevalueof operation allows to return the value specified within atemplate. The returned val ue can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

valueof " (" TemplateInstance ")"
Semantic Description

The valueo£ operation returnsthe value of atemplate instance.

ETSI

126 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thetemplate shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1.

type record ExampleType

{

integer fieldl,
boolean field2

}

template ExampleType SetupTemplate :=

fieldl := 1,
field2 := true
}
var ExampleType RxValue := valueof (SetupTemplate) ;
EXAMPLE 2:
function MyFunc() {
var template integer vt_int := omit;
//is ok, but to be used for optional record or set fields only
var integer v_int := valueof (vt_int)

//causes an error as omit is not a value and shall not be an argument of valueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from several single (inline) templates using the concatenation operation. Each single
template shall have the same root type. The single templates of binary string and list types shall contain only the
matching mechanisms specific values, AnyValue or AnyValueOrNone constrained to afixed length, AnyElement, or
AnyElementsOrNone possibly constrained with alength attribute for list types. The length matching attribute shall not
follow atemplate or template field produced by concatenation directly, but in this case the concatenation shall be placed
within apair of parentheses.

The concatenation results in the sequential concatenation of the single templates from left to right, with one exception:
matching symbols AnyValue, AnyVaueOrNone, AnyElement and AnyElementsOrNone constrained to a fixed length
N shall be replaced by N AnyElement matching symbols before concatenation. The concatenation shall be performed
completely before using the resulting template (e.g. for assignment or matching) and the result shall be type-compatible
with the place of its use.

NOTE 1: Inline templates used for the concatenation need not be valid templates of the result type (e.g. odd humber
of hexadecimal digits are allowed in an octetstring template concatenation), but the resulting template has
to be avalid template.

NOTE 2: See aso concatenation of character string patternsin clause B.1.5.

EXAMPLE 1: Composing templates of string types

template charstring t Mycharl := "ABC" & "DE*" & "F?";
// results in the template "ABCDE*F?"
// please note that "*" and "?" denote the characters "*" and "?"

template charstring t Mychar2 := "ABC" & * length(2) & "EF";
// causes an error as for character string types only

// specific values are allowed

template bitstring t Mybit := '010'B & ? & 'l'B & ? length(l) & '1'B;
// results in the template '010*1?1'B

ETSI

127 ETSI ES 201 873-1 V4.4.1 (2012-04)

template octetstring t Myoctl := 'ABC'O & 'D'O & ? & ? length(l) & 'EF'O;
// results in the template 'ABCD*?EF'O

template octetstring t Myoct2 := 'ABCD'O & ? length (2) & 'EF'O;
// results in the template 'ABCD??EF'O
// (i.e. a 5 octets i.e. 10 hexadecimal digits long value)

template octetstring t MyoctWrongl := 'ABCD'O & ? length(2) & 'E'O;
// causes an error, the resulting template shall be a legal value
// (if composed, 'ABCD??E'O would denote 9 hexadecimal digits, but the length
// should be an even number of digits)

template octetstring t MyoctWrong2 := 'ABC'O & * length(l..2) & 'E'O;
// causes an error, the length attribute shall be of fixed length

template octetstring t MyoctWrong3 := 'ABCD'O & ? length(2) length (4);
// causes an error, no length matching attribute shall directly follow a concatenation

template octetstring t Myoct3 := ('ABCD'O & ? length(2)) length (1..3);
// However, this is correct but will not match any value;

template hexstring t MyhexPar (integer N):= 'ABC'H & ? length(N) & 'E'H &? length(l) & 'F'H;
function MyFunc() runs on MyCompType {
var integer v_int := 3;

var template hexstring vt hstring;

vt_hstring := 'ABC'H & ? length(v_int) & 'E'H & ? length(l) & 'F'H;
//results in the template 'ABC???E?F'H
P.receive (t_MyhexPar(4)) ;
//actual content of t MyhexPar is 'ABC????E?F'H
}

EXAMPLE 2: Composing templates of list types

type record of charstring RecofChar;
type set of integer SetofInt;

template RecofChar t MyRecofChar := {"ABC"} & {"D?", "EF"};
// results the template {"ABC", "D", "EF" }

template SetofInt t MySetofInt := { 1, 2 } & ? length(2) & { 3, 4 };
// results the template {1, 2, ?, ?, 3, 4 }

template RecofInt t MyRecofInt := { 1, 2 } & { * length(2), 3, 4 };

// results the template {1, 2, ?, ?, 3, 4 }

template RecofChar t MyRecofCharWrong:= {"ABC"} & ? length(l..2) & {"EF"};
// causes an error, the length attribute shall denote a fixed length

template RecofChar t MyRecofCharPar (integer N):= { "ABC" }, ? * length(N) & { "EF" };
function MyFunc() runs on MyCompType

var integer v_int := 3;

var template RecofChar vt_recofChar;

vt_recofChar := { "ABC" } & ? length(v_int) & { "EF" };
//results the template { "ABC", ?, ?, ?, "EF" }
P.receive (t_MyRecofCharPar(4));
//actual content of t MyRecofCharPar is { "ABC", ?, ?, ?, ?, "EF" }

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computationin a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

ETSI

128 ETSI ES 201 873-1 V4.4.1 (2012-04)

Syntactical Structure

function FunctionIdentifier

"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] } 1 ")"
[runs on ComponentType]

[return [template] Type]

StatementBlock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Vaue return is denoted by the return keyword followed by atype
expression. Template return is denoted by the return template keywords followed by an optional restriction and a
type expression. Execution of a return statement in the body of the function causes the function to terminate and to
return the result to the location of the call of the function.

The behaviour of afunction can be defined by using statements and operations described in clauses 18 to 25 and
clause 26.

Functions may be parameterized.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without runs on clause shall never invoke afunction or altstep or activate an altstep as default
with aruns on clause localy.

b) Functions started by using the start test component operation shall always have a runs on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the start test component operation may be invoked in functions without a runs on clause.

NOTE 1: The restrictions concerning the runs on clause are only related to functions and altsteps and not to test
Cases.

¢) Functionsused in the control part of a TTCN-3 module shall have no runs on clause.

NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

€) Forreturn template statements the restrictions specified in clause 15 shall apply.

f) Template return can berestricted to the matching mechanisms specific value and omi t, see clause 5.4.1.2.

g) A return statement in avalue returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) A return statement in atemplate returning function shall always have a template expression or template
instance compatible to the type specified in the function header return clause. If the return clause hasa
template restriction, this restriction must be adhered to by the returned template.

i) If thefunction header includes a return clause the function, when terminating, shall do so by executing a
return statement. The function will cause atest case error if it terminates (i.e. reaches the end of the
function body) without executing a return statement.

j) If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the function header. The one exception to
thisruleisif all the necessary component-wide information is passed in the function as parameters.

Examples

EXAMPLE 1. Function with return

// Definition of MyFunction which has no parameters

ETSI

129 ETSI ES 201 873-1 V4.4.1 (2012-04)

function MyFunction() return integer

{

return 7; // returns the integer value 7 when the function terminates

1
EXAMPLE 2: Function with template return

// Definition of functions which may return matching symbols or templates
function MyFunction2 () return template integer

{

return ?; // returns the matching mechanism AnyValue
1
function MyFunction3 () return template octetstring

{

return 'FF??FF'O; // returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause

function MyFunction3 () runs on MyPTCType {

lo // MyFunction3 does not return a value, but
var integer MyVar := 5; // does make use of the port operation
PCO1.send (MyVar) ; // send and therefore requires a runs on
// clause to resolve the port identifiers
} // by referencing a component type

EXAMPLE 4: Parameterized function
function MyFunction2 (inout integer MyParl) {
// MyFunction2 does not return a value
MyParl := 10 * MyParl; // but changes the value of MyParl which
} // is passed in by reference

EXAMPLES5: Function without return statement
function MyFunction5 (inout integer MyParl) return integer ({
if (MyParl > 5) {
MyParl := 5;
return MyParl;

}

// in case of MyParl <= 5, MyFunction5 does not terminate in a return statement
// and will cause a test case error

16.1.1 Invoking functions

A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef " (" [{ ActualPar [","] } 1 ")"
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with a return value), the test components continues its behaviour right after
the function invocation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

ETSI

130

Restrictions on invoking functions from specific places are described in clause 16.1.4.

ETSI ES 201 873-1 V4.4.1 (2012-04)

Special restrictions apply to functions bound to test components using the start test component operation.

When invoking a function, the compatibility to the test component type of the invoking test component as

The value returned by MyFunction4 is assigned to MyVar.
The types of the returned value and MyVar have to be compatible

MyFunction2 does not return a value and is called with the

c)
These restrictions are described in clause 21.3.2.
d)
described in clause 6.3.3 need to be fulfilled.
e
Examples
MyVar := MyFunction4 (); //
//
MyFunction2 (MyVar2) ; !/
//

MyVar3 := MyFunctioné6 (4) +

actual parameter MyVar2,

MyFunction7 (MyVar3) ;

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are

summarized in table 15.

Table 15: List of TTCN-3 predefined functions

// Functions used in expressions

which may be passed in by reference

Determine if a template is uninitialized or not

Category Function Keyword

Conversion functions Convert integer value to charstring value int2char
Convert integer value to universal charstring value int2unichar
Convert integer value to bitstring value int2bit
Convert integer value to enumerated value int2enum
Convert integer value to hexstring value int2hex
Convert integer value to octetstring value int2oct
Convert integer value to charstring value int2str
Convert integer value to float value int2float
Convert float value to integer value float2int
Convert charstring value to integer value char2int
Convert charstring value to octetstring value char2oct
Convert universal charstring value to integer value unichar2int
Convert bitstring value to integer value bit2int
Convert bitstring value to hexstring value bit2hex
Convert bitstring value to octetstring value bit2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2int
Convert hexstring value to bitstring value hex2bit
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct2int
Convert octetstring value to bitstring value oct2bit
Convert octetstring value to hexstring value oct2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version I oct2char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2float
Convert enumerated value to integer value enum2int

Length/size functions Return the length of a value or template of any string type, lengthof
record of, set of or array
Return the number of elements in a value or a template of a sizeof
record or set

Presence checking functions |Determine if an optional field in a record or set value or ispresent
template is present
Determine which choice has been selected in a union value or |ischosen
template
Determine if a template evaluates to a concrete value isvalue

isbound

ETSI

131 ETSI ES 201 873-1 V4.4.1 (2012-04)

Category Function Keyword
String/list handling functions |Returns part of the input string matching the specified pattern |regexp
group within a character pattern
Returns the specified portion of the input string/list value or substr
template
Replaces a substring of a string with or inserts the input string |replace
into a string, and similarly for lists

Codec functions Encode a value into a bitstring encvalue
Decode a bitstring into a value decvalue
Other functions Generate a random float number rnd
Returns the name of the currently executing test case testcasename

Syntactical Structure

int2char " (" SingleExpression ")" |

int2unichar " (" SingleExpression ")" |

int2bit " (" SingleExpression "," SingleExpression ")" |
int2enum " (" SingleExpression "," SingleExpression ")" |
int2hex " (" SingleExpression "," SingleExpression ")" |
int2oct " (" SingleExpression "," SingleExpression ")" |
int2str " (" SingleExpression ")" |

int2float " (" SingleExpression ")"

float2int " (" SingleExpression ")" |

char2int " (" SingleExpression ")" |

char2oct " (" SingleExpression ")" |

unichar2int " (" SingleExpression ")" |

bit2int " (" SingleExpression ")"

bit2hex " (" SingleExpression ")"

bit2oct " (" SingleExpression ")"

bit2str " (" SingleExpression ")"

hex2int " (" SingleExpression ")"

hex2bit " (" SingleExpression ")"

hex2oct " (" SingleExpression ")"

hex2str " (" SingleExpression ")"

oct2int " (" SingleExpression ")"

oct2bit " (" SingleExpression ")"

oct2hex " (" SingleExpression ")"

oct2str " (" SingleExpression ")"

oct2char " (" SingleExpression ")" |

str2int " (" SingleExpression ")"

str2hex " (" SingleExpression ")"

str2oct " (" SingleExpression ")"

str2float " (" SingleExpression ")" |

enum2int " (" SingleExpression ")" |

lengthof " (" TemplateInstance ")" |

sizeof "(" TemplateInstance ")" |

ispresent " (" TemplateInstance ")" |

ischosen " (" TemplateInstance ")" |

isvalue " (" TemplateInstance ")" |

isbound " (" TemplateInstance ")" |

regexp " (" Templatelnstance"," TemplateInstance"," SingleExpression ")" |
substr " (" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace " (" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encvalue " (" TemplateInstance ")" |

decvalue " (" SingleExpression "," SingleExpression ")" |
rnd " (" [SingleExpression] ")" |

testcasename " ()"

Semantic Description
The description of predefined functionsis given in annex C.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a When apredefined function is invoked:
1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

ETSI

132 ETSI ES 201 873-1 V4.4.1 (2012-04)

3) dl actua in and inout parameters shall be initialized with the exception of the actual in and inout
parameter passed to the predefined functions i svalue, ischosen, ispresent and isbound,
which may be uninitialized or even non-evaluable reference expressions and with the exception of the
any string or sequence_type parametersof the functions lengthof, substr and
replace, which may be partially initialized.

b) Redtrictions oninvoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:= bit2hex ('111010111'B);
var octetstring o:= substr ('01AB23CD'O, 1, 2);

16.1.3 External functions
A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure

external function ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] } 1 ")"
[return Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Externa functions are not allowed to contain port, timer or default handling operations.
b) External functions are not allowed to return templates.

¢) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples
external function MyFunction4 () return integer; // External function without parameters
// which returns an integer value
external function InitTestDevices() ; // An external function which only has an

// effect outside the TTCN-3 module

16.1.4 Invoking functions from specific places

Value returning functions can be called in communication operations (in templates, template fields, in-line templates, or
as actual parameters), in guards of alt statements or altsteps (see clause 20.2), and in initializations of altstep local
definitions (see clause 16.2). To avoid side effects that cause changing the state of the component or the actual snapshot
and to prevent different results of subsegquent eval uations on an unchanged snapshot, the following operations shall not
be used in functions called in the cases specified above:

a) All component operations, i.e. create, start (component), stop (component), kill,
running (component), alive, done and killed (seenotesl, 3, 4 and 6).

b) All port operations, i.e. start (port), stop (port), halt, clear, send, receive, trigger, call,
getcall, reply, getreply, raise, catch, check, connect, map (seenotesl, 2, 3and 6).

¢) Theaction operation (seenotes?2 and 6).

d) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (see notes4
and 6).

€) Cdling external functions (see notes 4 and 6).

ETSI

133 ETSI ES 201 873-1 V4.4.1 (2012-04)

f) Caling the rnd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and inout parameters (see notes 4 and 6).

h) Cadlingthe setverdict operation (see notes 4 and 6).
i) Activation and deactivation of defaults, i.e. the activate and deactivate statements (see notes 5 and 6).
j) Cdling functionswith out or inout parameters (see notes 7 and 8).

NOTE 1: The execution of the operations start, stop, done, killed, halt, clear, receive, trigger,
getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2: Theuse of operations send, call, reply, raise, and action causesan error, i.e. al
communication are to be made explicit and not as a side-effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operationsmap, unmap, connect, disconnect, create causesan error, i.e. al
configuration operations are to be made explicit, and not as a side-effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Calling of external functions, rnd, running, alive, read, setverdict, and writing to component
variables causes an error because it may lead to different results of subsequent evaluations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE 5: Theuse of operations activate and deactivate causes an error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or inout parameterization apply recursively, i.e. it
is disallowed to use them directly, or via an arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functions with out or inout parameters does not apply recursively, i.e. calling
functions that themselves call functions with out or inout parametersislegal.

NOTE 8: Using out or inout parameters causes an error because it may lead to different results of subsequent
evaluations of the same snapshot.

16.2 Altsteps

TTCN-3 uses atsteps to specify default behaviour or to structure the aternatives of an alt statement.

Syntactical Structure

altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]

||{||
{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
AltGuardList

n } n
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of alt statements.

The behaviour of an atstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

ETSI

134 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theloca definitions of an altstep shall be defined before the set of alternatives.

b) Theinitialization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to theinitialization of local definitions.

c) If anadltstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the runs on keywords in the altstep header. The one exception to
thisruleisif all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Analtstep without aruns on clause shall never invoke afunction or altstep or activate an atstep as default
witharuns on clauselocaly.

€) Analtstep that is activated as a default shall only have in value or template parameters, port parameters, and
timer parameters. An atstep that is only invoked as an aternativein an alt statement or as stand-alone
statement in a TTCN-3 behaviour description may have in, out and inout parameters. The rules for formal
parameter lists shall be followed as defined in clause 5.4.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

// Given
type component MyComponentType {
var integer MyIntVar := 0;

timer MyTimer;
port MyPortTypeOne PCO1l, PCO2;
port MyPortTypeTwo PCO3;

}

// Altstep definition using PCOl, PCO2, MyIntVar and MyTimer of MyComponentType
altstep AltSet A(in integer MyParl) runs on MyComponentType {
[] PCOl.receive (MyTemplate (MyParl, MyIntVar)
setverdict (inconc) ;
}

[1 PCO2.receive
if (MyParl != 0) {
repeat

else {
break
1
1

[] MyTimer.timeout {
setverdict (fail) ;
stop
1

}
EXAMPLE 2: Altstep with local definitions

altstep AnotherAltStep (in integer MyParl) runs on MyComponentType {

var integer MyLocalVar := MyFunction(); // local variable
const float MyFloat := 3.41; // local constant
[] PCOl.receive (MyTemplate (MyParl, MyLocalVar) {

setverdict (inconc) ;

1
[1 PCO2.receive

repeat
1

ETSI

135 ETSI ES 201 873-1 V4.4.1 (2012-04)

16.2.1 Invoking altsteps

Theinvocation of an atstep is always related to an alt statement. The invocation may be done either implicitly by the
default mechanism (see clause 20.5.) or explicitly by adirect call within an alt statement (see clause 20.2).

Syntactical Structure

AltstepRef "(" [{ ActualPar [","] } 1 ")n"
Semantic Description

Theinvocation of an altstep causes no new snapshot and the evaluation of the top aternatives of an altstep is done by
using the actual snapshot of the alt statement from which the altstep was called.

NOTE 1: A new snapshot within an altstep will of course be taken, if within a selected top alternative anew alt
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an activate statement before the place of the invocation is reached.

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of
the altstep. The aternatives of the altstep are checked and executed the same way as alternativesof analt
statement (see clause 20.1) with the exception that no new snapshot is taken when entering thealtstep. An
unsuccessful termination of the altstep (i.e. al top aternatives of the altstep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of the alt statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement,

i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the
execution of the selected top alternative of the altstep ends with abreak statement (see clause 19.12) or without
explicit repeat or stop.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked altstep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

An altstep can aso be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the altstep can beinterpreted as shorthand for an alt statement with only one aternative describing the explicit call
of thealtstep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Wheninvoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
Examples

EXAMPLE 1: Implicit invocation of an altstep via a default activation

var default MyDefVarTwo := activate (MySecondAltStep()); // Activation of an altstep as default

EXAMPLE 2: Explicit invocation of an altstep within an alt statement

alt {
[1 PCO3.receive {

ETSI

136 ETSI ES 201 873-1 V4.4.1 (2012-04)

}

[] AnotherAltStep(); // explicit call of altstep AnotherAltStep as an alternative
// of an alt statement
[] MyTimer.timeout {}

1
EXAMPLE 3: Explicit, stand-alone invocation of an altstep

// The statement
AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

//is a shorthand for

alt {
[1 AnotherAltStep() ;
1

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typicaly startsin a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case shall be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are aspecial kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

Syntactical Structure

testcase TestcaseIdentifier

"(" [{ (FormalValuePar | FormalTemplatePar) [","] } 1 ")"
runs on ComponentType

[system ComponentType]

StatementBlock

Semantic Description

A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of atest
case execution isatest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword runs on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword system which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

ETSI

137 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

testcase MyTestCaseOne ()
runs on MyMtcTypel
system MyTestSystemType

// defines the type of the MTC
// makes the port names of the TSI visible to the MTC

// The behaviour defined here executes on the mtc when the test case invoked

}

// or, a test case where only the MTC is instantiated
testcase MyTestCaseTwo () runs on MyMtcType2

// The behaviour defined here executes on the mtc when the test case invoked

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such as send, receive,
create, €tC.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

S2 |::> S1; 82; 83;

S3

Figure 8: lllustration of sequential behaviour

Theindividual statementsin the sequence shall be separated by the delimiter *;".
EXAMPLE:

MyPort .send (Mymessage) ; MyTimer.start; log("Done!") ;

The specification of an empty statement block, i.e. { }, may be found in compound statements, e.g. abranchinan alt
statement, and implies that no actions are taken.

Table 16 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 16: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or | Can be used | Can beusedin | Can be used in
symbol in module functions, test | functions called
control cases and from templates,
altsteps Boolean guards,
or from

initialization of

altstep local

definitions

Expressions (...) Yes Yes Yes

Basic program statements

ETSI

138

ETSI ES 201 873-1 V4.4.1 (2012-04)

Statement Associated keyword or | Can be used | Can beusedin | Can be used in
symbol in module functions, test | functions called
control cases and from templates,
altsteps Boolean guards,
or from
initialization of
altstep local
definitions
Assignments = Yes Yes Yes (see note 3)
If-else if (..){.}else{...} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(..){.}caseelse{..}}
For loop for (...){...} Yes Yes Yes
While loop while (...){...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 4) Yes
Leaving a loop, alt, altstep or break Yes Yes Yes
interleave
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |[repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
component port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interfacejlunmap Yes
Get MTC component reference value |mtc Yes Yes
Get test system interface component |system Yes Yes
reference value
Get own component reference value |self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Remove a test component from the |kill Yes
system
Check termination of a PTC behaviour|running Yes
Check if a PTC exists in the test alive Yes
system
Wait for termination of a PTC done Yes
behaviour
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote |reply Yes
entity
Raise exception (to an accepted call) |raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes

entity

ETSI

139 ETSI ES 201 873-1 V4.4.1 (2012-04)
Statement Associated keyword or | Can be used | Can beusedin | Can be used in
symbol in module functions, test | functions called
control cases and from templates,
altsteps Boolean guards,
or from
initialization of
altstep local
definitions
Handle response from a previous call |getreply Yes
Catch exception (from called entity) |catch Yes
Check (current) message/call check Yes
received
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow stop Yes
receiving operations to match at a port
Disable sending and disallow halt Yes
receiving operations to match new
messages/calls
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes Yes |
Execution of test cases
Execute test case execute Yes Yes

(see note 2)

NOTE 1: Can be used to control timer operations only.
NOTE 2:

NOTE 3: Changing of component variables is disallowed.
NOTE 4:

Can be used in functions and altsteps but not in test cases.

Can only be used in functions and altsteps that are used in module control.

19

Basic program statements

The basic program statements presented in table 17 can be used in the control part of a module and in TTCN-3

functions, altsteps and test cases.

Table 17: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{...}
Select case select case (...){ case (...){...} case
else{...}}
For loop for (..){...}
While loop while (...){...}
Do while loop do{...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

ETSI

140 ETSI ES 201 873-1 V4.4.1 (2012-04)

19.1 Assignments

Values or templates may be assigned to variables or template variables (see clause 11). Thisisindicated by the symbol

Syntactical Structure
VariableRef ":=" (Expression | TemplateBody)
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The
effect of an assignment isto bind the variable to the value of the expression or to atemplate. The expression shall
contain no unbound variables. Assignments are processed from left to right, i.e. expressionsin the left-hand-side are
evaluated before those in the right-hand-side. The evaluations obey the operator precedence defined in table 6. The
right-hand-side is evaluated completely before the resulting value or template is bound to the evaluated left-hand side of
the assignment. Whenever assignments are used within the right-hand-side of an assignment (due to assignment
notation), these rules apply recursively.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theright-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to atemplate (global or local template, in-line template
or template variable), the variable at the left hand side shall be atemplate variable.

Examples

MyVariable := (x + y - increment(z))*3;

19.2 The If-else statement

The i f-else statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if " (" BooleanExpression ")" StatementBlock
{ else if " (" BooleanExpression ")" StatementBlock }
[else StatementBlock]

NOTE: else if "(" BooleanExpression")" StatementBlock [else StatementBlock] is a shorthand notation for
else "{"if "(" BooleanExpression")" StatementBlock [else StatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if al the "if" and "else if" conditions before are fal se.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
if (date == "1.1.2005") { return (fail); }
if (MyVar < 10) { MyVar := MyVar * 10; log ("MyVar < 10"); }
else { MyVar := MyVar/5; }

ETSI

141 ETSI ES 201 873-1 V4.4.1 (2012-04)

19.3 The Select case statement

The select case statement isan aternative syntactic form of the 1 £ - else statement.

Syntactical Structure

select " (" SingleExpression ")" "{n"
{ case " (" { SingleExpression [","] } ")" StatementBlock }
[case else StatementBlock]

n } n
Semantic Description

Theselect case Statementisanaternativetousing if .. else if .. else statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branchesis executed.

In the header part of the select case statement an expression shall be given. Each branch starts with the case
keyword followed by alist of templatelnstance (alist branch, which may also contain asingle element) or theelse
keyword (an else branch) and a statement block.

All templatel nstance in al list branches shall be of atype compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatel nstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
Statement.

The statement block of an else branch is always executed if no other branch textually preceding the el se branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expression in
the header and the statement contains no el se branch, execution continues without executing any of the select case
branches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theselect SngleExpression and the case SingleExpression-s shall be type compatible.

Examples

select (MyModulePar) // where MyModulePar is of charstring type

{

case ("firstValue")

{

log ("The first branch is selected");

}

case (MyCharVar, MyCharConst)

log ("The second branch is selected");

}

case else

{

log ("The value of the module parameter MyModulePar is selected");

}
}

// the above select statement is equivalent to the following nested if-else statement.
// Note: the following textual replacement of the select-case statement is described in
// the operational semantics of TTCN-3.

{

var charstring myTempVar := MyModulePar;
if (match(myTempVar, "firstValue")

log ("The first branch is selected");
else if (match(myTempVar, MyCharVar) or match (myTempVar, MyCharConst))

log ("The second branch is selected");

}

ETSI

142 ETSI ES 201 873-1 V4.4.1 (2012-04)

else

log ("The value of the module parameter MyModulePar is selected");

}

19.4 The For statement

The for statement defines a counter 1oop.

Syntactical Structure

for "(" (VarInstance | Assignment) ";" BooleanExpression ";" Assignment ")"
StatementBlock

Semantic Description

The for statement contains two assignments and aboolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteriais reached.

The termination criterion of the loop shall be expressed by aboolean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto true, the execution continues with the statement block in the for statement,
if it evaluatesto false, the execution continues with the statement which immediately follows the fox loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, aststep or interleave, then the
loop is terminated, too.

Theindex variable of a £or loop can be declared before being used in the £or statement or can be declared and
initidlized in the for statement header. If the index variable is declared and initialized in the for statement header, the
scope of theindex variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
var integer j; // Declaration of integer variable j
for (j:=1; j<=10; Jj:= j+1) { .. } // Usage of variable j as index variable of the for loop
for (var float 1:=1.0; 1<7.9; i:= i*1.35) { .. } // Index variable i is declared and initialized

// in the for loop header. Variable i only is
// visible in the loop body.

19.5 The While statement

A while statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure

while " (" BooleanExpression ")" StatementBlock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately followsthewhile loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, aststep or interleave, then the
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

143 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

while (j<10){ .. }

19.6 The Do-while statement

A do-while statement defines aloop that is executed up until the loop condition does not hold.
Syntactical Structure

do StatementBlock while " (" BooleanExpression ")"
Semantic Description

Thedo-while loopisidentical to awhile loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado-while loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If abreak statement is executed that is not within the body of an enclosed
loop, alt, alststep or interleave, then theloop isterminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

do { .. } while (j<10);

19.7 The Label statement

The 1label statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure
label LabelIdentifier

Semantic Description

A label marks astatement. Thelabel isused by the goto statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A label statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an aternative or top alternative in an alt statement, interleave Statement or altstep.

b) Labelsused following the 1abel keyword shall be unique among all l1abels defined in the same test case,
function, altstep or control part.

Examples
label MyLabel; // Defines the label MyLabel
// The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

label L1; // Definition of label L1

alt{
[l PCOl.receive (MySigl)
{ label L2; // Definition of label L2

PCO1l.send (MySig2) ;
PCOl.receive (MySig3)

ETSI

144 ETSI ES 201 873-1 V4.4.1 (2012-04)

[] PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
label L3; // Definition of label L3
PCO2.receive (MySig7) ;

19.8 The Goto statement

A goto statement performsajumptoalabel.

Syntactical Structure

goto LabelIdentifier
Semantic Description

The goto statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

The goto statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhile loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Itisnot alowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot alowed to jump into a sequence of statements defined in a compound statement (i.e. alt statement,
while loop, for loop, 1 f-else statement, do- while loop and the interleave statement).

c) Itisnot allowed to use the goto statement within an interleave statement.

Examples

// The following TTCN-3 code fragment includes

label L1; // .. the definition of label L1,
MyVar := 2 * MyVar;

if (MyVar < 2000) { goto L1; } // .. a jump backward to L1,
MyVar2 := Myfunction (MyVar) ;

if (MyVar2 > MyVar) { goto L2; } // . a jump forward to L2,

PCO1l.send (MyVar) ;
PCOl.receive;
label L2; // .. the definition of label L2,
PCO2.send(integer: 21) ;
alt {
[] PCOl.receive { }
[] PCO2.receive (integer: 67)
label L3; // .. the definition of label L3,
PCO2.send (MyVar) ;
alt {
[] PCOl.receive { }
[] PCO2.receive (integer: 90)
PCO2.send (integer: 33);
PCO2.receive (integer: 13);
goto L4; // .. a jump forward out of two nested alt statements,
1
[] PCO2.receive (MyError)
goto L3; // .. a jump backward out of the current alt statement,
1
[] any port.receive ({
goto L2; // .. a jump backward out of two nested alt statements,

1
1
1
[] any port.receive ({
goto L2; // .. and a long jump backward out of an alt statement.

ETSI

145 ETSI ES 201 873-1 V4.4.1 (2012-04)

}

label 14;

19.9 The Stop execution statement
The stop statement terminates execution of test components, atest case or atest control.

Syntactical Structure

stop
Semantic Description

The stop statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, altstep or function that are executed on atest component, it terminates
the relevant test component.

NOTE: The semantics of a stop statement that terminates atest component isidentical to the stop component
operation self . stop (see clause 21.3.3).

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

module MyModule {
// Module definitions
testcase MyTestCase() runs on MyMTCType system MySystemType
var MyPTCType ptc:= MyPTCType.create; // PTC creation
ptc.start (MyFunction()) ; // start PTC execution
: // test case behaviour continued
stop // stops the MTC, all PTCs and the whole test case

}

function MyFunction() runs on MyPTCType {

stop // stops the PTC only, the test case continues

}

control
: // test execution
stop // stops the test campaign
} // end control
} // end module

19.10 The Return statement

The return statement terminates execution of functions or atsteps.

Syntactical Structure

return [Expression | TemplateInstance]
Semantic Description

The return statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, areturn statement may be optionally associated with a return
value or template.

TTCN-3 alows optional statement blocks that may follow altstep calls within alt statements. If there is a statement
block, the return statement returns control to the beginning of this statement block and the statement block is
executed before the alt statement isleft. If there is no statement block, test execution continues with the first statement
following the alt statement.

ETSI

Restrictions

146

ETSI ES 201 873-1 V4.4.1 (2012-04)

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

The return statement shall not be used in the statement block of atestcase.

Examples

function MyFunction() return boolean {

}

if (date == "1.1.2005")
return false;
1

return true;

// true is returned

// execution stops on the 1.1.2000 and returns the boolean false

function MyTemplateFunction() return template charstring

}

if (date == "1.1.2005")
return "2005";
1

return ?;

function MyBehaviour () return verdicttype

if (MyFunction())
setverdict (pass) ;
1

else
setverdict (inconc) ;

return getverdict;

19.11 The Log statement

The 1og statement provides the means to write logging information to some logging device. The information that can

be logged is summarized in table 18.

// the string of the year is returned

// the any template is returned

// use of MyFunction in an if statement

// explicit return of the verdict

Table 18: TTCN-3 language elements that can be logged

Used in a log statement

What is logged

Comment

module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

self, mtc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true or false. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or false. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

ETSI

147 ETSI ES 201 873-1 V4.4.1 (2012-04)

Used in a log statement What is logged Comment

match operation return value

getverdict operation return value none, pass, incongc, Or fail

predefined functions return value See annex C.

function instance return value Only functions with return clause are
allowed.

external function instance return value Only external functions with return clause
are allowed.

formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

Syntactical Structure

log " (" { (FreeText | TemplateInstance) [","] } ")"
Semantic Description

The 1og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 18 or expressions composed of such log items.

It is strongly recommended that the execution of the Log statement has no effect on the test behaviour. In particular,
functions used in alog statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of itsinout or out parameters.

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

var integer myVar:= 1;

log("Line 248 in PTC_A: ", myVar, " (actual value of myVar)");

// The string "Line 248 in PTC_A: 1 (actual value of myVar)" is written to some log device
// of the test system

ETSI

148 ETSI ES 201 873-1 V4.4.1 (2012-04)

19.12 The Break statement

A break statement causes the exit from aloop, from an altstep or froman alt or interleave Statement.
Syntactical Structure

break
Semantic Description

On executing abreak statement the innermost, currently executed loop, alt statement or interleave Statement is
left. Execution continues with the statement following the construct which isleft. Using break outside the body of a
loop (for, while, do-while) or an dternative of an alt or interleave statement shall cause a dynamic error.

Altsteps are aways executed within a surrounding alt statement. If the execution of atop aternative of an altstep (see
clause 16.2) ends with abreak statement, the altstep and the surrounding alt statement are left. Execution continues
with the statement following the surrounding alt statement.

NOTE: TTCN-3 alows optional statement blocks that may follow altstep calls within alt statements. These
statement blocks are not executed when the altstep isleft by executing abreak statement. A return
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
do {

if (condl) {
break; // the do-while loop is left
1

for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
break; // the for-loop is left but the do-while loop is continued
1

}

while (j<10);

19.13 The Continue statement

A continue statement causes the start of the next iteration of aloop.

Syntactical Structure

continue
Semantic Description

On executing acontinue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using continue outside the body of aloop (for, while, do-while) shall
cause a dynamic error.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

149 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples
do {

if (cond) {
continue; // execution continues with the next iteration of the do-while-loop

for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
continue; // continues with the next iteration of the for-loop

}

while (j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce alocal scope in the flow of control of TTCN-3
behaviour. The declarations and statementsin a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure
n{v { LocalDefinition | Statement } "}v
Semantic Description
A statement block defines alocal scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
var integer aVar:= 0; // aVar is declared
{ // start of a statement block
var integer myVar:= 2; // myVar is declared
avVar := 5 + myVar; // myVar is used in an assignment
} // end of statement block

// after leaving the statement block aVar is still known, but myVar is not known anymore.

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or aternatives. Table 19 summarizesthe
statements and operations for alternative behaviours.

Table 19: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements [repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

ETSI

150 ETSI ES 201 873-1 V4.4.1 (2012-04)

20.1 The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

S1;
S1 alt {
[1 s2 {
alt {
[1 s4a { s7}
[1 s5 {
S8;
alt {
1 so {}
[1 s10 {}
}
}
1
[1 s3 { s6}

Figure 9: lllustration of alternative behaviour

Thisisdone with the alt statement.

When entering an alt statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptionsin the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one alternativeinthealt
statement, or in atop aternative of an altstep that isinvoked as an alternative in the alt statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of the alt statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditionsis outside the scope of the present document.

20.2 The Alt statement

An alt statement expresses sets of possible alternatives that form atree of possible execution paths.

Syntactical Structure

alt " { n
{
"[" [BooleanExpression] "]"

((TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement) StatementBlock)

(AltstepInstance [StatementBlock])

["[" else "]" StatementBlock]

n}n

ETSI

151 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout, done andkilled. Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alter native behaviour:
When entering an alt statement, a snapshot is taken.

The aternative branchesin the alt statement and the top aternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), akilled operation (killed-branch), t imeout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e. receive, trigger, getcall, getreply, catch or acheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto true. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the atstep isinvoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block followingthekilled
operation. Thekilled operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the t imeout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given aternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

NOTE 2: Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing atest case error.

ETSI

152 ETSI ES 201 873-1 V4.4.1 (2012-04)

If none of the alternative branchesin the alt statement and top alternatives in the invoked altsteps and active defaults
can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
aternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
aternatives can be chosen, no relevant test component is running, no relevant timer is running and al relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of the alt statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the aternative.

Else branch in alternatives:

Any branch in an alt statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of al alternatives. If an
else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 4: Itisalso possibleto use else in altsteps.
NOTEDS: Itisalowedto usearepeat statement within an else branch.

NOTE 6: It isallowed to define more than one else branch in an alt statement or in an altstep, however aways only
the first else branch is executed.

Re-evaluation of alt statements:
There-evauation of an alt statement can be specified by using a repeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 alowsthe invocation of atsteps as aternativesin alt statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the atstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or
invoked defaultsis selected and completely executed, or abranch of an altstep used in an altsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if abreak statement isreached in the
statement block of the selected branch of an alt statement, of an altstep used in an atstep-branch, or of an
altstep invoked as default.

The alt statement can also be left by using a goto statement in the selected branch of the alt (i.e. no branches of
atsteps and defaults can be considered in this case), and execution continues with the statement following the 1abel,
goto ispointing to.

ETSI

153 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theopen and close square brackets ("[...]") shall be present at the start of each aternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
astherestrictions for the initialization of local definitions within altsteps shall apply (clause 16.2).

c¢) Theelsebranch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.e.analtstep call or adone, akilled, a timeout or areceiving operation).

d) Analt statement used within the module control part shall only contain the t imeout statements.
Examples

EXAMPLE 1: Nested alternatives

alt {
[] MyPort.receive (MyMessage) {

setverdict (pass);

MyTimer.start;

alt {

[] MyPort.receive (MySecondMessage) {

MyTimer.stop;
setverdict (pass);

[] MyTimer.timeout {
MyPort.send (MyRepeat) ;
MyTimer.start;
alt {
[] MyPort.receive (MySecondMessage) {
MyTimer.stop;
setverdict (pass)
1
[] MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

}
[] MyPort.receive { setverdict (fail) }
}
}
[] MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

1
EXAMPLE 2: Alt statement with guards

alt {
[x>1] L2.receive // Boolean guard/expression
setverdict (pass) ;
[x<=1] L2.receive { // Boolean guard/expression

setverdict (inconc) ;

}

EXAMPLE 3: Alt statement with else branch

// Use of alternative with Boolean expressions (or guard) and else branch

alt {
[else] { // else branch
MyErrorHandling () ;
setverdict (fail) ;
stop;

}
}

EXAMPLE 4: Re-evaluation with repeat

ETSI

154 ETSI ES 201 873-1 V4.4.1 (2012-04)

alt {
[1 PCO3.receive
count := count + 1;
repeat // usage of repeat

[] T1.timeout { }

[1 any port.receive ({
setverdict (fail) ;
stop;

1
!

EXAMPLES: Alt statement with explicitly invoked altstep

alt {
[] PCO3.receive { }
[1 AnotherAltStep() { // Explicit call of altstep AnotherAltStep as alternative.
setverdict (inconc) // Statement block executed if an alternative within
// altstep AnotherAltStep has been selected and executed.
1

[] MyTimer.timeout { }

}

20.3 The Repeat statement

The repeat statement is used for are-evaluation of an alt statement.

Syntactical Structure

repeat
Semantic Description

The repeat statement, when used in the statement block of aternatives of alt statements, causes the re-eval uation of
the alt statement, i.e. a new snapshot is taken and the alternatives of the alt statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-eval uation of the response and exception handling part of the call (see clause 22.3.1).

If arepeat statement is used in atop alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the alt statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly in the alt statement (see clause 20.2).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Therepeat statement shall only be used within alt statements, call statements or altsteps.
Examples

EXAMPLE 1: Usage of repeat in an alt statement

alt {
[1 PCO3.receive
count := count + 1;
repeat // usage of repeat

[] T1.timeout { }

[1 any port.receive ({
setverdict (fail) ;
stop;

}
}
EXAMPLE 2: Usage of repeat in an altstep
altstep AnotherAltStep() runs on MyComponentType {
[] PCOl.receive({

setverdict (inconc) ;
repeat // usage of repeat

ETSI

155 ETSI ES 201 873-1 V4.4.1 (2012-04)

}

[1 PCO2.receive {}

20.4 The Interleave statement

The interleave statement allows to specify the interleaved occurrence and handling of receiving eventsincluding
done, killed, timeout, receive, trigger, getcall, getreply, catch and check.

Syntactical Structure

interleave " {"

{ "[1" (TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement) StatementBlock

}
n } n
Semantic Description

The interleave statement allows to specify the interleaved occurrence and handling of the statements done,
killed, timeout, receive, trigger, getcall, getreply, catch and check.

Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, abreak statement is reached, or the interleaved sequence ends.

NOTE 1. Reception statements are TTCN-3 statements which may occur in sets of aternatives, i.e. receive,
check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception
statements denote all other non-control-transfer statements which can be used withinthe interleave
statement.

b) If none of the alternatives of the interleave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering the interleave statement.

NOTE 2: The complete semantics of the default mechanism within an interleave statement isgiven by
replacing the interleave statement by an eguivalent set of nested alt statements. The default
mechanism applies for each of these alt statements.

¢) Theevauation then continues by taking the next snapshot if no break statement was encountered.
d) Theevauation of the interleave statement isterminated if abreak statement is executed.

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

ETSI

156 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Control transfer statements for, while, do-while, goto, activate, deactivate, stop, repeat
return, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include reception statements, shall not beused in interleave statements.

b) Inaddition, itisnot alowed to guard branches of an interleave statement with Boolean expressions
(i.e. the []' shall always be empty). It isaso not alowed to specify else branchesin interleaved behaviour.

Examples

// The following TTCN-3 code fragment
interleave
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
PCOl.receive (MySig3) ;
}

PCO2.receive (MySig4)

{ PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
PCO2.receive (MySig7) ;

1

}

// is a shorthand for
alt {
[] PCOl.receive(MySigl)
{ PCO1.send (MySig2) ;
alt {
[] PCOl.receive (MySig3)

{ PCO2.receive (MySig4) ;
PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
PCO2.receive (MySig7)

1

[] PCO2.receive (MySig4)
{ PCO2.sgend (MySig5) ;
PCO2.send (MySig6) ;
alt {
[] PCOl.receive (MySig3) {
PCO2.receive (MySig7); }
PCO2.receive (MySig7) ({
PCOl1.receive (MySig3); }

[1
}
}
}
PCO2.receive (MySig4)
{ PCO2.sgend (MySig5) ;
PCO2.sgend (MySig6) ;
alt {
[] PCOl.receive (MySigl)
{ PCOl1.send (MySig2) ;
alt {
[] PCOl.receive(MySig3)
{ PCO2.receive (MySig7) ;
}

PCO2.receive (MySig7)
{ PCOl.receive (MySig3) ;

}

1

]

1

}

PCO2.receive (MySig7)

{ PCOl.receive (MySigl) ;
PCOl.send (MySig2) ;
PCOl.receive (MySig3) ;

]

ETSI

157 ETSI ES 201 873-1 V4.4.1 (2012-04)

20.5 Default Handling

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activationi.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsactivate

(seeclause 20.5.2) and deactivate (see clause 20.5.3) operate on the list of defaults. An activate putsanew
default asthe first element into thelist and a deactivate removes adefault fromthe list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding activate operation.

20.5.1 The default mechanism

The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the altstep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1. Aninterleave Statement is semantically equivalent to a nested set of alt statements and the default
mechanism also applies to each of these alt statements. This means, the default mechanism also applies
to interleave statements. Furthermore, the restrictions imposed on interleave statements in clause
20.4 do not apply to atstepsthat are activated as default behaviour for interleave statements.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an altstep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it
has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also be indicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a stop Statement, or
the main control flow of the test component will continue immediately after the alt statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has
to be specified by means of a repeat statement (see clause 20.3). If the execution of the selected top aternative of the
default ends with abreak statement or without a repeat statement the control flow of the test component will
continue immediately after the alt statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of aprocessthat isimplicitly called at the end of each alt statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation
Theactivate operationis used to activate atsteps as defaults.

Syntactical Structure

activate " (" AltstepRef " (" [{ ActualbPar [","] } 1 m)n m)mn

ETSI

158 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

An activate operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used in adeactivate operation for
the deactivation of the default.

The effect of an activate operationislocal to the test component in which it is caled. This means, atest component
cannot activate a default in another test component.

The activate operation can be called without saving the returned default reference. Thisform is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding activate statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of itsinvocation by the default mechanism).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All timer instancesin the actual parameter list shall be declared as component type local timers
(see clause 6.2.10.1).

b) Analtstep that is activated as a default shall only have in parameters, port parameters, or timer parameters.
Examples

EXAMPLE 1. Activation where the default referenceis kept

// Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

// Declaration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo := activate (MySecondAltStep()) ;

// Activation of altstep MyAltStep as a default
MyDefaultVar := activate(MyAltStep()); // MyAltStep is activated as default

// Usage of MyDefaultVar for the deactivation of default MyDefAltStep
deactivate (MyDefaultVar) ;

EXAMPLE 2: Simple activation

// Activation of an altstep as a default, without assignment of default reference
activate (MyCommonDefault ()) ;

EXAMPLE 3: Activation of a parameterized altstep

altstep MyAltStep2 (integer par_valuel, MyType par_value2,
MyPortType par port, timer par timer)
{

}
function MyFunc () runs on MyCompType
{ :

var default MyDefaultVar := null;

MyDefaultVar := activate (MyAltStep2 (5, myVar, myCompPort, myCompTimer) ;
// MyAltStep2 is activated as default with the actual parameters 5 and
// the value of myVar. A change of myVar before a call of MyAltStep2 by
// the default mechanism will not change the actual parameters of the call.

ETSI

159 ETSI ES 201 873-1 V4.4.1 (2012-04)

20.5.3 The Deactivate operation
The deactivate operation is used to deactivate defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate ["(" VariableRef | FunctionInstance ")"]
Semantic Description
A deactivate operation will remove the referenced default from the list of defaults.

The effect of adeactivate operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deactivate operation without parameter deactivates all defaults of atest component.

Calling adeactivate operation with the specia valuenull has no effect. Caling adeactivate operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of default type.

Examples
var default MyDefaultVar := null;
var default MyDefVarTwo := activate (MySecondAltStep()) ;
var default MyDefVarThree := activate (MyThirdAltStep());
MyDefaultVar := activate (MyAltStep()) ;

deactivate (MyDefaultVar); // deactivates MyAltStep

deactivate; // deactivates all other defaults, i.e. in this case MySecondAltStep
// and MyThirdAltStep

21 Configuration Operations

Configuration operations are used to set up and control test components. They are summarized in table 20. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 20: Overview of TTCN-3 configuration operations

Operation | Explanation | Syntax Examples

Connection Operations

connect Connects the port of one test connect (ptcl:pl, ptc2:p2);
component to the port of another test
component

disconnect Disconnects two or more connected disconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to |map (ptcl:q, system:sutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap (ptcl:q, system:sutPortl);

Test Component Operations

create Creation of a normal or alive test Non-alive test components:
component, the distinction between var PTCType c := PTCType.create;
normal and alive test components is Alive test components:
rnadeduﬁng(xeaﬂon var PTCType c := PTCType.create alive;
(MTC behaves as a normal test
component)

ETSI

160

ETSI ES 201 873-1 V4.4.1 (2012-04)

Operation

Explanation

Syntax Examples

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour()) ;

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive) ..

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running) ..

done

Checks whether the function running on
a test component has terminated

c.done;

killed

Checks whether a test component has
ceased to exist

c.killed { .. }

Test Case Operations

stop

Terminates the test case with the test
verdict error

testcase.stop (..);

Reference Operations

mtc

Gets the reference to the MTC

connect (mtc:p, ptc:p);

system Gets the reference to the test system |map (c:p, system:sutPort);
interface
self Gets the reference to the test self.stop;

component that executes this operation

21.1 Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface themap operation shall be used. The connect operation
directly connects one port to another with the in side connected to the out side and vice versa. Themap operation on
the other hand can be seen purely as a name trandation defining how communications streams can be referenced.

Test system

[[T
MTC <

Connected Ports

ouT IN

Mapped Ports

PTC

ouT IN

Abstract Test System Interface

A
ouT ¢ | IN

Real Test System Interfa

SUT

O

ce

ETSI

Figure 10: lllustration of the connect and map operations

161 ETSI ES 201 873-1 V4.4.1 (2012-04)

21.1.1 The Connect and Map operations
The connect operation and themap operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
map " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
[param " (" [{ ActualPar [","] }+ 1 ")"]

Semantic Description

With both the connect operation and themap operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mtc identifiesthe MTC, the operation system identifies the test system interface and the operation
self identifies the test component in which sel £ has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both themap and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters must conform to the map param
clause of the port type declaration of the system port used.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) For both the connect and map operations, only consistent connections are allowed.
Assuming the following:
1) ports PORT1 and PORT2 are the ports to be connected;
2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
4) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) The connect operationisallowed if and only if:
outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT1.
¢) Themap operation (assuming PORT2 isthe test system interface port) isallowed if and only if:
outlist-PORT1 c outlist-PORT2 and inlist-PORT2 c inlist-PORT 1.
d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to atest case error when failing.

f) Inaddition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

0g) Inmap operations, param clauses are optiondl. If in amap operation aparam clauseis present, the actual
parameters shall conform to the map param clause of the port type declaration of the system port used.

ETSI

162 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE 1. Simple map and connect

// It is assumed that the ports Portl, Port2, Port3 and PCOl are properly defined and declared
// in the corresponding port type and component type definitions

var MyComponentType MyNewPTC;
MyNewPTC := MyComponentType.create;

connect (MyNewPTC:Portl, mtc:Port3);
map (MyNewPTC:Port2, system:PCO1l) ;

// In this example a new component of type MyComponentType is created and its reference stored
// in variable MyNewPTC. Afterwards in the connect operation, Portl of this new component

// is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
// is then connected to port PCOl of the test system interface

EXAMPLE 2: Parameterized map

var MyConfigType MyConfig := { option := 1, lock := false};
map (mtc:Port4, system:PCO2) param (MyConfig) ;
// In this example by means of the map operation, Port4 of the MTC is connected to the port PCO2

// of the test system interface, and additionally a parameter containing configuration options
// for the connection is passed.

21.1.2 The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

disconnect [(" (" ComponentRef ":" Port "," ComponentRef ":" Port ")")
(n(n PortRef n)n) |
(" (" ComponentRef ":" all port ")") |
("(" all component ":" all port ")") 1]
unmap [(" (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
[param " (" [{ ActualPar [","] }+ 1 "m)" 1) |
("(" PortRef ")" [param " (" [{ ActualPar [","] }+ 1 ")" 1) |
(" (" ComponentRef ":" all port ")") |
("(" all component ":" all port ")")]

Semantic Description

The disconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

To ease disconnect and unmap operations related to all connections and mappings of a component or aport, it is
allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theall port keyword can be used to denote al ports of a
component.

The usage of adisconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.

ETSI

163 ETSI ES 201 873-1 V4.4.1 (2012-04)

Theall component keyword shall only be used in combination withtheall port keyword,i.e. all
component:all port, and shal only be used by the MTC. Furthermore, the all component:all port
argument shall be used as the one and only argument of adisconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters must conform to the unmap param clause of the port type declaration of the system
port used. It allows to pass values needed for dynamic runtime configuration.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

@) Inanunmap operation, aparam clause shall only be present if the system port to which the param clause
belongsto is explicitly referenced.

b) Inunmap operations, param clauses are optiona. If in an unmap operation aparam clauseis present, the
actual parameters shall conform to the unmap param clause of the port type declaration of the system port
used.

Examples

EXAMPLE 1: Disconnect/unmap for specific connections

connect (MyNewComponent : Portl, mtc:Port3);
map (MyNewComponent : Port2, system:PCO1) ;

disconnect (MyNewComponent : Portl, mtc:Port3); // disconnect previously made connection
unmap (MyNewComponent : Port2, system:PCO1) ; // unmap previously made mapping

EXAMPLE 2: Disconnect/unmap for a component

disconnect (MyNewComponent : Portl) ; // disconnects all connections of Portl, which
// is owned by component MyNewComponent .
unmap (MyNewComponent :all port) ; // unmaps all ports of component MyNewComponent

EXAMPLE 3: Disconnect/unmap for "self"

disconnect; // is a shorthand form for ..
disconnect (self:all port); // which disconnects all ports of the component
// that called the operation

unmap ; // is a shorthand form for ..

unmap (self:all port) ; // which unmaps all ports of the component
// that called the operation

EXAMPLE 4: Disconnect/unmap for "all component”

disconnect (all component:all port); // the MTC disconnects all ports of all
// components in the test configuration.

unmap (all component:all port) ; // the MTC unmaps all ports of all
// components in the test configuration.

21.2 Test case operations

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of atest case with the test verdict error and
an (optional) associated reason for the termination. Such an immediate stop of atest caseisrequired for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leadsto a
situation where the continuation of the test case makes no more sense.

ETSI

164 ETSI ES 201 873-1 V4.4.1 (2012-04)

Syntactical Structure

testcase "." stop ["(" { (FreeText | TemplateInstance) [","] } ")"]
Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict error. In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of atest
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetest case stop operation shall not be used in the module control part or functionsinvoked directly or
indirectly by the module control part.

Examples
testcase.stop ("Unexpected Termination") ;

// The test case stops the an error verdict and the string "Unexpected Termination"
// is written to some log device of the test system

21.3 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can aso be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation
The create operation is used to create test components.

Syntactical Structure

ComponentType "." create [" (" Expression ["," Expression] ")"] [alive]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by create operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of the type in or inout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional alive keyword. An alive-type PTC must be destroyed explicitly using thekill
operation (see clause 21.3.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of atest case, i.e. the MTC, terminates all PTCsthat still exist, if any.

Since al test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The create operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

ETSI

165 ETSI ES 201 873-1 V4.4.1 (2012-04)

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Also optionally, a host id can be associated with the newly created component instance. If ahost id is provided, the
create operation shall cause atest case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in a message.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thename given by the first Expression shall be a charstring value and when assigned it shall appear asthe
first argument of the create function.

b) Thehost id given by the second Expression shall be a char string value and, when assigned, it shall appear as
the second argument of the create function.

Examples

// This example declares variables of type MyComponentType, which is used to store the

// references of newly created component instances of type MyComponentType which is the

// result of the create operations. An associated name is allocated to some of the created
// component instances.

var MyComponentType MyNewComponent;

var MyComponentType MyNewestComponent;

var MyComponentType MyAliveComponent;

var MyComponentType MyAnotherAliveComponent;
var MyComponentType MyDeployedComponent;

MyNewComponent := MyComponentType.create;
MyNewestComponent := MyComponentType.create ("Newest") ;
MyAliveComponent := MyComponentType.create alive;

MyAnotherAliveComponent := MyComponentType.create ("Another Alive") alive;
MyDeployedComponent := MyComponentType.create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate atest behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure
(VariableRef | FunctionInstance) "." start " (" FunctionInstance ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisis done by using the start operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between create and start isto allow connection operations to
be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

ETSI

166 ETSI ES 201 873-1 V4.4.1 (2012-04)

An alive-type PTC may perform several behaviour functions in sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is still running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
asthey were left after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an aive-type PTC.

NOTE 1. Thelifetime of variables and timersis bound to the scope in which they are declared. When an aive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by afunction with a
corresponding runs on-clause that is started on an alive-type PTC.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

b) Thefollowing restrictions apply to afunction invoked in a start test component operation:

e Thisfunction shall have a runs on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

e Portsand timers shall not be passed into this function.

NOTE 2: Possible return values of afunctioninvoked in a start test component operation, i.e. templates denoted
by return keyword or inout and out parameters, have no effect when the started test component
terminates.

NOTE 3: Asin and inout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples
function MyFirstBehaviour () runs on MyComponentType { .. }
function MySecondBehaviour () runs on MyComponentType { .. }

var MyComponentType MyNewPTC;
var MyComponentType MyAlivePTC;

MyNewPTC := MyComponentType.create; // Creation of a new non-alive test component.

MyAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
MyNewPTC.start (MyFirstBehaviour()) ; // Start of the non-alive component.

MyNewPTC.done; // Wait for termination

MyNewPTC.start (MySecondBehaviour()) ; // Test case error

MyAlivePTC.start (MyFirstBehaviour()) ; // Start of the alive-type component
MyAlivePTC.done; // Wait for termination

MyAlivePTC.start (MySecondBehaviour()) ; // Start of the next function on the same component

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure
stop |

((VariableRef | FunctionInstance | mte | self) "." stop) |
(all component "." stop)

ETSI

167 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

By using the stop test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
hasto be identified by using its component reference. A component can stop its own behaviour by using asimple stop
execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the sel £ operation.

NOTE 1. Whilethe create, start, running, done and killed operations can be used for PTC(s) only, the
stop operation can also be applied to the MTC.

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit return statement. Thistermination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the start operation). Stopping an alive-type component means that
al variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keepsits value. In contrast to that, al active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The all keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1. Stopping another test component and a test component by itself

var MyComponentType MyComp := MyComponentType.create; // A new test component is created
MyComp . start (CompBehaviour()) ; // The new component is started
if (date == "1.1.2005") ({

MyComp.stop; // The component "MyComp" is stopped

}

:i.f(a<b){

self.stop; // The test component that is currently executing stops its own behaviour
!

stop // The test component stops its own behaviour

ETSI

168 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2: Stopping all PTCsby theMTC

all component.stop // The MTC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

Thekill test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components. stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing atest component destroys the
test component.

Syntactical Structure
kill |

((VariableRef | FunctionInstance | mte | self) "." kill) |
(all component "." kill)

Semantic Description

Thekill operation applied on atest component stops the execution of the currently running behaviour - if any - of

that component and frees all resources associated to it (including all port connections of the killed component) and
removes the component from the test system. The ki11 operation can be applied on the current test component itsel f

by asimplekill statement or by addressing itself using the sel £ operation in conjunction with the kill operation. The
kill operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the ki1l operation isapplied onthe MTC, e.g. mtc.kill, it terminates
the test case.

The all keyword can be used by the MTC only in order to stop and kill al running PTCs but the MTC itself.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1. Killing another test component and atest component by itself

var PTCType MyAliveComp := PTCType.create alive; // Create an alive-type test component
MyAliveComp.start (MyFirstBehaviour ()) ; // The new component is started
MyAliveComp.done; // Wait for termination
MyAliveComp.start (MySecondBehavior()) ; // Start the component a 2™ time
MyAliveComp.done; // Wait for termination
MyAliveComp.kill; // Free its resources

EXAMPLE 2: Killingall PTCsby the MTC

all component.kill; // The MTC stops all (alive-type and normal) PTCs of the test case first
// and frees their resources.

21.3.5 The Alive operation

The alive operationisaBaoolean operation that checks whether atest component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." alive

ETSI

169 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

Applied on anormal test component, the aliwve operation returnstrue if the component isinactive or running a
function and false otherwise. Applied on an aive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

The alive operation can be used similar to the running operation on PTCSsonly (see clause 21.3.6). In particular,
in combination with the al1 keyword it returnstrue if al (alive-type or normal) PTCs are dive.

The alive operation used in combination with the any keyword returnstrue if at least one PTC is alive.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
PTC1.done; // Waits for termination of the component
if (PTCl.alive) { // If the component is still alive ..
PTCl.start (AnotherFunction()) ; // .. execute another function on it.

}

21.3.6 The Running operation

The running operation is a Boolean operation that checks whether atest component is executing aready a behaviour
function.
Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." running

Semantic Description

The running operation allows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. The running operation can be used for PTCs only. The running operation
returns true for PTCsthat have been started but not yet terminated or stopped. It returns £alse otherwise. The
running operation isconsidered to be aboolean expression and, thus, returns aboolean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
running operation can be used freely in boolean expressions.

When the a1l keyword is used with the running operation, it will return true if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returns false.

When the any keyword is used with the running operation, it will return true if at least one PTC is executing its
behaviour. Otherwiseit returns false.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

if (PTCl.running) // usage of running in an if statement

// do something!

while (all component.running != true) { // usage of running in a loop condition
MySpecialFunction ()

ETSI

170 ETSI ES 201 873-1 V4.4.1 (2012-04)

21.3.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." done

Semantic Description

The done operation shall be used in the same manner as a receiving operation or a timeout operation. This meansit
shall not be used in aboolean expression, but it can be used to determine an aternativein an alt statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an alt statement with the done operation asthe only alternative.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

NOTE 1: The execution of a done operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result as long as the test component
does not change its state (see clause F.1.2).

When the a1l keyword is used with the done operation, it matchesif no one PTC is executing its behaviour. It also
matches if no PTC has been created.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 2: Stopping the behaviour of a non-alive component also resultsin removing that component from the test
system, while stopping an alive-type component | eaves the component alive in the test system. In both
cases the done operation matches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thedone operation can be used for PTCsonly.

b) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

// Use of done in alternatives
alt {
[] MyPTC.done {
setverdict (pass)
1

[] any port.receive {
repeat
!

}

var MyComp c := MyComp.create alive;
c.start (MyPTCBehaviour()) ;

c.done;

// matches as soon as the function MyPTCBehaviour (or function/altstep called by it) stops
c.done;

// matches the end of MyPTCBehaviour (or function/altstep called by it) too
if (c.running) {c.done}

// done here matches the end of the next behaviour only

ETSI

171 ETSI ES 201 873-1 V4.4.1 (2012-04)

// the following done as stand-alone statement:
all component.done;

// has the following meaning:
alt {
[1] all component.done {}

// and thus, blocks the execution until all parallel test components have terminated

21.3.8 The Killed operation

The killed operation allows to ascertain whether a different test component is alive or has been removed from the
test system.

Syntactical Structure

(VariableRef |
FunctionInstance |
any component |
all component) "." killed

Semantic Description

Thekilled operation shall be used in the same manner as receiving operations. This meansit shall not be used in
boolean expressions, but it can be used to determine an aternative in an alt statement or as a stand-alone statement
in a behaviour description. In the latter case akilled operation is considered to be a shorthand for an alt statement
with the killed operation as the only alternative.

NOTE 1: When checking normal test components a killed operation matchesiif it stopped (implicitly or explicitly)
the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, the killed
operation matches only if the component has been killed using the ki1l operation. Otherwise the
killed operation isunsuccessful.

NOTE 2: The execution of akilled operation does not change the state of the test component. Consecutive
killed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

When the a1l keyword is used with the killed operation, it matchesif all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword is used with the ki1led operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Thekilled operation can be used for PTCsonly.

Examples
var MyPTCType ptc := MyPTCType.create alive; // create an alive-type test component
timer T:= 10.0; // create a timer
T.start; // start the timer
ptc.start (MyTestBehavior()) ; // start executing a function on the PTC
alt {
[1 ptc.killed { // if the PTC was killed during execution ..
T.stop; // .. stop the timer and ..
setverdict (inconc) ; // .. set the verdict to 'inconclusive'
1
[1 ptc.done { // if the PTC terminated regularly ..
T.stop; // .. stop the timer and ..
ptc.start (AnotherFunction()) ; // .. start another function on the PTC
1
[1 T.timeout ({ // if the timeout occurs before the PTC stopped
ptc.kill; // .. kill the PTC and ..
setverdict (fail) ; // .. set the verdict to 'fail'

}

ETSI

172

ETSI ES 201 873-1 V4.4.1 (2012-04)

21.3.9 Summary of the use of any and all with components

The keywords any and a1l may be used with configuration operations as indicated in table 21.

Table 21: Any and All with components

Operation Allowed Example Comment
any (see note) | all (see note)
create
start
running Yes but from |Yes but from any component.running; |Is there any PTC performing test
MTC only MTC only behaviour?
all component.running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any component.alive; Is there any alive PTC?
MTC only MTC only all component.alive; Are all PTCs alive?
done Yes but from Yes but from any component.done; Is there any PTC that completed
MTC only MTC only execution?
all component.done; Did all PTCs complete their execution?
killed Yes but from |Yes but from any component.killed; |(|Isthere any PTC that ceased to exist?
MTC only MTC only all component.killed; |[Did all PTCs cease to exist?
stop Yes but from all component.stop; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component.kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and all referto PTCs only, i.e. the MTC is not considered.

22

Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 22.

Table 22: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls

ETSI

173 ETSI ES 201 873-1 V4.4.1 (2012-04)

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), aswell as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked on the receive operation until it
processes the received message.

In addition to the receive operation, TTCN-3 provides a trigger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive Or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call proceduresin remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using the call operation. The CALLEE accepts the call by means of a
getcall operation and reacts by either using a reply operation to answer the call or by raising (raise operation)
an exception. The CALLER handles the reply or exception by using getreply or catch operations. Infigure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcall
: >
CALLER | | { | CALLEE
14)
getreply oOr reply oOr
catch exception raise exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the call operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE accepts the call by means of agetcall operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a catch operation in an alt statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

ETSI

174 ETSI ES 201 873-1 V4.4.1 (2012-04)

call getcall
>
CALLER i | CALLEE
< H
catch exception raise exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

J Unicast communication means one sender to one receiver.

o Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or al entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such as send and call are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (call operation), or repliesto an
accepted call (reply operation) or raises an exception (raise operation). These actions are collectively
referred to as sending operations;

b) acomponent receives a message (receive operation), awaits a message (trigger operation),accepts a
procedure call (getcall operation), receives areply for aprevioudy called procedure (getreply
operation) or catches an exception (catch operation). These actions are collectively referred to as receiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of ablocking procedure-based call operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and al entities connected to the specified port have to be addressed.

ETSI

175 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
MyP1l.send (MyVariable + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the call operation isoptional and is required for cases where the called procedure returns a
value or hasout or inout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operationsto
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1l.call (MyProc: {MyVarl}) {
[] MyPl.getreply (MyProc:{MyVar2}) {}
[l MyPl.catch(MyProc, ExceptionOne) {}
}
22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptabl e input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the £rom keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storing the in and inout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call toavariable. Thisis useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
MyP1l.getreply (AProc:{?} value 5) -> param (V1) sender APeer

ETSI

176 ETSI ES 201 873-1 V4.4.1 (2012-04)

Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2.receive (MyTemplate (5,7)) from APeer -> |value MyVar

22.2 Message-based communication

The operations for message-based communication via asynchronous ports are summarized in table 23.

Table 23: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send " (" TemplateInstance ")"
[to Address]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A
to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast
communication is used, if the to clause includes alist of communication partners. Broadcast is defined by using the to
clausewithall component keyword.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The Templatel nstance (and al parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValue is not alowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

c¢) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) A to clause shall be present in case of one-to-many connections.

€) AddressRef shal be of type address, component or of the type provided in the address declaration of the
port type of the port instance referenced in the send operation.

ETSI

177 ETSI ES 201 873-1 V4.4.1 (2012-04)

f) Applying a send operation to an unmapped or disconnected port shall cause atest case error.

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

MyPort .send (MyTemplate (5,MyVar)) ; // Sends the template MyTemplate with the actual
// parameters 5 and MyVar via MyPort.

MyPort.send (5) ; // Sends the integer value 5 (which is an in-line template)

EXAMPLE 2 Sending with explicit to clause

MyPort .send (charstring: "My string") to MyPartner;
// Sends the string "My string" to a component with a
// component reference stored in variable MyPartner

MyPCO.send (MyVariable + YourVariable - 2) to MyPartner;
// Sends the result of the arithmetic expression to MyPartner.

MyPCO2.send (MyTemplate) to (MyPeerOne, MyPeerTwo) ;
// Specifies a multicast communication, where the value of
// MyTemplate is sent to the two component references stored
// in the variables MyPeerOne and MyPeerTwo.

MyPCO3.send (MyTemplate) to all component;
// Broadcast communication: the value of Mytemplate is send to
// all components which can be addressed via this port. If
// MyPCO3 is a mapped port, the components may reside inside
// the SUT.

22.2.2 The Receive operation
Thereceive operationis used to receive a message from an incoming message port queue.

Syntactical Structure

Port | amny port) "." receive
"(" TemplateInstance ")"]
from Address]
"->" [value (VariableRef |
("(" { variableRef [":=" FieldOrTypeReference]1[","] } ™)")
)]

[sender VariableRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Thereceive operationis used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the receive operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if the receive operation
isused as an alternative of an alt statement and it is not successful, the execution of the test case shall continue with
the next alternative of the alt statement.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and val ue of the message
to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato the receive operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

ETSI

178 ETSI ES 201 873-1 V4.4.1 (2012-04)

Receiving from a specific sender

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the £rom keyword.

Storing the received message and parts of the received message

If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or
formal parameters. Thisis denoted by the symbol '->' and the keyword value.

When the keyword value isfollowed by a name of avariable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword value isfollowed by an assignment list enframed by a pair of parentheses, the whole received
message and/or one or more parts of it can be stored. In asingle assignment within the list, on the left hand side of the
assignment symbol (":=") afield of the template type shall be referenced, on the right hand side the name of the variable
or aformal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible
with the type on the left hand side of the assignment symbol. As a specia case the field reference can be absent to
indicate that the whole message shall be stored in avariable.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender.

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
To receive amessage on any port, use the any port keywords.
Stand-alonereceive

The receive operation can be used as a stand-al one statement in a behaviour description. In this latter case the
receive operation is considered to be shorthand for an alt statement with the receive operation as the only
alternative.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Thereceive operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

¢) No binding of theincoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

f) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the receive operation.

ETSI

179 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE 1: Basicreceive

MyPort .receive (MyTemplate (5, MyVar)) ; // Matches a message that fulfils the conditions
// defined by template MyTemplate at port MyPort.

MyPort .receive (A<B) ; // Matches a Boolean value that depends on the outcome of A<B

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort

MyPort .receive (MyVar) ; // Is an alternative to the previous example

EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender
MyPort .receive (charstring:"Hello") from MyPeer; // Matches charstring "Hello" from MyPeer

MyPort .receive (MyType:?) -> value MyVar; // The value of the received message is
// assigned to MyVar.

MyPort .receive (MyType:?) -> value (MyVar, MyMessageIdVar:= MyType.messageld)
// The value of the received message is stored in the variable
// MyVar and the value of the messageId field of the received
// message is stored in the variable MyMessageIdVar.

MyPort .receive (anytype:?) -> value (MyIntegerVar := integer)
// If the received value is an integer, it is stored in the variable
// MyIntegerVar, a test case error otherwise.
MyPort .receive (charstring:?) -> value (MyCharstringVar)
// The received value is stored in the variable MyCharstringVar;
// Note that it is the same as to write "value MyCharstringVar"

MyPort .receive (A<B) -> sender MyPeer; // The address of the sender is assigned to MyPeer

MyPort.receive (MyTemplate: {5, MyVarOne}) -> value MyVarTwo sender MyPeer;
// The received message value is stored in MyVarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message

MyPort .receive; // Removes the top value from MyPort.

MyPort .receive from MyPeer; // Removes the top message from MyPort if its sender is
MyPeer

MyPort.receive -> sender MySenderVar; // Removes the top message from MyPort and assigns

// the sender address to MySenderVar

EXAMPLE 4: Receive on any port

any port.receive (MyMessage) ;

22.2.3 The Trigger operation
The trigger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

Port | amy port) "." trigger
"(" TemplateInstance ")"]
from Address]
"->" [value (VariableRef |
("(" { variableRef [":=" FieldOrTypeReference]1[","] } ™)")
)]

[sender VariableRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.

ETSI

180 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

The trigger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, the trigger operation behavesin the same manner asareceive operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

The trigger operation requires the port name, matching criteria for type and value, an optional f£rom restriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.
Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
To trigger On amessage at any port, usethe any port keywords.
Stand-alone trigger

The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting
the message and another aternative consuming all other messages and repeating the alt statement, see

ES 201 873-4[1]).

Storing the received message, parts of the received message or the sender

Rulesin clause 22.2.2 shall apply.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetrigger operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to avariable.

c¢) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

d) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the trigger operation.

Examples

EXAMPLE 1. Basictrigger

MyPort.trigger (MyType:?) ;
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

MyPort.trigger (MyType:?) from MyPartner;
// Triggers on the reception of the first message of type MyType at port MyPort
// received from MyPartner.

MyPort.trigger (MyType:?) from MyPartner -> value MyRecMessage;

// This example is almost identical to the previous example. In addition, the message which
// triggers i.e. all matching criteria are met, is stored in the variable MyRecMessage.

ETSI

181 ETSI ES 201 873-1 V4.4.1 (2012-04)

MyPort.trigger (MyType:?) -> sender MyPartner;

// This example is almost identical to the first example. In addition, the reference of the
// sender component will be retrieved and stored in variable MyPartner.

MyPort.trigger (integer:?) -> value MyVar sender MyPartner;

// Trigger on the reception of an arbitrary integer value which afterwards is stored in
// variable MyVar. The reference of the sender component will be stored in variable MyPartner.

EXAMPLE 3: Trigger on any message
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySenderVar;

EXAMPLE 4: Trigger on any port

any port.trigger

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 24.

Table 24: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/lexception/reply received check

22.3.1 The Call operation

The call operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

Port "." call " (" TemplateInstance ["," CallTimerValue] ")"
[to Address 1]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
The call operationis used to specify that atest component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the call operation is asignature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto call operationsis done by
using catch (see clause 22.3.6) operations as aternativesin alt statements.

If the nowait option isused, the handling of responses or exceptionsto call operationsisdone by using getreply
(see clause 22.3.4) and catch (see clause 22.3.6) operations as alternativesin alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch
(see clause 22.3.6) operations.

ETSI

182 ETSI ES 201 873-1 V4.4.1 (2012-04)

The response and exception handling part of acall operation looks similar to the body of an alt statement. It defines
aset of aternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of aboolean expression placed between the"[1"
brackets of the alternative.

The response and exception handling part of a call operation is executed like an alt statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

The call operation may optionally include atimeout. Thisis defined as an explicit value or constant of £1loat type
and defines the length of time after the call operation has started that a t imeout exception shall be generated by the
test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valuein acall operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or atimeout exception.

If thenowait keyword isused, apossible response or exception of the called procedure has to be removed from the
port queue by using agetreply or acatch operation in a subsequent alt statement.

Calling blocking procedureswithout return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anoblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch
operationsin subsequent alt or interleave Statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 aso supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of acall operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callsthe all component keyword. In case of one-to-one
connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast call operation may cause several
responses and exceptions from different communication partners.

In case of a multicast or broadcast call operation of a non-blocking procedure, al exceptions which may be raised
from the different communication partners can be handled in subsequent catch, alt or interleave Statements.

In case of amulticast or broadcast call operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the call operation. Then, further responses and
exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are
handled by the use of repeat statementsin one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of arepeat statement causes the re-evaluation of the call body.

NOTE 2: Inthe second case, the user needs to handle the number of repetitions.

ETSI

183 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Thecall operation shall only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure namein itsout or inout listi.e. it must be allowed to
call this procedure at this port.

b) All in and inout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c¢) Only out parameters may be omitted or specified with a matching attribute.

d) Thesignature arguments of the call operation are not used to retrieve variable names for out and inout
parameters. The actual assignment of the procedure return value and out and inout parameter valuesto
variables shall explicitly be made in the response and exception handling part of the call operation by means
of getreply and catch operations. This allows the use of signature templatesin call operationsin the
same manner as templates can be used for types.

€) A to clause shall be present in case of one-to-many connections.

f) AddressRef shall be of type address, component or of the type provided in the address declaration of the
port type of the port instance referenced in the call operation.

g) CallTimerValue must be of type float.

h) The selection of the alternativesto acall shall only be based on getreply and catch operationsfor the
called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions
raised by the called procedure. The use of else branches and the invocation of atstepsis not allowed.

i) Theevaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inalt statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have aresponse and exception handling part to handle the blocking in a uniform manner.

k) Incaseof amulticast or broadcast call operation of ablocking procedure, where the nowait keyword is
used, all responses and exceptions have to be handled in subsequent alt or interleave Statements.

[) Thecall operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

m) Applying acall operation to an unmapped or disconnected port shall cause atest case error.
Examples

EXAMPLE 1: Blocking call with getreply

// Given ..
signature MyProc (out integer MyParl, inout boolean MyPar2) ;

// a call of MyProc
MyPort.call (MyProc:{ -, MyVar2}) { // in-line signature template for the call of MyProc
[] MyPort.getreply (MyProc:{?, 2}) { }

// .. and another call of MyProc
MyPort.call (MyProcTemplate) { // using signature template for the call of MyProc
[1 MyPort.getreply (MyProc:{?, 2}) { }

MyPort.call (MyProcTemplate) to MyPeer { // calling MyProc at MyPeer
[] MyPort.getreply (MyProc:{?, 2}) { }
}

ETSI

184 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2: Blocking call with getreply and catch

// Given
signature MyProc3 (out integer MyParl, inout boolean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo) ;

// Call of MyProc3

MyPort.call (MyProc3:{ -, true }) to MyPartner ({
[] MyPort.getreply (MyProc3:{?, ?}) -> value MyResult param (MyParlVar,MyPar2Var) { }
[] MyPort.catch(MyProc3, MyExceptionOne) ({

setverdict (fail) ;
stop;

1
[] MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {
setverdict (inconc) ;
!

[MyCondition] MyPort.catch (MyProc3, MyExceptionThree) { }

}
EXAMPLE 3: Blocking call with timeout exception
MyPort.call (MyProc:{5,MyVar}, 20E-3) {

[] MyPort.getreply (MyProc:{?, 2}) { }

[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;

}
EXAMPLE 4: Nowait call

MyPort.call (MyProc: {5, MyVar}, nowait); // The calling test component will continue
// its execution without waiting for the
// termination of MyProc

EXAMPLES5: Blocking call without return value, out parameters, inout parameters and exceptions

// Given ..
signature MyBlockingProc (in integer MyParl, in boolean MyPar2) ;

// a call of MyBlockingProc
MyPort.call (MyBlockingProc:{ 7, false }) {
[] MyPort.getreply(MyBlockingProc:{ -, - }) { }

}
EXAMPLE 6: Broadcast call

var boolean first:= true;
MyPort.call (MyProc:{5,MyVar}, 20E-3) to all component { // Broadcast call of MyProc
// Handles the response from MyPeerOne
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerOne ({
if (first) { first := false; repeat; }

}

// Handles the response from MyPeerTwo
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerTwo {

if (first) { first := false; repeat; }
[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;
!
!
alt {
[] MyPort.getreply (MyProc:{?, 2}) ({ // Handles all other responses to the broadcast call
repeat

}
}

ETSI

185 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 7: Multicast call
MyPort.call (MyProc:{5,MyVar}, nowait) to (MyPeerl, MyPeer2); // Multicast call of MyProc

interleave
[1 MyPort.getreply (MyProc:{?, ?}) from MyPeerl { } // Handles the response of MyPeerl
[] MyPort.getreply (MyProc:{?, ?}) from MyPeer2 { } // Handles the response of MyPeer2

}

22.3.2 The Getcall operation
Thegetcall operation is used to accept calls.

Syntactical Structure

(Port | any port) "." getcall

["(" TemplateInstance ")" 1]

[from Address]

["->" [param " (" { (VariableRef ":=" ParameterIdentifier) "," } |
{ (variableRef | m"-m) n,v }

||)||]
[sender VariableRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Thegetcall operation isused to specify that atest component accepts a call from the SUT, or another test
component.

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature templ ate.

The assignment of in and inout parameter valuesto variables shall be made in the assignment part of thegetcall
operation. This alows the use of signature templatesin getcall operationsin the same manner as templates are used
for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter
values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the
parameter values of acall.

The keyword sender isused when it is required to retrieve the address of the sender (e.g. for addressing areply or
exception to the calling party in a one-to-many configuration).

Accepting any call

A getcall operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled.

Getcall on any port

Togetcall onany port is denoted by the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thegetcall operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the getcall operation shall not be used to passin variable names for in and
inout parameters.

ETSI

186 ETSI ES 201 873-1 V4.4.1 (2012-04)

c¢) The Parameterldentifiers must be from the corresponding signature definition.
d) Thevaue assignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause
shall not be present.

f) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the getcall operation.

Examples

EXAMPLE 1: Basic getcall

MyPort .getcall (MyProc: MyProcTemplate (5, MyVar)) ; // accepts a call of MyProc at MyPort

MyPort.getcall (MyProc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter valuesto variables

MyPort.getcall (MyProc:{?, ?}) from MyPartner -> param (MyParlVar, MyPar2Var) ;
// The in or inout parameter values of MyProc are assigned to MyParlVar and MyPar2Var.

MyPort.getcall (MyProc: {5, MyVar}) -> sender MySenderVar;
// Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.

// The address of the calling party is retrieved and stored in MySenderVar.

// The following getcall examples show the possibilities to use matching attributes
// and omit optional parts, which may be of no importance for the test specification.

MyPort.getcall (MyProc: {5, MyVar}) -> param(MyVarl, MyVar2) sender MySenderVar;
MyPort.getcall (MyProc:{5, ?}) -> param(MyVarl, MyVar2);

MyPort.getcall (MyProc:{?, MyVar}) -> param(- , MyVar2);
// The value of the first inout parameter is not important or not used

// The following examples shall explain the possibilities to assign in and inout parameter
// values to variables. The following signature is assumed for the procedure to be called:

signature MyProc2 (in integer A, integer B, integer C, out integer D, inout integer E);
MyPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA, MyVarB, - , -, MyVarE);

// The parameters A, B, and E are assigned to the variables MyVarA, MyVarB, and

// MyVarE. The out parameter D needs not to be considered.

MyPort.getcall (MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE:= E);

// Alternative notation for the value assignment of in and inout parameter to variables. Note,

// the names in the assignment list refer to the names used in the signature of MyProc2

MyPort.getcall (MyProc2:{1, 2, 3, -, *}) -> param (MyVarE:= E);
// Only the inout parameter value is needed for the further test case execution

EXAMPLE 3: Accepting any call
MyPort .getcall; // Removes the top call from MyPort.
MyPort.getcall from MyPartner; // Removes a call from MyPartner from port MyPort

MyPort.getcall -> sender MySenderVar; // Removes a call from MyPort and retrieves
// the address of the calling entity

EXAMPLE 4: Getcall on any port

any port.getcall (MyProc:?)

22.3.3 The Reply operation
The reply operation isused to reply to acall.

Syntactical Structure

Port "." reply " (" TemplateInstance [value Expression] ")"

ETSI

187 ETSI ES 201 873-1 V4.4.1 (2012-04)

[to Address 1]
NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: The relation between an accepted call and a reply operation cannot always be checked statically. For
testing it is allowed to specify a reply operation without an associated getcall operation.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of areply operation isfor unicast responses the address of one receiving entity, for multicast responses alist of
addresses of a set of receivers and for broadcast responsesthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the value keyword.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A reply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the reply operation belongs.

b) All out and inout parameters of the signature shall have a specific value i.e. the use of matching
mechanisms such as AnyValue is not allowed.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shal be of type address, component or of the type provided in the address declaration of the
port type of the port instance referenced in the reply operation.

€) If avalueisto bereturned to the calling party, this shall be explicitly stated using the value keyword.

f) Applying areply operation to an unmapped or disconnected port shall cause atest case error.

Examples
MyPort.reply (MyProc2:{ - ,5}); // Replies to an accepted call of MyProc2.
MyPort.reply (MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer
MyPort.reply (MyProc2:{ - ,5}) to (MyPeerl, MyPeer2); // Multicast reply to MyPeerl and MyPeer2
MyPort.reply (MyProc2:{ - ,5}) to all component; // Broadcast reply to all entities connected
// to MyPort
MyPort .reply (MyProc3: {5,MyVar} value 20) ; // Replies to an accepted call of MyProc3.

ETSI

188 ETSI ES 201 873-1 V4.4.1 (2012-04)

22.3.4 The Getreply operation
The getreply operation is used to handle replies from a previously called procedure.

Syntactical Structure

Port | any port) "." getreply
"(" TemplateInstance [value TemplateInstance 1")"]
from Address]

(
[
[
[

"->" [value VariableRef]
[param " (" { (VariableRef ":=" ParameterIdentifier) "," } |
{ (variableRef | "-") "," }

n) n]
[sender VariableRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description
The getreply operation is used to handle replies from a previously called procedure.

The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return val ue can be specified by using the value keyword.

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The assignment of out and inout parameter values to variables shall be made in the assignment part of the
getreply operation. This allowsthe use of signature templatesin getreply operationsin the same manner as
templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword value isused to retrieve
return values and the keyword param is used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

Get any reply

A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acall operation, it shall only treat replies from
the procedure invoked by the call operation.

Get areply on any port

To get areply on any port, use the any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A getreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the getreply operation belongs.

b) Thesignature argument of the getreply operation shall not be used to passin variable names for out and
inout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

ETSI

189 ETSI ES 201 873-1 V4.4.1 (2012-04)

d) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the getreply operation.

Examples

EXAMPLE 1: Basic getreply

MyPort .getreply (MyProc: {5, ?} value 20); // Accepts a reply of MyProc with two out or
// inout parameters and a return value of 20

MyPort.getreply (MyProc2:{ - , 5}) from MyPeer; // Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables

MyPort.getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param(MyParl,MyPar2) ;

// The returned value is assigned to variable MyRetValue and the value

// of the two out or inout parameters are assigned to the variables MyParl and MyPar2.
MyPort.getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param(- , MyPar2) sender MySender;
// The value of the first parameter is not considered for the further test execution and

// the address of the sender component is retrieved and stored in the variable MySender.

// The following examples describe some possibilities to assign out and inout parameter values
// to variables. The following signature is assumed for the procedure which has been called

signature MyProc2 (in integer A, integer B, integer C, out integer D, inout integer E);
MyPort .getreply (ATemplate) -> param(- , - , - , MyVarOutl, MyVarInoutl) ;

MyPort .getreply (ATemplate) -> param(MyVarOutl:=D, MyVarOut2:=E) ;

MyPort.getreply (MyProc2:{ - , - , - , 3, ?}) -> param(MyVarInoutl:=E);

EXAMPLE 3: Get any reply

MyPort .getreply; // Removes the top reply from MyPort.

MyPort.getreply from MyPeer; // Removes the top reply received from MyPeer from MyPort.

MyPort .getreply -> sender MySenderVar; // Removes the top reply from MyPort and retrieves the
// address of the sender entity

EXAMPLE 4: Get areply on any port

any port.getreply (Myproc:?)

22.3.5 The Raise operation
Exceptions are raised with the raise operation.

Syntactical Structure

Port "." raise " (" Signature "," TemplateInstance ")"
[to Address]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description
The raise operation is used to raise an exception.

NOTE 2: The relation between an accepted call and araise operation cannot always be checked statically. For
testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

ETSI

190 ETSI ES 201 873-1 V4.4.1 (2012-04)

Exceptions to one or more call operations may be sent to one, several or al peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of araise operationisfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionsthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Anexception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includeinitslist of accepted procedure calls the name of the procedure to which the exception
belongs.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shal be of type address, component or of the type provided in the address declaration of the
port type of the port instance referenced in the raise operation.

€) Applying araise operation to an unmapped or disconnected port shall cause atest case error.

Examples
MyPort .raise (MySignature, MyVariable + YourVariable - 2);
// Raises an exception with a value which is the result of the arithmetic expression
// at MyPort
MyPort.raise (MyProc, integer:5}); // Raises an exception with the integer value 5 for MyProc
MyPort.raise (MySignature, "My string") to MyPartner;
// Raises an exception with the value "My string" at MyPort for MySignature and
// send it to MyPartner
MyPort.raise (MySignature, "My string") to (MyPartnerOne, MyPartnerTwo) ;
// Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
// MyPartnerTwo (i.e. multicast communication)
MyPort.raise (MySignature, "My string") to all component;

// Raises an exception with the value "My string" at MyPort for MySignature and sends it
// to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The catch operation is used to catch exceptions.

Syntactical Structure

(Port | any port) "." catch
["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"]
[from Address]
["->" [value (VariableRef |
("(" { variableRef [":=" FieldOrTypeReference]1[","] } ™)")

)]

[sender VariableRef]]

NOTE: Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different val ues of the same exception type.

ETSI

191 ETSI ES 201 873-1 V4.4.1 (2012-04)

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the val ue of
an exception and/or the parts of it and the keyword sender isused when it is required to retrieve the address of the
sender.

The catch operation may be part of the response and exception handling part of acall operation or be used to
determine an aternative in an alt statement. If the catch operation is used in the accepting part of acall operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the call operation. However, for readability reasons (e.g. in case of complex
call statements) thisinformation shall be repeated.

The Timeout exception

Thereis one special timeout exception that can be caught by the catch operation. The timeout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(seeclause 22.3.1).

Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the £rom keyword. CatchAnyException will also catch the timeout exception.

Catch on any port

To catch an exception on any port use the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thecatch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of theincoming valuesto the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the catch operation.

c¢) Catching timeout exceptions shall be restricted to the exception handling part of acall. No further matching
criteria (including a £rom part) and no assignment part is allowed for a catch operation that handles a
timeout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) If CatchAnyException isused in the response and exception handling part of acall operation, it shal only
treat exceptions raised by the procedure invoked by the call operation.

f) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the catch operation.

Examples

EXAMPLE 1: Basic catch

MyPort.catch (MyProc, integer: MyVar) ; // Catches an integer exception of value
// MyVar raised by MyProc at port MyPort.

MyPort .catch (MyProc, MyVar) ; // Is an alternative to the previous example.

MyPort.catch (MyProc, A<B); // Catches a boolean exception

ETSI

192 ETSI ES 201 873-1 V4.4.1 (2012-04)

MyPort.catch (MyProc, MyType:{5, MyVar}); // In-line template definition of an exception value.

MyPort.catch (MyProc, charstring:"Hello")from MyPeer; // Catches "Hello" exception from MyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables

MyPort.catch (MyProc, MyType:?) from MyPartner -> value MyVar;
// Catches an exception from MyPartner and assigns its value to MyVar.

MyPort.catch (MyProc, MyTemplate(5)) -> value MyVarTwo sender MyPeer;
// Catches an exception, assigns its value to MyVarTwo and retrieves the
// address of the sender.

MyPort.catch (MyProc, MyTemplate(5)) -> value (MyVarThree:= f1)

sender MyPeer;
// Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
// address of the sender.

EXAMPLE 3: The Timeout exception

MyPort.call (MyProc:{5,MyVar}, 20E-3) {
[1 MyPort.getreply (MyProc:{?, 2}) { }

[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;

1
EXAMPLE 4: Catch any exception
MyPort .catch;

MyPort.catch from MyPartner;

MyPort.catch -> sender MySenderVar;

EXAMPLES5: Catch on any port

any port.catch;

22.4 The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port) "." check

[n (n
(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |
([from Address] ["->" sender VariableRef]

n) n]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "any component”.
Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operations receive, getcall, getreply and catch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

ETSI

193 ETSI ES 201 873-1 V4.4.1 (2012-04)

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check isused as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check
operation as the only alternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a £rom clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

NOTE 2: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with a receive any operation, e.g.
MyPort .check (receive) -> sender Mysender.

Check on any port

To check on any port, usethe any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Usingthe check operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

b) AddressRef for retrieving the sending entity shall be of type address, component or of the type provided
in the address declaration of the port type of the port instance referenced in the check operation.

NOTE 3: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

Examples

EXAMPLE 1: Basic check
MyPortl.check (receive(5)); // Checks for an integer message of value 5.

MyPortl.check (receive (charstring:?) -> value MyCharVar) ;
// Checks for a charstring message and stores the message if the message type is charstring

MyPort2.check (getcall (MyProc: {5, MyVar}) from MyPartner) ;
// Checks for a call of MyProc at port MyPort2 from MyPartner

MyPort2.check (getreply (MyProc: {5, MyVar} value 20));

// Checks for a reply from procedure MyProc at MyPort2 where the returned value is 20 and
// the values of the two out or inout parameters are 5 and the value of MyVar.
MyPort2.check (catch (MyProc, MyTemplate (5, MyVar))) ;

MyPort2.check (getreply (MyProcl:{?, MyVar} value *) -> value MyReturnValue param(MyParl,-));

MyPort .check (getcall (MyProc: {5, MyVar}) from MyPartner -> param (MyParlVar, MyPar2Var)) ;

MyPort .check (getcall (MyProc: {5, MyVar}) -> sender MySenderVar) ;

ETSI

194 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2: Check any operation
MyPort .check;
MyPort .check (from MyPartner) ;

MyPort.check(-> sender MySenderVar) ;

EXAMPLE 3: Check on any port

any port.check;

22.5 Controlling communication ports

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 25.

Table 25: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt

22.5.1 The Clear port operation
The clear port operation emptiesincoming port queues.

Syntactical Structure

(Port | (all port)) "." clear
Semantic Description

The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the c1lear operation.

If aport queue is already empty then this operation shall have no action on that port.
Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

MyPort.clear; // clears port MyPort

22.5.2 The Start port operation
The start operation enables sending and receiving operations on the port(s).

Syntactical Structure
(Port | (all port)) "." start
Semantic Description

If aport is defined as allowing receiving operations such as receive, getcall etc., the start operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise €etc., are also allowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

ETSI

195 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

MyPort.start; // starts MyPort

22.5.3 The Stop port operation
The stop operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop
Semantic Description

If aport is defined as allowing receiving operations such as receive and getcall, the stop operation causes
listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the
operations such as send, call, raise €tc., to be performed.

To cease listening at the port means that all receiving operations defined before the stop operation shall be compl etely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

MyPort .receive (MyTemplatel) -> value RecPDU;
// the received value is decoded, matched against
// MyTemplatel and the matching value is stored
// in the variable RecPDU
MyPort.stop; // No receiving operation defined following the stop
// operation is executed (unless the port is restarted
// by a subsequent start operation)
MyPort.receive (MyTemplate2) ; // This operation does not match and will block (assuming
// that no default is activated)

22.5.4 The Halt port operation

Thehalt operation is comparable to the stop operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt
Semantic Description

If aport allows receiving operations such asreceive, trigger and getcall, the halt operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
halt operation at that port. Messages and procedure call elements that were already in the queue beforethe halt
operation can still be processed with receiving operations. If the port allows sending operations then halt port
immediately disallows sending operations such as send, call, raise etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: The port halt operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport stop operation is performed on a halted port before al entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker isvirtually
moved to the top of the queue).

ETSI

196 ETSI ES 201 873-1 V4.4.1 (2012-04)
NOTE 3: A port start operation on a halted port clearsal entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also removes the marker.

NOTE 4: A port clear operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
MyPort.halt; // No sending allowed on Myport from this moment on;
// processing of messages in the queue still possible.
MyPort.receive (MyTemplatel) ; // If a message was already in the queue before the halt

// operation and it matches MyTemplatel, it is processed;
// otherwise the receive operation blocks.

22.5.5 The Checkstate port operation
The checkstate port operation allows to check the state of a port.
Syntactical Structure
(Port | (all port) | (any port)) "." checkstate " (" SingleExpression ")"
Semantic Description

The checkstate port operation allows to examine the state of a port. If aport isin the state specified by the
parameter, the checkstate operation returns the Boolean value true. If the port is not in the specified state, the
checkstate operation returns the Boolean value £alse. Caling the checkstate operation with an invalid
argument leads to an error.

The checkstate operation allows to check for different dimensions of a port state. It allows to check if aport is Started,
Halted or Stopped, but also if aport is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1: The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, disconnect, map and unmap as defined in clause 21.1.

The checkstate port operation can be used with all port and any port. Usingthe checkstate operation
with any port alowsto test if at least one port of atest component isin the specified state. Using the checkstate
operation with all port alowsto check if all ports of a component are in the specified state.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The parameter of the checkstate operation shall be of type charstring and shall have one of the
following values:

a) "Started"

b) "Halted"

c) "Stopped"

d) "Connected"
® "Mapped
f) "Linked"

ETSI

197 ETSI ES 201 873-1 V4.4.1 (2012-04)

NOTE 2: Clause E.2.2.4 includes the type definition obj State and the constant definitions STARTED, HALTED,
STOPPED, CONNECTED, MAPPED, and LINKED. It isrecommended to use the checkstate operation
in combination with this type and these constants to ease the checking of correct usage and to improve
the readability of test specs.

b) Calling the checkstate operation with acharstring parameter not listed in a) shall lead to an error.

Examples

type component MyMTCType // Component type definition for an MTC

{

port MyPortType PCO1l, PCO2

}

type component MyTestSystemInterface // Component type definition for a test system interface

port MyPortType PCO3, PCO4, PCO5;

}

// Test case definition
testcase MyTestcasel () runs on MyMTCType system MyTestSystemInterface {

var boolean myPortState;
myPortState := all port.checkstate("Started"); // checkstate returns true, because all
// ports of a component are started after

// component creation and start

myPortState := any port.checkstate ("Linked") ; // checkstate returns false, no port is
// either connected nor mapped

map (mtc:PCO1l, system:PCO3) ;

myPortState := PCOl.checkstate("Linked") ; // checkstate returns true, PCOl is mapped
myPortState := PCOl.checkstate ("Mapped") ; // checkstate returns true, PCOl is mapped
myPortState := PCOl.checkstate ("Connected") ; // checkstate returns false, PCOl is mapped

// and not connected
myPortState := any port.checkstate ("Mapped") ; // checkstate returns true, PCOl is mapped
all port.stop;

myPortState := all port.checkstate("Started"); // checkstate returns false, all ports
// are stopped

myPortState := PCOl.checkstate ("Stopped") ; // checkstate returns true, PCOl is stopped

// further testcase behaviour

/]

22.6 Use of any and all with ports

The keywords any and a1l may be used with configuration and communication operations as indicated in table 26.

Table 26: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
disconnect / unmap yes unmap (self : all port)
start, stop, clear, halt yes all port.start
checkstate yes yes any port.checkstate("Started")
all port.checkstate ("Connected")

ETSI

198 ETSI ES 201 873-1 V4.4.1 (2012-04)

NOTE: Portsare owned by test components and instantiated when a component is created. The keywords any
port andall port addressall ports owned by atest component and not only the ports known in the
scope of the function or altstep that is executed on the component.

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 27. These operations may be used in test cases,
functions, altsteps and module control.

Table 27: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timersthat have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timerslist and timeout-list of a component or
module control are updated if atimer of the component or module control is started, is stopped, times out or the
component or module control executes a timeout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individualy, i.e. timersthat are declared in the scope unit, passed in as parameters to the scope unit or
known viaaruns-on clause. In some special cases (e.g. for re-establishing atest component during atest
run), it can be necessary to stop timerslocal to other scope units or to check if timerslocal to other scope
units are running or have aready timed out. This can be done by using the keywords all and any in
combination with the timer operations stop, timeout and running. Allowed combinations are
defined in clause 23.7.

When atimer expires, the timer becomesimmediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2 The Start timer operation
The start timer operation is used to indicate that a timer shall start running.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" })
"." start [" (" TimerValue ")"]

ETSI

199 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current

instance of the timer, any later start operations for thistimer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting atimer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Timer value shall be anon-negative numerical £1loat number (i.e. the value shall be greater or equal 0.0,
infinity and not_a_number are disallowed).

Examples
MyTimerl.start; // MyTimerl is started with the default duration
MyTimer2.start (20E-3); // MyTimer2 is started with a duration of 20 ms

// Elements of timer arrays may also be started in a loop, for example
timer t_ Mytimer [5];
var float v_timerValues [5];

for (var integer 1 := 0; i<=4; i:=i+1)
{ v_timervalues [i] := 1.0 }
for (var integer i := 0; i<=4; i:=i+1)

{t Mytimer [i].start (v_timerValues [i])}

23.3 The Stop timer operation
The stop operation is used to stop a running timer.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |
all timer)
nonog tOp

Semantic Description

A stop operation removes arunning timer from the list of running timers. A stopped timer becomesinactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for thistimer in the timeout-list to be removed.

The all keyword may be used to stop all timers that have been started on a component or module control.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI

200 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples
MyTimerl.stop; // stops MyTimerl
all timer.stop; // stops all running timers

23.4 The Read timer operation

The read operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" })
"." read

Semantic Description

The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type float.

Applying the read operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

var float Myvar;
MyVar := MyTimerl.read; // assign to MyVar the time that has elapsed since MyTimerl was started

23.5 The Running timer operation
The running timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |
any timer)
"." running

Semantic Description

The running timer operation is used to check whether a specific timer visible in the given scope unit islisted on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevalue true if thetimer islisted onthelist, false otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1. Checking if a specific timer is running

if (MyTimerl.running) { .. }

EXAMPLE 2: Checking if an arbitrary timer isrunning

if (any timer.running) { .. }

ETSI

201 ETSI ES 201 873-1 V4.4.1 (2012-04)

23.6 The Timeout operation

The timeout operation allows to check the expiration of timers.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |
any timer)
"." timeout

Semantic Description

The timeout operation allows to check the expiration of a specific timer in the scope unit of atest component or
module control in which the timeout operation has been called or of any timer that has been started on atest component
or module control before entering the scope in which the timeout operation has been called.

When a timeout operation is processed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there isatimeout event matching the timer name, that event is removed from the timeout-list,
and the timeout operation succeeds.

The timeout can be used to determine an alternativein an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt statement with the
timeout operation asthe only aternative.

The any keyword used with the t imeout operation succeeds if the timeout-list is not empty.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The timeout shall not be used in aboolean expression.

Examples

EXAMPLE 1: Timeout of a specific timer

MyTimerl. timeout; // checks for the timeout of the previously started timer MyTimerl

EXAMPLE 2: Timeout of an arbitrary timer

any timer.timeout; // checks for the timeout of any previously started timer

23.7 Summary of use of any and all with timers

The keywords any and all may be used with timer operations as indicated in table 28.

Table 28: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running ves if (any timer.running) {...}
timeout yes any timer.timeout

ETSI

202 ETSI ES 201 873-1 V4.4.1 (2012-04)

24 Test verdict operations

Verdict operations given in table 29 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 29: Overview of TTCN-3 test verdict operations

Test verdict operations

Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. inthe MTC and in each and every PTC).

Additionally, there is aglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
tothegetverdict and setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
islost.

Verdict returned . :
by'thetes't case
when it terminates
MTC - prC1 [PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fail, inconc, none and error, i.e. the distinguished val ues of
theverdicttype (seeclause6.1).

NOTE 2: inconc means an inconclusive verdict.
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of this change shall
follow the overwriting ruleslisted in table 30. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting ruleslisted in table 30.

Table 30: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

ETSI

203 ETSI ES 201 873-1 V4.4.1 (2012-04)

The error verdict isspecia inthat it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by the setverdict operation and will not be returned by the getverdict operation. No
other verdict value can override an error verdict. This meansthat an error verdict can only be aresult of an
execute test case operation.

Together with the local test verdict, each test component shall also maintain an implicit charstring variable to store
information about the reasons for assigning the verdict. Theimplicit charstring variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit charstring variable. The implicit
charstring variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation
Thelocal verdict is set with the setverdict operation.

Syntactical Structure
setverdict " (" SingleExpression { "," (FreeText | TemplateInstance) } ")"
Semantic Description

The value of the local verdict is changed with the setverdict operation. The effect of this change shall follow the
overwriting ruleslisted in table 30.

The optional parameters alow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit charstring variable. On termination of the test
component, the actual local verdict islogged together with the implicit charstring variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Asthe result of the setverdict operation, theimplicit charstring variable is overwritten whenever the local verdict
of atest component is overwritten. A setverdict operation with averdict only that overwrites the current local
verdict, will aso clear theimplicit charstring variable. This means previously stored information gets | ost.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thesetverdict operation shall only be used with the valuespass, fail, inconc and none. It shall not
be used to assign the value error, thisis set by the test system only to indicate run-time errors.

b) SngleExpression shall resolve to avalue of type verdict.

c) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the 1og
statement. Table 18 lists al language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1.
setverdict (pass) ; // the local verdict is set to pass
setverdict (fail) ; // until this line is executed, which will result in the value
// of the local verdict being overwritten to fail
// When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer myVar:= 1;

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort
setverdict (pass, "Value received: ", myVar); // Provided the actual test component verdict is

// none: local verdict is set to pass, the implicit
// charstring variable is set to "Value received: 5"

ETSI

204 ETSI ES 201 873-1 V4.4.1 (2012-04)

stop; // The test component terminates. The local test verdict and
// implicit charstring variable are logged

24.3 The Getverdict operation
The value of the local verdict may beretrieved using the getverdict operation.

Syntactical Structure

getverdict
Semantic Description

Thegetverdict operation returnsthe actual value of the local verdict.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

MyResult := getverdict; // Where MyResult is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown apriori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action " (" { (FreeText | Expression) ["&"] } ")"
Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is done to or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Expression shall have the base type charstring or universal charstring.

Examples
var charstring myString:= " now."
action("Send MyTemplate on lower PCO" & myString); // Informal description of the

// external action

ETSI

205 ETSI ES 201 873-1 V4.4.1 (2012-04)

26 Module control

Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 31.

Table 31: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{..}
Select case select case (...) { case (...){...}
caseelse{...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Leaving a loop, alt or interleave break
Next iteration of a loop continue
Logging log
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execute statement in the module control.
Syntactical Structure

execute " (" TestcaseRef "(" [{ ActualPar [","] } 1 ™)" ["," TimerValue ["," HostId] 1 ")"
Semantic Description

In the module control part the execute statement is used to start test cases (see clause 27.1). The result of an executed
test caseisaways avaue of type verdicttype. Every test case shall contain one and only one MTC the type of
which isreferenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest case isinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit create and start operations.

Test case start

A test caseis called using an execute statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, inconc, fail or error shal be returned and may be assigned to a variable for further
processing.

Optionaly, the execute statement allows supervision of atest case by means of atimer duration.

ETSI

206 ETSI ES 201 873-1 V4.4.1 (2012-04)
Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution.
The host isidentified by means of a host id.
Test case parameterization and configuration

All variables (if any) defined in the control part of amodule shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by create, connect, €tc. operationsin a previous test case were destroyed when that test case was stopped (hence
arenot "visible" to the new test case).

Test case ter mination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

Thefinal verdict of atest case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 24.1. The actual local verdict of atest component becomesitsfina local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the
MTC should ensure that al PTCs have stopped (by means of the done or killed statement) before it
stopsitself.

Test casetimer

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execute statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Host id

A host id can be used to give a specific deployment location to the test system where the MTC shall be started and
execute its behaviour. If ahost id is provided, the execute statement shall end with atest case error if the MTC cannot
be deployed on the specified host.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or
equal 0.0, infinity and not_a_number are disallowed).

b) When the corresponding formal parameter is not of template type Templatel nstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing testcase or function chain called
from atest case, i.e. test cases can only be executed from the control part or from functions directly called
from the control part.

d) TheHostld parameter shall resolve to achar string value.
Examples

EXAMPLE 1. Test case execution without keeping the test case verdict
execute (MyTestCasel()) ; // executes MyTestCasel, without storing the

// returned test verdict and without time
// supervision

ETSI

207 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 2: Test case execution with keeping the test case verdict

MyVerdict := execute (MyTestCase2()); // executes MyTestCase2 and stores the resulting
// verdict in variable MyVerdict

EXAMPLE 3: Test casetimer

MyVerdict := execute (MyTestCase3(),5E-3); // executes MyTestCase3 and stores the resulting
// verdict in variable MyVerdict. If the test case
// does not terminate within 5ms, MyVerdict will
// get the value 'error'

MyReturnvVal := execute (MyTestCase(), 7E-3);
// Where the return verdict will be error if MyTestCase does not complete execution
// within 7ms

EXAMPLE 4. Hostid

MyVerdict := execute (MyTestCase3 (), -, "Hostl");
// executes MyTestCase3 with unlimited time
// with MTC deployed to 'Hostl'

26.2 The Control part

The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"

{ (constpDef |
TemplateDef |
VarInstance |
TimerInstance |
TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements |
StOP) [n;n] }

n } n

[withStatement] [";"]
Semantic Description
Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of timesa
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequentia order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and desel ection of test cases can also be used to control the execution of test cases.

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. Thisincludes, of course, the use of functions that return a
boolean vaue.

Another way to execute test cases as a group is to collect them in a function and execute that function from the module
control.

Asatest case returns asingle value of type verdicttype, it isaso possible to control the order of test case
execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

ETSI

208 ETSI ES 201 873-1 V4.4.1 (2012-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be used

in the control part.
b) Statementsfor aternative behaviours shall only be used to control timer behaviours.
€) Therestrictions on the use of statementsin the control part are given in table 16.

Examples
EXAMPLE 1: Test case execution in aloop
module MyTestSuite () {
control
// Do this test 10 times
count:=0;
while (count < 10)

{ execute (MySimpleTestCasel()) ;
count := count+1l;
}

1
EXAMPLE 2: Test case execution controlled by atimer and a counter

// Example of the use of the running timer operation

while (Tl.running or x<10) // Where Tl is a previously started timer
{ execute(MyTestCase());
X = xX+1;

}

// Example of the use of the start and timeout operations
timer Tl := 1.0;

execute (MyTestCasel ()) ;

Tl.start;

T1l.timeout; // Pause before executing the next test case
execute (MyTestCase2 ()) ;

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions
module MyTestSuite () {
control {

if (MySelectionExpressionl()) {
execute (MySimpleTestCasel()) ;
execute (MySimpleTestCase2 ()) ;
execute (MySimpleTestCase3 ()) ;

}

if (MySelectionExpression2())
execute (MySimpleTestCase4d ()) ;
execute (MySimpleTestCase5()) ;
execute (MySimpleTestCase6 ()) ;

ETSI

209 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 4. Selection/desel ection of test cases with functions

function MyTestCaseGroupl ()

{ execute (MySimpleTestCasel ()) ;
execute (MySimpleTestCase2()) ;
execute (MySimpleTestCase3()) ;

}

function MyTestCaseGroup?2 ()

{ execute (MySimpleTestCase4 ()) ;
execute (MySimpleTestCase5()) ;
execute (MySimpleTestCase6 ()) ;

}

control

{ if (MySelectionExpressionl()) { MyTestCaseGroupl(); }

if (MySelectionExpression2()) { MyTestCaseGroup2(); }

}
EXAMPLE5: Selection/deselection of test cases based on test case verdicts

if (execute (MySimpleTestCase()) == pass)
{ execute (MyGoOnTestCase()) }

else
{ execute (MyErrorRecoveryTestCase()) };

27 Specifying attributes

TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

Attributes can be associated with TTCN-3 language elements by means of the with statement. The with statement can
be applied to modules, global module definitions and to local definitionsin control, test cases, functions, altsteps,
statement blocks, and in component type definitions.

27.1.1 Scope of attributes

A with statement may associate attributes to a single language element or to elements or fields of structured types (in a
recursive way) or to members of component or port types, the same way as specified in clauses 6.2.1.1 and 6.2.3.2. It is
also possible to associate attributes to a number of language elements by, e.g. listing fields of a structured typein an
attribute statement associated with a single type definition or associating awi th statement to the surrounding scope
unit or group of language elements. A wi th statement can follow any module, any global definition inside module
and group declarations as well as any local definition in component types and statement blocks inside behaviour
definitions or the control part.

EXAMPLE 1. // attributes for single language elements and groups

// MyPDUl will be displayed as PDU
type record MyPDUl { .. } with { display "PDU"}

// MyPDU2 will be displayed as PDU with the application specific extension attribute MyRule
type record MyPDU2 { .. }
with

display "PDU";

extension "MyRule"

}

// The following group definition ..
group MyPDUs
type record MyPDU3 { .. }
type record MyPDU4 { .. }
with {display "PDU"} // All types of group MyPDUs will be displayed as PDU

// is identical to

ETSI

210 ETSI ES 201 873-1 V4.4.1 (2012-04)

group MyPDUs
type record MyPDU3 { .. } with { display "PDU"}
type record MyPDU4 { .. } with { display "PDU"}

}
EXAMPLE 2: [/ attributes for fields and elements

type record MyRec (
integer fieldl,
record ({
integer eFieldl,
boolean eField2
} field2

with { display (field2.eFieldl) "colour blue" }
// the embedded field eFieldl is displayed blue

type record of integer MyRecOfInteger
with { display ([-]) "colour green"
// all integer elements are displayed green

type record of integer MyRecOfInteger2
with { display ([-]) "colour red" }
// integer elements are displayed red

const MyRecOfInteger c¢_MyRecordOfInt := {0, 1, 2, 3}
with { display ([0]) "colour blue" }
// the first element is displayed blue, the other elements are displayed red

27.1.2 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in the present clause.

EXAMPLE 1.

type record MyRecordA

{

} with { encode "RuleA" }

// In the following, MyRecordA is encoded according to RuleA and not according to RuleB
type record MyRecordB

{

MyRecordA field
} with { encode "RuleB" }

A with statement that is placed inside the scope of another with statement shall override the outermost with. This
shall also apply to the use of the wi th statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The general rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

// Example of the use of the overwriting scheme of the with statement
group MyPDUs
{

type record MyPDUl { .. }

type record MyPDU2 { .. }

group MySpecialPDUs

type record MyPDU3 { .. }
type record MyPDU4 { .. }
!
with {extension "MySpecialRule"} // MyPDU3 and MyPDU4 will have the application
// specific extension attribute MySpecialRule

1

with

{
display "PDU"; // All types of group MyPDUs will be displayed as PDU and
extension "MyRule"; // (if not overwritten) have the extension attribute MyRule

}

// is identical to ..
group MyPDUs

ETSI

211 ETSI ES 201 873-1 V4.4.1 (2012-04)

type record MyPDUl { .. } with {display "PDU"; extension "MyRule" }

type record MyPDU2 { .. } with {display "PDU"; extension "MyRule" }

group MySpecialPDUs
type record MyPDU3 { .. } with {display "PDU"; extension "MySpecialRule" }
type record MyPDU4 { .. } with {display "PDU"; extension "MySpecialRule" }

An attribute definition in alower scope can be overwritten in a higher scope by using the override directive.

EXAMPLE 2:

type record MyRecordA

} with { encode "RuleA" }

// In the following, MyRecordA is encoded according to RuleB
type record MyRecordB

MyRecordA fielda

} with { encode override "RuleB" }

The override directive forces al contained types at all lower scopes to be forced to the specified attribute.

An attribute definition for afield or element of a structured type overrides the corresponding attribute of the structured
type, asregards the identified field or element. The attribute definition for afield or element of a structured type can
however be overridden with the override directive in the attribute definition of the structured type.

27.1.2.1 Additional overwriting rules for variant attributes

A variant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an

encoding shall not change without overwriting all current variant attributes. Therefore, for variant attributes the
following overwriting rules apply:

avariant attribute overwrites an current variant attribute according to the rules defined in clause 27.1.2;

an encoding attribute, which overwrites a current encoding attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current variant attribute, i.e. no new variant attributeis
provided, but the current variant attribute becomes inactive;

an encoding attribute, which changes a current encoding attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current variant attribute,
i.e. N0 new variant attributeis provided, but the current variant attribute becomes inactive.

EXAMPLE:

module MyVariantEncodingModule {

type charstring MyType; // Normally encoded according to "Encoding 1"
group MyVariantsOne {

type record MyPDUone

{

integer fieldl, // fieldl will be encoded according to "Encoding 2" only.
// "Encoding 2" overwrites "Encoding 1" and variant "Variant 1"
MyType field3d // field3 will be encoded according to "Encoding 1" with

// variant "Variant 1".

}

with { encoding (fieldl) "Encoding 2" }

}

with { variant "Variant 1" }

ETSI

212 ETSI ES 201 873-1 V4.4.1 (2012-04)

group MyVariantsTwo
{ :
type record MyPDUtwo

{

integer fieldl, // fieldl will be encoded according to "Encoding 3"
// using encoding variant "Variant 3"
MyType field3d // field3 will be encoded according to "Encoding 3"

// using encoding variant "Variant 2"

}

with { variant (fieldl) "Variant 3" }

}

with { encode "Encoding 3"; variant "Variant 2"}

}

with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is alowed to change attributes on the
import statement.

NOTE: If awith statement isadded to an import of a definition where alocal definition also hasawith
statement, the local definition's attributes overwrite the attributes added to the import statement in the
normal way. Thus, if the attributes of alocal definition shall be changed viathe import statement, the
override directive needs to be used.

EXAMPLE:

import from MyModule ({
type MyType

with { display "ASP" } // MyType will be displayed as ASP

import from MyModule {
group MyGroup

with {
display "PDU"; // By default all types will be displayed as PDU
extension "MyRule"

27.2 The With statement

The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure

with n { n
{ (encode | variant | display | extension | optional)
[override]
["(" DefinitionRef | FieldReference | AllRef ")"]
FreeText [";"] }

npn
Semantic Description
There are five kinds of attributes that can be associated to language elements:
a) display: alowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;
¢) variant: alowsreferencesto specific encoding variants,

d) extension: alowsthe specification of user-defined attributes;

ETSI

213 ETSI ES 201 873-1 V4.4.1 (2012-04)

€) optional: alowstheimplicit setting of optional fieldsin records and sets to omit.
The syntax for the argument of the wi th statement (i.e. the actual attributes) is defined as a free text string.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) DefinitionRef and FieldReference must refer to a definition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples

type record MyService ({
integer i,
float £

with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.3 Display attributes

Display attributes allow the specification of display attributes related to specific presentation formats.
Syntactical Structure

display
Semantic Description

All TTCN-3 language elements can have display attributes to specify how particular language elements shall be
displayed in, for example, a tabular format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2[i.1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3[i.2].

Other display attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

type record MyService ({
integer i,
float £

with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode

ETSI

214 ETSI ES 201 873-1 V4.4.1 (2012-04)

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup and the lowest isan individual type or definition:

a module: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto a group of user-defined type definitions;

C) type or definition: encoding appliesto asingle user-defined type or definition;

d) field: encoding appliesto afieldinarecord or set typeor template.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyFirstmodule

{

import from MySecondModule {
type MyRecord
}

with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

type charstring MyType; // Normally encoded according to the 'Global encoding rule

group MyRecords

{ :

type record MyPDU1l

{

integer fieldl, // fieldl will be encoded according to "Rule 3"
boolean field2, // field2 will be encoded according to "Rule 3"
Mytype field3 // field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }

}

with { encode "Rule 2" }

}

with { encode "Global encoding rule" }

27.5 Variant attributes

In TTCN-3, genera or particular encoding rules can be specified by using encode and variant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

variant
Semantic Description

To specify arefinement of the currently specified encoding scheme instead of its replacement, the variant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

ETSI

215 ETSI ES 201 873-1 V4.4.1 (2012-04)

Special variant strings.
The following strings are the predefined (standardized) variant attributes for simple basic types (see clause E.2.1):

a "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
8-bits (single byte) within the system.

b) "16 bit"and"unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled asit was represented on
16-bits (two bytes) within the system.

C) "32 bit"and"unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled asit was represented on
32-bits (four bytes) within the system.

d "64 bit"and"unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerated values shall be handled as it was represented on
64-bits (eight bytes) within the system.

€) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and
"IEEE754 extended double" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard | EEE 754 [6] (see annex E).

The following strings are the predefined (standardized) variant attributes for charstring and universal
charstring (seeclauseE.2.2):

a "UTF-8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [2].

b) "ucs-2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
I SO/IEC 10646 [2]).

c) "UTF-16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of 1SO/IEC 10646 [2].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the coded representation as specified in
I SO/IEC 10646 [2] (an 8-bit coding).

The following strings are the predefined (standardized) variant attributes for structured types (see clause E.2.2.4):

a "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to arecord type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauniversal charstring specified withthevariant attribute "UTF-8" within a module which
itself has aglobal encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [i.5]) will cause each character of
the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it isdesired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

ETSI

216 ETSI ES 201 873-1 V4.4.1 (2012-04)

Examples

EXAMPLE:

module MyTTCNmodulel
{ .

type charstring MyType; // Normally encoded according to the "Global encoding rule"

group MyRecords
{ :
type record MyPDUl

{

integer fieldl, // fieldl will be encoded according to "Rule 2"
// using encoding variant "length form 3"
Mytype field3 // field3 will be encoded according to "Rule 2"

// using any possible length encoding format

}

with { variant (fieldl) "length form 3" }

}

with { encode "Rule 2" }

with { encode "Global encoding rule" }

27.6 Extension attributes

Extension attributes can be used for proprietary extensionsto TTCN-3.

Syntactical Structure

extension
Semantic Description
All TTCN-3 language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

testcase MyTestcase() runs on MTCType {

}

with { extension "Test Purpose: This test case is used to check .." }

27.7 Optional attributes

The optional attribute can be used to indicate that optional fields of constants, module parameters or templates of
record and set types are implicitly set to omi t.

Syntactical Structure
optional
Semantic Description

TTCN-3 constants, module parameters, and templates can have an optional attribute. Also, TTCN-3 language
elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type
definitions can have an optional attribute. When an optional attribute is associated to a function, altstep, test
case, control or component type definitions, it shall have effect on al the constants, modul e parameters, and templates
declared within these definitions and not on the enframing definition itself.

ETSI

217 ETSI ES 201 873-1 V4.4.1 (2012-04)

Special optional strings:
The following strings are the predefined (standardized) optional attributes.

a) "implicit omit" meansthat all optional fields, which have not been defined in the definition the attribute
is associated with, are set to omit. This applies recursively to the optional fields of the entity and to subfields
of the mandatory fields.

b) "explicit omit" meansthat al optional fields, which have not been defined in the definition the attribute
isassociated with, are left undefined. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Datatype, port type, procedure signature and variable definitions and import statements shall not have an
optional attribute associated to them directly. When an optional attributeis associated to module,
group, function, atstep, test case, control or component type containing such definitions, it shall not have any
effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecordl {
integer a,
boolean b optional

!

type record MyRecord2
MyRecordl m

}

// reference templates with explicitly set fields
template MyRecordl MyTemplatel := { a := ?, b := omit }
template MyRecord2 MyTemplate2 := { m := { a := ?, b := omit }}

// reference templates

template MyRecordl MyTemplatela := { a := ? } // b is undefined

template MyRecordl MyTemplatelb := { a := ? } with {optional "explicit omit"} // b is undefined
template MyRecord2 MyTemplate2a := {} // m and its subfields are undefined

template MyRecord2 MyTemplate2b := { m := { a := ?}}; // m.b is undefined

// templates with attribute

template MyRecordl MyTemplatell := { a := ? } with {optional "implicit omit"}
// same as MyTemplatel, b is set to omit

template MyRecord2 MyTemplate2l := { m := { a := ?}} with {optional "implicit omit"}
// same as MyTemplate2, by recursive application of the attribute
template MyRecord2 MyTemplate22 := { m := MyTemplatela } with {optional "implicit omit"}

// same as MyTemplate2, by recursive application of the attribute

template MyRecord2 MyTemplate23 := {} with {optional "implicit omit"}
// same as MyTemplate2a, m remains undefined

template MyRecord2 MyTemplate24 := { m := MyTemplatelb } with {optional "implicit omit"}
// same as MyTemplate2b, the attribute on the lower scope is not overwritten

template MyRecord2 MyTemplate25 := { m := MyTemplatelb }

with {optional override "implicit omit"}
// same as MyTemplate2, the attribute on the lower scope is overwritten

ETSI

218 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex A (normative):
BNF and static semantics

A.l TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1l: The syntactic metanotation

= is defined to be definition of non-terminal
abc xyz abc followed by xyz concatenation

| alternative alternative

[abc] 0 or 1 instances of abc optional

{abc} 0 or more instances of abc repetition 1
{abc}+ 1 or more instances of abc repetition 2

() textual grouping grouping
Abc the non-terminal symbol abc |non-terminal
"abc" a terminal symbol abc terminal

NOTE: The metanotation defined in table A.1 is parsed from left to right. The metanotation operators have the
following precedence, from highest (binding tightest) at the top, to lowest (loosest) at the bottom:

- Repetition, Optional
- Grouping

- Concatenation

- Alternative

- Definition

A.1.2 Statement terminator symbols
In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with

asemi-colon (;). The semi-colon is optiona if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct isthe last statement in a statement block.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isalso alowed. An identifier shall begin with aletter (i.e. not with a
number and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification. Comments may contain any graphical
character defined in ISO/IEC 10646 [2]. Block comments shall be opened by the symbol pair /* and closed by the
symbol pair */.

ETSI

219 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE 1.

/* This is a block comment
spread over two lines */

Block comments shall not be nested.
/* This is not /* a legal */ comment */
Line comments shall be opened by the symbol pair // and closed by a <newline>.
EXAMPLE 2:

// This is a line comment
// spread over two lines

EXAMPLE 3:

// The following is not legal
const // This is MyConst integer MyConst := 1;
// A block comment should have been used instead
const /* This is MyConst */ integer MyConst := 1;
// A line comment like this works as well
const // This is MyConst

integer MyConst := 1;

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols
}

Begin/end block symbols
Begin/end list symbols)
Element specifier symbols |
Range symbol
Line and block comments *
Statement separator symbol ;
Arithmetic operator symbols +
Concatenation operator symbol &
1=
<<

e~

Relational operator symbols

Shift operator symbols >>
Rotate operator symbols <@ @>
String enclosure symbols " '
Wildcard/matching symbols ? %
Assignment symbol =
Communication operation assignment ->
Bitstring, hexstring and Octetstring values B H O
Float exponent E

List element separator symbol

The predefined function identifiers defined in table 15 and described in annex C shall also be treated as reserved words.

ETSI

220

ETSI ES 201 873-1 V4.4.1 (2012-04)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
address
alive
all

alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call

catch

char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
default
disconnect
display

do

done

else
encode
enumerated
error
except
exception
execute
extends
extension
external

fail
false
float
for
friend
from
function

getverdict
getcall
getreply
goto

group

halt
hexstring

if
ifpresent
import

in

inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc

noblock
none
not
not4b
nowait
null

octetstring
of

omit

on

optional

or

or4b

out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record

recursive
rem
repeat
reply
return
running
runs

select
self

send
sender
set
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer

to
trigger
true

type

union
universal
unmap

value
valueof

var

variant
verdicttype

while
with

Xor
xor4b

The TTCN-3 terminalslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in al lowercase letters.

A.1.5.1 Use of whitespaces and newlines

The elements of the TTCN-3 syntax (reserved words, identifiers, terminal symbols and literal values) shall be separated
by whitespace or by special terminal symbolslisted in table A.2 according to the TTCN-3 syntax.

ETSI

221 ETSI ES 201 873-1 V4.4.1 (2012-04)

In representing whitespace, any one or more of the following characters of the CO set of ITU-T Recommendation
T.50 [4] and of annex A of ITU-T Recommendation T.50 [4] may be used in any combination:

HT - HORIZONTAL TABULATION (9)
LF - LINE FEED (10)

VT -VERTICAL TABULATION (11)
FF - FORM FEED (12)

CR - CARRIAGE RETURN (13)

SP - SPACE (32)

The characters of the CO set of ITU-T Recommendation T.50 [4] and of annex A of ITU-T Recommendation T.50 [4]
below are denoting newline (end of line). A single CR(13) character directly followed by an LF(10) character denote a
single end of line (i.e. the sequence CRLFCRLFVT denotes 3 lines):

LF - LINE FEED (10)
VT - VERTICAL TABULATION (11)
FF - FORM FEED (12)

CR - CARRIAGE RETURN (13)

Any character or character sequence that isavalid newlineis aso avalid whitespace.

NOTE: Itisrecommended that for newline only the CR and LF and for whitespace only the HT, LF, CR and SP

control characters are used asthe VT and FF characters may cause problems with some conventional text
editors.

ETSI

222 ETSI ES 201 873-1 V4.4.1 (2012-04)

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1.TTCN3Module ::= TTCN3ModuleKeyword ModuleId "{" [ModuleDefinitionsList]
[ModuleControlPart] "}" [WithStatement] [SemiColon]

2.TTCN3ModuleKeyword ::= "module"

3.ModuleId ::= Identifier [LanguageSpec]

4 .LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}

5.LanguageKeyword ::= "language"

A.1.6.1 Module definitions part

A.1.6.1.0 General

6.ModuleDefinitionsList ::= {ModuleDefinition [SemiColon] }+
7.ModuleDefinition ::= (([Visibility] (TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
ExtFunctionDef |
ExtConstDef
)) |
(["public"] GroupDef) |
(["private"] FriendModuleDef)
) [WithStatement]
8.Visibility ::= "public" |
"friend" |
"private"

A.16.1.1 Typedef definitions

9.TypeDef ::= TypeDefKeyword TypeDefBody
10.TypeDefBody ::= StructuredTypeDef | SubTypeDef
11.TypeDefKeyword ::= "type"
12.StructuredTypeDef ::= RecordDef |
UnionDef |
SetDef |
RecordOfDef |
SetOfDef |
EnumDef |
PortDef |
ComponentDef
13.RecordDef ::= RecordKeyword StructDefBody
14 .RecordKeyword ::= "record"
15.StructDefBody ::= (Identifier | AddressKeyword) "{" [StructFieldDef
{m," StructFieldDef}]
n } n
16.StructFieldDef ::= (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
[OptionalKeyword]
17.NestedTypeDef ::= NestedRecordDef |
NestedUnionDef |
NestedSetDef |
NestedRecordOfDef |
NestedSetOfDef |
NestedEnumDef
18.NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}]
n } n
19.NestedUnionDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef}
n } "
20.NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}]
n } n
21.NestedRecordOfDef ::= RecordKeyword [StringLength] OfKeyword (Type |
NestedTypeDef)
22.NestedSetOfDef ::= SetKeyword [StringlLength] OfKeyword (Type | NestedTypeDef)
23 .NestedEnumDef ::= EnumKeyword "{" EnumerationList "}"
24 .OptionalKeyword ::= "optional™"
25.UnionDef ::= UnionKeyword UnionDefBody
26 .UnionKeyword ::= "union"

ETSI

27.

28

29.

30

31.

32
33

34

35.

36
37
38

39.

40

/*

41.

42

/*

223 ETSI ES 201 873-1 V4.4.1 (2012-04)

UnionDefBody ::= (Identifier | AddressKeyword) "{" UnionFieldDef {",6"
UnionFieldDef}
n}n
.UnionFieldDef ::= (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
SetDef ::= SetKeyword StructDefBody
.SetKeyword ::= "set"
RecordOfDef ::= RecordKeyword [StringLength] OfKeyword StructOfDefBody
.OfKeyword ::= "of"
.StructOfDefBody ::= (Type | NestedTypeDef) (Identifier | AddressKeyword)
[SubTypeSpec]
.SetOfDef ::= SetKeyword [StringLength] OfKeyword StructOfDefBody
EnumDef ::= EnumKeyword (Identifier | AddressKeyword) "{" EnumerationList
n}n
.EnumKeyword ::= "enumerated"
.EnumerationList ::= Enumeration {"," Enumeration}
.Enumeration ::= Identifier [" (" [Minus] Number ")"]
SubTypeDef ::= Type (Identifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
.SubTypeSpec ::= AllowedValuesSpec [StringLength] | StringLength
STATIC SEMANTICS - AllowedValues shall be of the same type as the field being subtyped */

AllowedValuesSpec ::= " (" (TemplateOrRange {"," TemplateOrRange }) | CharStringMatch
ll) n
.TemplateOrRange ::= RangeDef |
TemplateBody |
Type
STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal

charstring or float based types */

/*
be
43
44

/*

STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
mixed in the same SubTypeSpec */

.RangeDef ::= Bound ".." Bound
.StringLength ::= LengthKeyword " (" SingleExpression [".." Bound] ")"
STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and

record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of
Bound including infinity) */

45
46

47.

48

49.

50

51
52
53
54

55.

56

57.

58

/*

59.
60.
61.

62
63
64

65.

66

67.

68

69.
70.
71.

72
73

.LengthKeyword ::= "length"
.PortDef ::= PortKeyword PortDefBody
PortDefBody ::= Identifier PortDefAttribs
.PortKeyword ::= "port"
PortDefAttribs ::= MessageAttribs |

ProcedureAttribs |

MixedAttribs
.MessageAttribs ::= MessageKeyword "{" {(AddressDecl | MessagelList | ConfigParamDef)

[SemiColon] }+

n n
.ConfigParamDef ::= MapParamDef | UnmapParamDef
.MapParamDef ::= MapKeyword ParamKeyword " (" FormalValuePar{ "," FormalValuePar}")"
.UnmapParamDef ::= UnmapKeyword ParamKeyword " (" FormalValuePar{ "," FormalValuePar}")"
.AddressDecl ::= AddressKeyword Type
MessageList ::= Direction AllOrTypelList
.Direction ::= InParKeyword |

OutParKeyword |
InOutParKeyword

MessageKeyword ::= "message"
.A110rTypelist ::= AllKeyword | TypeList
NOTE: The use of AllKeyword in port definitions is deprecated */

AllKeyword ::= "all"
TypeList ::= Type {"," Type}
ProcedureAttribs ::= ProcedureKeyword "{" { (AddressDecl | ProcedurelList | ConfigParamDef)
[SemiColon] }+
n}n
.ProcedureKeyword ::= "procedure"
.ProcedurelList ::= Direction AllOrSignaturelList
.All0rSignatureList ::= AllKeyword | SignatureList
SignatureList ::= Signature {"," Signature}
.MixedAttribs ::= MixedKeyword "{" {(AddressDecl | MixedList | ConfigParamDef) [SemiColon] }+
n}n
MixedKeyword ::= "mixed"
.MixedList ::= Direction ProcOrTypeList
ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
ProcOrType ::= Signature | Type
ComponentDef ::= ComponentKeyword Identifier [ExtendsKeyword ComponentType
{v," ComponentType}] "{"
[ComponentDefList] "}"
.ComponentKeyword ::= "component"
.ExtendsKeyword ::= "extends"

ETSI

74 .ComponentType ::=
75 .ComponentDefList

::= {ComponentElementDef [WithStatement]

E

xtendedIdentifier

224

ETSI ES 201 873-1 V4.4.1 (2012-04)

[SemiColon] }

76 .ComponentElementDef ::= PortInstance |

VarInstance |

TimerInstance |

ConstDef
77.PortInstance ::= PortKeyword ExtendedIdentifier PortElement {"," PortElement}
78 .PortElement ::= Identifier [ArrayDef]

A.16.1.2 Constant definitions

79.ConstDef ::= ConstKeyword Type ConstList

80.ConstList ::= SingleConstDef {"," SingleConstDef}

81.SingleConstDef
82.ConstKeyword ::=

Identifier [ArrayDef] AssignmentChar ConstantExpression

"const"

A.1.6.1.3 Template definitions

83 .TemplateDef ::= TemplateKeyword

[TemplateRestriction] BaseTemplate

84 .BaseTemplate ::=

85.TemplateKeyword

[DerivedDef] AssignmentChar TemplateBody

(Type | Signature) Identifier [" (" TemplateOrValueFormalParList

"template"

86 .DerivedDef ::= ModifiesKeyword ExtendedIdentifier

87 .ModifiesKeyword

"modifies"

n) n]

88.TemplateOrValueFormalParList ::= TemplateOrValueFormalPar {"," TemplateOrValueFormalPar}
89.TemplateOrValueFormalPar ::= FormalValuePar | FormalTemplatePar

/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
(SimpleSpec |

90.TemplateBody ::=

)

FieldSpecList |
ArrayValueOrAttrib
[ExtraMatchingAttributes]

/* STATIC SEMANTICS - Within TeplateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */

91.SimpleSpec ::= (SingleExpression ["&" SimpleTemplateSpec]) | SimpleTemplateSpec
92.SimpleTemplateSpec ::= CharStringMatch | (SingleTemplateExpression
["&" SimpleSpec])
93.SingleTemplateExpression ::= MatchingSymbol | (TemplateRefWithParList
[ExtendedFieldReferencel])

94 .FieldSpecList ::= "{" [FieldSpec {"," FieldSpec}] "}"
95.FieldSpec ::= FieldReference AssignmentChar TemplateBody
96 .FieldReference = StructFieldRef |

ArrayOrBitRef |

ParRef
97.StructFieldRef = Identifier |

PredefinedType |

TypeReference

/* STATIC SEMANTICS

PredefinedType and TypeReference shall be used for anytype value notation
only. PredefinedType shall not be AnyTypeKeyword.*x/
98.ParRef ::= Identifier

/* STATIC SEMANTICS - Identifier in ParRef shall be a formal parameter identifier from the
associated signature definition */

99 .ArrayOrBitRef ::=

n

[" FieldOrBitNumber "1"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of . The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal

charstring, bitstring, octetstring and hexstring type */

100.FieldOrBitNumber

:= SingleExpression

/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
:= "{" ArrayElementSpecList "}"
102.ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}

101.ArrayValueOrAttrib

103 .ArrayElementSpec

104 .MatchingSymbol

:= Minus |
PermutationMatch |
TemplateBody

Complement |

(AnyValue [WildcardLengthMatch])

(AnyOrOmit [WildcardLengthMatchl])

TemplateList |
Range |
BitStringMatch |
HexStringMatch |
OctetStringMatch |
CharStringMatch |

ETSI

225 ETSI ES 201 873-1 V4.4.1 (2012-04)

SubsetMatch |
SupersetMatch

/* STATIC SEMANTIC - WildcardLengthMatch must be used when MatchingSymbol is used in fractions of a
concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case,
the Complement, TemplateList, Range, BitStringMatch, HexStringMatch, OctetStringMatch,
CharStringMatch, SubsetMatch and SupersetMatch productions shall not be used. */

105.ExtraMatchingAttributes ::= StringLength |
IfPresentKeyword |
(StringLength IfPresentKeyword)
106.BitStringMatch ::= "'" {BinOrMatch} "'" "B"
107.BinOrMatch ::= Bin |
AnyValue |
AnyOrOmit
108.HexStringMatch ::= "'" {HexOrMatch} "'" "g"
109.HexOrMatch ::= Hex |
AnyValue |
AnyOrOmit
110.0ctetStringMatch ::= "'" {OctOrMatch} "'" "O"
111.0ctOrMatch ::= Oct |
AnyValue |
AnyOrOmit
112.CharStringMatch ::= PatternKeyword PatternParticle {"&" PatternParticle}
113.PatternParticle ::= Pattern | Referencedvalue
114 .PatternKeyword ::= "pattern"
115.Pattern ::= """ {PatternElement} """
116 .PatternElement ::= (n\n X | nxn | n\n | nn | nn | n{n | n}n |
nmun | nln | n(n | myn | g | nyn | ngn |
My | ngn | npn | nyn | ngn | npn
)) | (mon | nmxn | n\n | nln | nyn
) | ("[" ["*"] [{PatternChar ["-" PatternChar]}]

nym) |
" Referencedvalue "}") |

("

(m\" "N "{" (Referencedvalue | Type) "}") |
(mon wwn |
(
(

"(" PatternElement ")") |
g (Num |
(n(n Num n,n [Num] n)n) | (n(n n,n Num n)n)
)
PatternChar

117.PatternChar ::= NonSpecialPatternChar | PatternQuadruple
118.NonSpecialPatternChar ::= Char
/* STATIC SEMANTICS: NonSpecialPatternChar shall not be one of the following characters: "\", "?",
"*", "I", "+", "[", "{", """, "(", "#" */
119.PatternClassChar ::= NonSpecialPatternClassChar |

PatternQuadruple |

"\" EscapedPatternClassChar
120.NonSpecialPatternClassChar ::= Char

/* STATIC SEMANTICS: NonSpecialPatternClassChar shall not be one of the following characters: "-",
n’\n, n] " */

121 .EscapedPatternClassChar ::= Char

121.PatternQuadruple ::= "\" "g" " (" Number "," Number "," Number ",6"
Number ")"

122.Complement ::= ComplementKeyword " (" TemplateBody {"," TemplateBody}

n) n

123 .ComplementKeyword ::= "complement"

124 .SubsetMatch ::= SubsetKeyword TemplateList

125.SubsetKeyword ::= "subset"

126 .SupersetMatch ::= SupersetKeyword TemplateList

127 .SupersetKeyword ::= "superset"

128.PermutationMatch ::= PermutationKeyword PermutationList

129.PermutationKeyword ::= "permutation"

130.Permutationlist ::= " (" TemplateBody {"," TemplateBody} ")"

/* STATIC SEMANTICS: Restrictions on the content of TemplateBody are given in clause B.1.3.3. */

131.AnyValue ::= "?"

132.AnyOrOmit ::= "*"

133.TemplatelList ::= " (" TemplateBody {"," TemplateBody}+ ")"

134 .WildcardLengthMatch ::= LengthKeyword " (" SingleExpression ")"

/* STATIC SEMANTICS: SingleExpression shall evaluate to type integer */

ETSI

226 ETSI ES 201 873-1 V4.4.1 (2012-04)

135.IfPresentKeyword ::= "ifpresent"

136.PresentKeyword ::= "present"

137.Range ::= " (" Bound ".." Bound ")"

138.Bound ::= (["!"] SingleExpression) | ([Minus] InfinityKeyword)

/* STATIC SEMANTICS - Bounds shall evaluate to types integer, charstring, universal charstring or
float. In case they evaluate to types charstring or universal charstring, the string length shall be
1. infinity as lower bound and -infinity as upper bound are allowed for float types only. */
139.InfinityKeyword ::= "infinity"

140.TemplateInstanceAssignment ::= Identifier ":=" InLineTemplate

/* STATIC SEMANTICS - if a value parameter is used, the inline template shall evaluate to a value */

141 .TemplateRefWithParList ::= ExtendedIdentifier [TemplateActualParList]
142.InLineTemplate ::= [(Type | Signature) Colon] [DerivedRefWithParList
AssignmentChar] TemplateBody
143 .DerivedRefWithParList ::= ModifiesKeyword TemplateRefWithParList
144 .TemplateActualParList ::= " (" [(TemplateInstanceActualPar {"," TemplateInstanceActualPar}) |
(TemplateInstanceAssignment {"," TemplateInstanceAssignment})]
n n
145.TemplateInstanceActualPar ::= InLineTemplate | Minus

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions */

146 .TemplateOps ::= MatchOp | ValueofOp

147 .MatchOp ::= MatchKeyword " (" Expression "," InLineTemplate ")"
148 .MatchKeyword ::= "match"

149.ValueofOp ::= ValueofKeyword " (" InLineTemplate ")"
150.ValueofKeyword ::= "valueof"

A.16.14 Function definitions

151.FunctionDef ::= FunctionKeyword Identifier " (" [FunctionFormalParList]
") " [RunsOnSpec] [ReturnType] StatementBlock
152 .FunctionKeyword ::= "function"
153.FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
154 .FunctionFormalPar ::= FormalValuePar |
FormalTimerPar |
FormalTemplatePar |
FormalPortPar
155.ReturnType ::= ReturnKeyword [TemplateKeyword | RestrictedTemplate]
Type
156 .ReturnKeyword ::= "return"
157 .RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
158.RunsKeyword ::= "runs"
159.0nKeyword ::= "on"
160.MTCKeyword ::= "mtc"
161.StatementBlock ::= "{" [FunctionDefList] [FunctionStatementList] "}"
162.FunctionDefList ::= {(FunctionLocalDef | FunctionLocalInst) [WithStatement] [SemiColon] }+
163 .FunctionStatementList ::= {FunctionStatement [SemiColon] }+
164 .FunctionLocallnst ::= VarInstance | TimerInstance
165.FunctionLocalDef ::= ConstDef | TemplateDef
166.FunctionStatement ::= ConfigurationStatements |
TimerStatements |
CommunicationStatements |
BasicStatements |
BehaviourStatements |
SetLocalVerdict |
SUTStatements |
TestcaseOperation
167.FunctionInstance ::= FunctionRef " (" [FunctionActualParList] ")"
168 .FunctionRef ::= [Identifier Dot] (Identifier | PreDefFunctionIdentifier)
169.PreDefFunctionIdentifier ::= Identifier

/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 Function Identifiers
from Annex C of ES 201 873-1 */

170.FunctionActualParList ::= (FunctionActualPar {"," FunctionActualPar}) |
(FunctionActualParAssignment {"," FunctionActualParAssignment})
171.FunctionActualPar ::= ArrayldentifierRef |
InLineTemplate |
ComponentRef |
Minus

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */
172 .FunctionActualParAssignment ::= TemplateInstanceAssignment |

ComponentRefAssignment |

ETSI

227 ETSI ES 201 873-1 V4.4.1 (2012-04)

ArrayldentifierRefAssignment
173 .ArrayIldentifierRefAssignment ::= Identifier ":=" ArraylIdentifierRef

A.1.6.1.5 Signature definitions

174 .SignatureDef ::= SignatureKeyword Identifier " (" [SignatureFormalParList]
") " [ReturnType | NoBlockKeyword] [ExceptionSpec]

175.SignatureKeyword ::= "signature"

176 .SignatureFormalParList ::= FormalValuePar {"," FormalValuePar}

177 .ExceptionSpec ::= ExceptionKeyword " (" TypeList ")"

178 .ExceptionKeyword ::= "exception"

179.Signature ::= ExtendedIdentifier

180 .NoBlockKeyword ::= "noblock"

A.1.6.1.6 Testcase definitions

181 .TestcaseDef ::= TestcaseKeyword Identifier " (" [TemplateOrValueFormalParList]
")" ConfigSpec StatementBlock
182.TestcaseKeyword ::= "testcase"
183 .ConfigSpec ::= RunsOnSpec [SystemSpec]
184 .SystemSpec ::= SystemKeyword ComponentType
185.SystemKeyword ::= "system"
186 .TestcaselInstance ::= ExecuteKeyword " (" ExtendedIdentifier " (" [TestcaseActualParList]
wyn [v," (Expression | Minus) ["," SingleExpression]]
ll) n
187.ExecuteKeyword ::= "execute"
188.TestcaseActualParList ::= (TemplateInstanceActualPar {"," TemplatelInstanceActualPar}) |
(TemplateInstanceAssignment {"," TemplatelnstanceAssignment})

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */

A.1.6.1.7 Altstep definitions

189.AltstepDef ::= AltstepKeyword Identifier " (" [FunctionFormalParList]
") " [RunsOnSpec] "{" AltstepLocalDefList AltGuardList

n}n

190.AltstepKeyword "altstep"
191.AltstepLocalDefList ::= {AltstepLocalDef [WithStatement] [SemiColon]}
192.AltsteplLocalDef ::= VarInstance |
TimerInstance |
ConstDef |
TemplateDef
193.AltstepInstance ::= ExtendedIdentifier " (" [FunctionActualParList]

n) "

A.1.6.1.8 Import definitions

194 .ImportDef ::= ImportKeyword ImportFromSpec (AllWithExcepts | ("{"
ImportSpec
n}n))
195.ImportKeyword ::= "import"
196 .A11WithExcepts ::= AllKeyword [ExceptsDef]
197 .ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"
198 .ExceptKeyword ::= "except"
199.ExceptSpec ::= {ExceptElement [SemiColon] }
200.ExceptElement ::= ExceptGroupSpec |
ExceptTypeDefSpec |
ExceptTemplateSpec |
ExceptConstSpec |
ExceptTestcaseSpec |
ExceptAltstepSpec |

ExceptFunctionSpec |
ExceptSignatureSpec |

ExceptModuleParSpec
201.ExceptGroupSpec ::= GroupKeyword (QualifiedIdentifierList | AllKeyword)
202.IdentifierListOrAll ::= IdentifierList | AllKeyword
203 .ExceptTypeDefSpec ::= TypeDefKeyword IdentifierListOrAll
204 .ExceptTemplateSpec ::= TemplateKeyword IdentifierListOrAll
205.ExceptConstSpec ::= ConstKeyword IdentifierListOrAll
206 .ExceptTestcaseSpec ::= TestcaseKeyword IdentifierListOrAll
207 .ExceptAltstepSpec ::= AltstepKeyword IdentifierListOrAll
208 .ExceptFunctionSpec ::= FunctionKeyword IdentifierListOrAll
209 .ExceptSignatureSpec ::= SignatureKeyword IdentifierListOrAll
210.ExceptModuleParSpec ::= ModuleParKeyword IdentifierListOrAll
211.ImportSpec ::= {ImportElement [SemiColon]}
212.ImportElement ::= ImportGroupSpec |

ETSI

228 ETSI ES 201 873-1 V4.4.1 (2012-04)

ImportTypeDefSpec |
ImportTemplateSpec |
ImportConstSpec |
ImportTestcaseSpec |
ImportAltstepSpec |
ImportFunctionSpec |
ImportSignatureSpec |

ImportModuleParSpec |

ImportImportSpec
213.ImportFromSpec ::= FromKeyword ModuleId [RecursiveKeyword]
214 .RecursiveKeyword ::= "recursive"
215. ImportGroupSpec ::= GroupKeyword (GroupRefListWithExcept | AllGroupsWithExcept)
216 .GroupRefListWithExcept ::= QualifiedIdentifierWithExcept {"," QualifiedIdentifierWithExcept}
217.A11GroupsWithExcept ::= AllKeyword [ExceptKeyword QualifiedIdentifierList]
218.QualifiedIdentifierWithExcept ::= QualifiedIdentifier [ExceptsDef]
219.IdentifierListOrAllWithExcept ::= IdentifierList | AllWithExcept
220.ImportTypeDefSpec ::= TypeDefKeyword IdentifierListOrAllWithExcept
221 .A11WithExcept ::= AllKeyword [ExceptKeyword IdentifierList]
222 . ImportTemplateSpec ::= TemplateKeyword IdentifierListOrAllWithExcept
223 .ImportConstSpec ::= ConstKeyword IdentifierListOrAllWithExcept
224 .ImportAltstepSpec ::= AltstepKeyword IdentifierListOrAllWithExcept

225 . ImportTestcaseSpec = TestcaseKeyword IdentifierListOrAllWithExcept
226 .ImportFunctionSpec ::= FunctionKeyword IdentifierListOrAllWithExcept
227.ImportSignatureSpec ::= SignatureKeyword IdentifierListOrAllWithExcept

228.ImportModuleParSpec ::= ModuleParKeyword IdentifierListOrAllWithExcept
229.ImportImportSpec ::= ImportKeyword AllKeyword

A.1.6.1.9 Group definitions

230.GroupDef ::= GroupKeyword Identifier "{" [ModuleDefinitionsList] "}"
231.GroupKeyword ::= "group"

A.1.6.1.10 External function definitions

232.ExtFunctionDef ::= ExtKeyword FunctionKeyword Identifier " (" [FunctionFormalParList]
") " [ReturnTypel
233 .ExtKeyword ::= "external"

A.1.6.1.11 External constant definitions

234 .ExtConstDef ::= ExtKeyword ConstKeyword Type IdentifierList

A.1.6.1.12 Module parameter definitions

235.ModuleParDef ::= ModuleParKeyword (ModulePar | ("{" MultitypedModuleParList
n}n))

236 .ModuleParKeyword ::= "modulepar"

237.MultitypedModuleParList ::= {ModulePar [SemiColon]}

238.ModulePar ::= Type ModuleParList

239.ModuleParList ::= Identifier [AssignmentChar ConstantExpression] {","
Identifier
[AssignmentChar
ConstantExpression] }

A.1.6.1.13 Friend module definitions

240.FriendModuleDef ::= "friend" "module" IdentifierList [SemiColon]
A.1.6.2 Control part
241.ModuleControlPart ::= ControlKeyword "{" ModuleControlBody "}" [WithStatement]
[SemiColon]
242 .ControlKeyword ::= "control"
243 .ModuleControlBody ::= [ControlStatementOrDeflList]
244 .ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon] }+
245.ControlStatementOrDef ::= (FunctionLocalDef |
FunctionLocalInst) [WithStatement] |
ControlStatement
246.ControlStatement ::= TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements |
StopKeyword

ETSI

229 ETSI ES 201 873-1 V4.4.1 (2012-04)

A.1.6.3 Local definitions

A.1.6.3.1 Variable instantiation

247

248

249.
250.
251.

252
253

.VarInstance ::= VarKeyword ((Type VarList) | ((TemplateKeyword | RestrictedTemplate)
Type TempVarList))

.VarList ::= SingleVarInstance {"," SingleVarInstance}

SingleVarInstance ::= Identifier [ArrayDef] [AssignmentChar Expression]

VarKeyword ::= "var"

TempVarList ::= SingleTempVarInstance {"," SingleTempVarInstance}

.SingleTempVarInstance ::= Identifier [ArrayDef] [AssignmentChar TemplateBody]

.VariableRef ::= Identifier [ExtendedFieldReference]

A.1.6.3.2 Timer instantiation

254
255
256

.TimerInstance ::= TimerKeyword VarList
.TimerKeyword ::= "timer"
.ArrayIdentifierRef ::= Identifier {ArrayOrBitRef}

A.1.6.4 Operations

A.l164.1 Component operations

257

258

259.

260.
261.

262
263

264

265.

266

267.

268

269.
270.

271
272
273
274

275.

276

277.

278

279.

280

281.

282
283
284

285.

.ConfigurationStatements ::= ConnectStatement |
MapStatement |
DisconnectStatement |
UnmapStatement |
DoneStatement |
KilledStatement |
StartTCStatement |
StopTCStatement |
KillTCStatement
.ConfigurationOps ::= CreateOp |
Selfop |
SystemKeyword |
MTCKeyword |
RunningOp |
AliveOp
CreateOp ::= ComponentType Dot CreateKeyword ["(" (SingleExpression |
Minus) ["," SingleExpression]
")"] [AliveKeyword]
SelfOp ::= "self"
DoneStatement ::= ComponentId Dot DoneKeyword
.KilledStatement ::= ComponentId Dot KilledKeyword
.ComponentId ::= ComponentOrDefaultReference | (AnyKeyword | AllKeyword)
ComponentKeyword
.DoneKeyword ::= "done"
KilledKeyword ::= "killed"
.RunningOp ::= ComponentId Dot RunningKeyword
RunningKeyword ::= "running"
.AliveOp ::= ComponentId Dot AliveKeyword
CreateKeyword ::= "create"
AliveKeyword ::= "alive"
.ConnectStatement ::= ConnectKeyword SingleConnectionSpec
.ConnectKeyword ::= "connect"
.SingleConnectionSpec ::= " (" PortRef "," PortRef ")"
.PortRef ::= ComponentRef Colon ArrayIdentifierRef
ComponentRef ::= ComponentOrDefaultReference |
SystemKeyword |
Selfop |
MTCKeyword
.ComponentRefAssignment ::= Identifier ":=" ComponentRef
DisconnectStatement ::= DisconnectKeyword [SingleConnectionSpec |
AllConnectionsSpec |
AllPortsSpec |
AllCompsAllPortsSpec]
.AllConnectionsSpec ::= " (" PortRef ")"
AllPortsSpec ::= " (" ComponentRef ":" AllKeyword PortKeyword ")"
.AllCompsAllPortsSpec ::= " (" AllKeyword ComponentKeyword ":" AllKeyword
PortKeyword ")"
DisconnectKeyword ::= "disconnect"
.MapStatement ::= MapKeyword SingleConnectionSpec [ParamClausel]
.ParamClause ::= ParamKeyword FunctionActualParList
.MapKeyword ::= "map"
UnmapStatement ::= UnmapKeyword [SingleConnectionSpec [ParamClause] |

ETSI

230 ETSI ES 201 873-1 V4.4.1 (2012-04)

AllConnectionsSpec [ParamClause] |
AllPortsSpec |
AllCompsAllPortsSpec]

286 .UnmapKeyword ::= "unmap"
287.StartTCStatement ::= ComponentOrDefaultReference Dot StartKeyword
"(" FunctionInstance ")"
288.StartKeyword ::= "start"
289.StopTCStatement ::= StopKeyword | (ComponentReferenceOrLiteral | AllKeyword
ComponentKeyword) Dot StopKeyword
290.ComponentReferenceOrLiteral ::= ComponentOrDefaultReference |
MTCKeyword |
SelfOp
291.KillTCStatement ::= KillKeyword | ((ComponentReferenceOrLiteral |
AllKeyword ComponentKeyword) Dot
KillKeyword)
292.ComponentOrDefaultReference ::= VariableRef | FunctionInstance
293 .KillKeyword ::= "kill"

A.1.6.4.2 Port operations

294 .CommunicationStatements ::= SendStatement |
CallStatement |
ReplyStatement |
RaiseStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
GetReplyStatement |
CatchStatement |
CheckStatement |
ClearStatement |
StartStatement |
StopStatement |
HaltStatement |
CheckStateStatement
295.SendStatement ::= ArrayIdentifierRef Dot PortSendOp
296 .PortSendOp ::= SendOpKeyword " (" InLineTemplate ")" [ToClausel]
297 .SendOpKeyword ::= "send"
298.ToClause ::= ToKeyword (InLineTemplate |
AddressRefList |
AllKeyword ComponentKeyword
)

299.AddressRefList ::= " (" InLineTemplate {"," InLineTemplate} ")"
300.ToKeyword ::= "to"
301.CallStatement ::= ArrayIdentifierRef Dot PortCallOp [PortCallBody]
302.PortCallOp ::= CallOpKeyword " (" CallParameters ")" [ToClause]
303.CallOpKeyword ::= "call"
304.CallParameters ::= InLineTemplate ["," CallTimerValue]
305.CallTimerValue ::= Expression | NowaitKeyword
306 .NowaitKeyword ::= "nowait"
307.PortCallBody ::= "{" CallBodyStatementList "}"
308.CallBodyStatementList ::= {CallBodyStatement [SemiColon] }+
309.CallBodyStatement ::= CallBodyGuard StatementBlock
310.CallBodyGuard ::= AltGuardChar CallBodyOps
311.CallBodyOps ::= GetReplyStatement | CatchStatement
312.ReplyStatement ::= ArrayldentifierRef Dot PortReplyOp
313.PortReplyOp ::= ReplyKeyword " (" InLineTemplate [ReplyValue] ")" [ToClause]
314 .ReplyKeyword ::= "reply"
315.ReplyValue ::= ValueKeyword Expression
316.RaiseStatement ::= ArrayldentifierRef Dot PortRaiseOp
317.PortRaiseOp ::= RaiseKeyword " (" Signature "," InLineTemplate ")"
[ToClause]
318.RaiseKeyword ::= "raise"
319.ReceiveStatement ::= PortOrAny Dot PortReceiveOp
320.PortOrAny ::= ArrayIdentifierRef | AnyKeyword PortKeyword
321.PortReceiveOp ::= ReceiveOpKeyword [" (" InLineTemplate ")"] [FromClause]
[PortRedirect]
322 .ReceiveOpKeyword ::= "receive"
323 .FromClause ::= FromKeyword (InLineTemplate |
AddressReflist |

AnyKeyword ComponentKeyword
)

324 .FromKeyword ::= "from"

325.PortRedirect ::= PortRedirectSymbol (ValueSpec [SenderSpec] | SenderSpec)
326 .PortRedirectSymbol ::= "->"

327.ValueSpec ::= ValueKeyword (VariableRef | (" (" SingleValueSpec {","

SinglevalueSpec}

n)n))

ETSI

231 ETSI ES 201 873-1 V4.4.1 (2012-04)

328.SingleValueSpec ::= VariableRef [AssignmentChar FieldReference ExtendedFieldReference]

/*STATIC SEMANTICS - FieldReference shall not be ParRef and ExtendedFieldReference shall not be

TypeDefIdentifier*/
329.ValueKeyword ::= "value"
330.SenderSpec ::= SenderKeyword VariableRef
331.SenderKeyword ::= "sender"
332.TriggerStatement ::= PortOrAny Dot PortTriggerOp
333.PortTriggerOp ::= TriggerOpKeyword [" (" InLineTemplate ")"] [FromClause]
[PortRedirect]
334 .TriggerOpKeyword ::= "trigger"
335.GetCallStatement ::= PortOrAny Dot PortGetCallOp
336.PortGetCallOp ::= GetCallOpKeyword [" (" InLineTemplate ")"] [FromClause]
[PortRedirectWithParam]
337.GetCallOpKeyword ::= "getcall"
338.PortRedirectWithParam ::= PortRedirectSymbol RedirectWithParamSpec
339.RedirectWithParamSpec ::= ParamSpec [SenderSpec] | SenderSpec
340.ParamSpec ::= ParamKeyword ParamAssignmentList
341.ParamKeyword ::= "param"
342 .ParamAssignmentList ::= " (" (AssignmentList | VariableList) ")"
343 .AssignmentList ::= VariableAssignment {"," VariableAssignment}
344 .VariableAssignment ::= VariableRef AssignmentChar Identifier
345.VariableList ::= VariableEntry {"," VariableEntry}
346.VariableEntry ::= VariableRef | Minus
347.GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
348 .PortGetReplyOp ::= GetReplyOpKeyword [" (" InLineTemplate [ValueMatchSpec]
")"] [FromClause] [PortRedirectWithValueAndParam]
349.PortRedirectWithvalueAndParam ::= PortRedirectSymbol RedirectWithValueAndParamSpec
350.RedirectWithValueAndParamSpec ::= ValueSpec [ParamSpec] [SenderSpec] |
RedirectWithParamSpec
351.GetReplyOpKeyword ::= "getreply"
352.ValueMatchSpec ::= ValueKeyword InLineTemplate
353.CheckStatement ::= PortOrAny Dot PortCheckOp
354 .PortCheckOp ::= CheckOpKeyword [" (" CheckParameter ")"]
355.CheckOpKeyword ::= "check"
356.CheckParameter ::= CheckPortOpsPresent |
FromClausePresent |
RedirectPresent
357.FromClausePresent ::= FromClause [PortRedirectSymbol SenderSpec]
358.RedirectPresent ::= PortRedirectSymbol SenderSpec
359.CheckPortOpsPresent ::= PortReceiveOp |
PortGetCallOp |
PortGetReplyOp |
PortCatchOp
360.CatchStatement ::= PortOrAny Dot PortCatchOp
361.PortCatchOp ::= CatchOpKeyword [" (" CatchOpParameter ")"] [FromClause]
[PortRedirect]
362.CatchOpKeyword ::= "catch"
363.CatchOpParameter ::= Signature "," InLineTemplate | TimeoutKeyword
364 .ClearStatement ::= PortOrAll Dot ClearOpKeyword
365.PortOrAll ::= ArrayldentifierRef | AllKeyword PortKeyword
366 .ClearOpKeyword ::= "clear"
367.StartStatement ::= PortOrAll Dot StartKeyword
368.StopStatement ::= PortOrAll Dot StopKeyword
369.StopKeyword ::= "stop"
370.HaltStatement ::= PortOrAll Dot HaltKeyword
371.HaltKeyword ::= "halt"
372 .AnyKeyword ::= "any"
373.CheckStateStatement ::= PortOrAllAny Dot CheckStateKeyword " (" SingleExpression ")"
374 .PortOrAllAny ::= PortOrAll | AnyKeyword PortKeyword
375.CheckStateKeyword ::= "checkstate"

A.1.6.4.3 Timer operations

376.TimerStatements ::= StartTimerStatement |

StopTimerStatement |

TimeoutStatement
377.TimerOps ::= ReadTimerOp | RunningTimerOp
378.StartTimerStatement ::= ArrayldentifierRef Dot StartKeyword [" (" Expression

l|) l|]

379.StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
380.TimerRefOrAll ::= ArrayIdentifierRef | AllKeyword TimerKeyword
381.ReadTimerOp ::= ArrayldentifierRef Dot ReadKeyword
382 .ReadKeyword ::= "read"
383.RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword
384 .TimeoutStatement ::= TimerRefOrAny Dot TimeoutKeyword
385.TimerRefOrAny ::= ArraylIdentifierRef | (AnyKeyword TimerKeyword)

ETSI

232 ETSI ES 201 873-1 V4.4.1 (2012-04)
386 .TimeoutKeyword ::= "timeout"

A.1.6.4.4 Testcase operation

387.TestcaseOperation ::= TestcaseKeyword "." StopKeyword [" (" {(FreeText |
InLineTemplate)

[n’n]}

myn]

A.1.6.5 Type

388.Type ::= PredefinedType | ReferencedType
389.PredefinedType ::= BitStringKeyword |
BooleanKeyword |
CharStringKeyword |
UniversalCharString |
IntegerKeyword |
OctetStringKeyword |
HexStringKeyword |
VerdictTypeKeyword |
FloatKeyword |
AddressKeyword |
DefaultKeyword |
AnyTypeKeyword
390.BitStringKeyword ::= "bitstring"
391.BooleanKeyword ::= "boolean"
392.IntegerKeyword ::= "integer"
393.0ctetStringKeyword ::= "octetstring"
394 .HexStringKeyword ::= "hexstring"
395.VerdictTypeKeyword ::= "verdicttype"
396 .FloatKeyword ::= "float"
397.AddressKeyword ::= "address"
398.DefaultKeyword ::= "default"
399.AnyTypeKeyword ::= "anytype"
400.CharStringKeyword ::= "charstring"
401.UniversalCharString ::= UniversalKeyword CharStringKeyword
402 .UniversalKeyword ::= "universal"
403 .ReferencedType ::= ExtendedIdentifier [ExtendedFieldReferencel]
404 .TypeReference ::= Identifier
405.ArrayDef ::= {"[" SingleExpression [".." SingleExpression] "]"}+

/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

A.1.6.6 Value

406.Value ::= PredefinedvValue | ReferencedvValue
407.Predefinedvalue ::= Bstring |
BooleanValue |
CharStringValue |
Number | /* IntegerValue */
Ostring |
Hstring |
VerdictTypeValue |
Identifier | /* EnumeratedValue */
FloatValue |
AddressValue |
OmitKeyword
408.BooleanvValue ::= "true" | "false"
409.VerdictTypeValue ::= "pass" |
"fail" |
"inconc" |
"none" |
"error"
410.CharStringValue ::= Cstring | Quadruple
411.Quadruple ::= CharKeyword " (" Number "," Number "," Number "," Number
n) "
412.CharKeyword ::= "char"
413.FloatValue ::= FloatDotNotation |
FloatENotation |
NaNKeyword
414 .NaNKeyword ::= "not_a number"
415.FloatDotNotation ::= Number Dot DecimalNumber
416.FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus]
Number
417 .Exponential ::= "E"
418.Referencedvalue ::= ExtendedIdentifier [ExtendedFieldReferencel]

ETSI

233 ETSI ES 201 873-1 V4.4.1 (2012-04)

419 .Number ::= (NonZeroNum {Num}) | "0O"

420 .NonZeroNum ::= "1™" | nomn | n3n | ngn | ngn | ngn | nwgn | ngn | ngn

421 .DecimalNumber ::= {Num}+

422.Num ::= "0" | NonZeroNum

423 .Bstring ::= "'" {Bin} "'" "B"

424 .Bin ::= "O" | nym

425.Hstring ::= "'" {EEE} wenoongn

426 .Hex ::= M | npn | ngn | el | npn nEn nEn ngn | npn | nan
ngn | ngn | nEN

427.0string ::= "'" {QSE} ninongn

428.0ct ::= Hex Hex

429.Cstring ::= """ {Char} "

430.Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring

a character from the character set defined in ITU-T T.50. For universal charstring a character from
any character set defined in ISO/IEC 10646 */

431.Identifier ::= Alpha {AlphaNum | Underscore}
432.Alpha ::= UpperAlpha | LowerAlpha
433.AlphaNum ::= Alpha | Num
434 .UpperAlpha ::= "A" | n]ﬁ | el | npn | nEn | nEn | ng@n | nwyn | nwyn |
ngn | ngn | ngm | nyn | nNn" | non | npn | non | nRn |
ngn | nn | nygn | nyn | LAnall | nxn | nyn | LAl
435.LowerAlpha ::= "a" | npn | nan | ngn | ngn | nEn | ng | nhn | wimn |
"] " | nicn | nin | npn | npn | ngn | np" | g | nyn |
ngn | ngn | nyn | LEvall | Ty | My | nyn | LAl
436 .ExtendedAlphaNum ::= /* REFERENCE - A graphical character from the BASIC LATIN or from the

LATIN-1 SUPPLEMENT character sets defined in ISO/IEC 10646 (characters from char (0,0,0,32) to char
(0,0,0,126), from char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char (0,0,0,255)

*/

437.FreeText ::= """ {ExtendedAlphaNum} """
438 .AddressValue ::= "null"

439.0mitKeyword ::= "omit"

A.1.6.7 Parameterization

440.InParKeyword ::= "in"
441 .0utParKeyword ::= "out"
442 .InOutParKeyword ::= "inout"
443 .FormalValuePar ::= [(InParKeyword |
InOutParKeyword |
OutParKeyword
)] Type Identifier [":=" (Expression | Minus)]
444 .FormalPortPar ::= [InOutParKeyword] Identifier Identifier

/* The first Identifier refers to the port type. The second Identifier refers to the port parameter
identifier */
445 .FormalTimerPar ::= [InOutParKeyword] TimerKeyword Identifier
446 .FormalTemplatePar ::= [(InParKeyword |
OutParKeyword |
InOutParKeyword
)] (TemplateKeyword | RestrictedTemplate) Type
Identifier [":=" (InLineTemplate | Minus)]
447 .RestrictedTemplate ::= OmitKeyword | (TemplateKeyword TemplateRestriction)
448.TemplateRestriction ::= " (" (OmitKeyword |
ValueKeyword |
PresentKeyword
) l|) n

A.1.6.8 Statements

A.1.6.8.1 With statement

449 .WithStatement ::= WithKeyword WithAttribList
450.WithKeyword ::= "with"
451 .WithAttribList ::= "{" MultiWithAttrib "}
452 .MultiWithAttrib ::= {SingleWithAttrib [SemiColon] }
453 .SingleWithAttrib ::= AttribKeyword [OverrideKeyword] [AttribQualifier]
FreeText
454 .AttribKeyword ::= EncodeKeyword |
VariantKeyword |
DisplayKeyword |
ExtensionKeyword |
OptionalKeyword
455 .EncodeKeyword "encode"
456 .VariantKeyword = "variant"

ETSI

457.
458.
459.
460.
461.
462.

463.
464 .

Al

465.

466

467.
468.
469.

470.
471.
472.

.SetLocalVerdict ::=

234 ETSI ES 201 873-1 V4.4.1 (2012-04)
DisplayKeyword ::= "display"
ExtensionKeyword ::= "extension"
OverrideKeyword ::= "override™"
AttribQualifier "(" DefOrFieldRefList ")"
DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
DefOrFieldRef ::= QualifiedIdentifier |
((FieldReference | "[" Minus "]") [ExtendedFieldReference])
AllRef
QualifiedIdentifier ::= { Identifier Dot } Identifier
AllRef ::= (GroupKeyword AllKeyword [ExceptKeyword "{" QualifiedIdentifierList
"}"1) | ((TypeDefKeyword |
TemplateKeyword |
ConstKeyword |
AltstepKeyword |
TestcaseKeyword |
FunctionKeyword |
SignatureKeyword |
ModuleParKeyword
) AllKeyword [ExceptKeyword

.6.8.2 Behaviour statements

Testcaselnstance |
FunctionInstance |
ReturnStatement |
AltConstruct |
InterleavedConstruct |
LabelStatement |
GotoStatement |
RepeatStatement |
DeactivateStatement |
AltsteplInstance |
ActivateOp |
BreakStatement |
ContinueStatement

BehaviourStatements ::=

"{" IdentifierList
n}n])

SetVerdictKeyword " (" SingleExpression {"," LogItem}

n) n
SetVerdictKeyword ::= "setverdict™"
GetLocalVerdict ::= "getverdict"
SUTStatements ::=

ActionKeyword " (" ActionText {StringOp ActionText}

n) n
ActionKeyword ::= "action"
ActionText ::= FreeText | Expression
ReturnStatement ::=

ReturnKeyword [Expression | InLineTemplate]

/* STATIC SEMANTICS - Expression shall evaluate to a value of a type compatible with the return type

for

instance),
template.

473.
474 .
475.
476 .

477 .
478.
479.

480.

481.
482.
483.
484 .
485.
486.
487.
488.

functions returning a value.

*/

AltConstruct ::= AltKeyword "{" AltGuardList "}"
AltKeyword ::= "alt"

AltGuardList ::= {GuardStatement | ElseStatement

It shall evaluate to a value,
or a matching mechanism compatible with the return type for functions returning a

template (literal or template

[SemiColon] }

GuardStatement ::= AltGuardChar (AltstepInstance

[StatementBlock] |

GuardOp StatementBlock)

ElseStatement

"[" ElseKeyword "]" StatementBlock

nn

AltGuardChar ::= [BooleanExpression] "1"
GuardOp ::= TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement
InterleavedConstruct ::=

InterleavedKeyword "{" InterleavedGuardList

n}n
InterleavedKeyword ::= "interleave"

InterleavedGuardList ::=

{InterleavedGuardElement [SemiColon] }+

InterleavedGuardElement ::=

InterleavedGuard StatementBlock

InterleavedGuard ::= "[" "]" GuardOp
LabelStatement ::= LabelKeyword Identifier
LabelKeyword ::= "label"

GotoStatement ::= GotoKeyword Identifier
GotoKeyword ::= "goto"

ETSI

235 ETSI ES 201 873-1 V4.4.1 (2012-04)

489 .RepeatStatement ::= "repeat"

490.ActivateOp ::= ActivateKeyword " (" AltstepInstance ")"

491 .ActivateKeyword ::= "activate"

492 .DeactivateStatement ::= DeactivateKeyword [" (" ComponentOrDefaultReference
n) n]

493 .DeactivateKeyword ::= "deactivate"

494 .BreakStatement ::= "break"

495.ContinueStatement ::= "continue"

A.1.6.8.3 Basic statements

496 .BasicStatements ::= Assignment |
LogStatement |
LoopConstruct |
ConditionalConstruct |
SelectCaseConstruct |

StatementBlock
497.Expression ::= SingleExpression | CompoundExpression
498 .CompoundExpression ::= FieldExpressionList | ArrayExpression

/* STATIC SEMANTICS - Within CompoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

499.FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec}
n}n

500.FieldExpressionSpec ::= FieldReference AssignmentChar NotUsedOrExpression

501.ArrayExpression ::= "{" [ArrayElementExpressionList] "}"

502.ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}

503 .NotUsedOrExpression ::= Expression | Minus

504 .ConstantExpression ::= SingleExpression | CompoundConstExpression

505.BooleanExpression ::= SingleExpression

/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
506 .CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression

/* STATIC SEMANTICS - Within CompoundConstExpression the ArrayConstExpression can be used for

arrays, record, record of and set of types. */

507.FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec}
n}n

508.FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression

509.ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"

510.ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}

511.Assignment ::= VariableRef AssignmentChar (Expression | TemplateBody)

/* STATIC SEMANTICS - The Expression on the right hand side of Assignment shall evaluate to an
explicit value of a type compatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, template (literal or a template instance) or a matching
mechanism compatible with the type of the left hand side for template variables. */
512.SingleExpression ::= XorExpression {"or" XorExpression}

/* STATIC SEMANTICS - If more than one XorExpression exists, then the XorExpressions shall evaluate
to specific values of compatible types */
513 .XorExpression ::= AndExpression {"xor" AndExpression}

/* STATIC SEMANTICS - If more than one AndExpression exists, then the AndExpressions shall evaluate
to specific values of compatible types */
514 .AndExpression ::= NotExpression {"and" NotExpression}

/* STATIC SEMANTICS - If more than one NotExpression exists, then the NotExpressions shall evaluate
to specific values of compatible types */
515.NotExpression ::= ["not"] EqualExpression

/* STATIC SEMANTICS - Operands of the not operator shall be of type boolean or derivatives of type
Boolean. */
516 .EqualExpression ::= RelExpression {EqualOp RelExpression}

/* STATIC SEMANTICS - If more than one RelExpression exists, then the RelExpressions shall evaluate
to specific values of compatible types. If only one RelExpression exists, it shall not derive to a
CompoundExpression. */

517.RelExpression ::= ShiftExpression [RelOp ShiftExpression] | CompoundExpression

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enumerated or float Value or derivatives of these types */
518.ShiftExpression ::= BitOrExpression {ShiftOp BitOrExpression}

/* STATIC SEMANTICS - Each Result shall resolve to a specific Value. If more than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>"
then the left-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift op is " */

ETSI

236 ETSI ES 201 873-1 V4.4.1 (2012-04)

519.BitOrExpression ::= BitXorExpression {"or4b" BitXorExpression}

/* STATIC SEMANTICS - If more than one BitXorExpression exists, then the BitXorExpressions shall
evaluate to specific values of compatible types */
520.BitXorExpression ::= BitAndExpression {"xor4b" BitAndExpression}

/* STATIC SEMANTICS - If more than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of compatible types */
521.BitAndExpression ::= BitNotExpression {"and4b" BitNotExpression}

/* STATIC SEMANTICS - If more than one BitNotExpression exists, then the BitNotExpressions shall
evaluate to specific values of compatible types */
522.BitNotExpression ::= ["not4b"] AddExpression

/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
523 .AddExpression ::= MulExpression {AddOp MulExpression}

/* STATIC SEMANTICS - Each MulExpression shall resolve to a specific Value. If more than one
MulExpression exists and the AddOp resolves to StringOp then the MulExpressions shall be valid
operands for StringOp. If more than one MulExpression exists and the AddOp does not resolve to
StringOp then the MulExpression shall both resolve to type integer or float or derivatives of these
types. If only one MulExpression exists, it shall not derive to a CompoundExpression. */

524 .MulExpression ::= UnaryExpression {MultiplyOp UnaryExpression} | CompoundExpression

/* STATIC SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one
UnaryExpression exists then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */

525.UnaryExpression ::= [UnaryOp] Primary

/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/

526 .Primary ::= OpCall |
Value |
" (" SingleExpression ")"
527.ExtendedFieldReference ::= { (Dot Identifier) |
ArrayOrBitRef |
(n [n Minus n] n)

b

/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the VarInstance or
Referencedvalue in which the ExtendedFieldReference is used is anytype. ArrayOrBitRef shall be used
when referencing elements of values or arrays. The square brackets with dash shall be used when
referencing inner types of a record of or set of type. */
528.0pCall ::= ConfigurationOps |

GetLocalVerdict |

TimerOps |

Testcaselnstance |

(FunctionInstance [ExtendedFieldReference]) |

(TemplateOps [ExtendedFieldReference]) |

ActivateOp
529.AddOp ::= "+" |
n_mn |
StringOp
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
530.MultiplyOp ::= "*" | "/v | "mod" | "rem"
/* STATIC SEMANTICS - Operands of the "*", "/",6 rem or mod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */
531.UnaryOp ::= "4" | "-n
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
532'Relop ci= Nem | nen | neon | Nen

/* STATIC SEMANTICS - the precedence of the operators is defined in Table 6 */
533.EqualOp ::= "==" | "I="
534.StringOp ::= "&"

/* STATIC SEMANTICS - Operands of the list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */
535.ShiftOp ::= "<<" | ">>" | "<@" | "@>"

536.LogStatement ::= LogKeyword " (" LogItem {"," LogItem} ")"
537 .LogKeyword ::= "log"

538.LogItem ::= FreeText | InLineTemplate

539.LoopConstruct ::= ForStatement |

ETSI

541.
542.
543.
544.
545.

546.
547.

548.
549.
550.
551.
552.
553.
554.
555.

556.
557.
558.
559.

237 ETSI ES 201 873-1 V4.4.1 (2012-04)

WhileStatement |
DoWhileStatement

.ForStatement ::= ForKeyword " (" Initial SemiColon BooleanExpression

SemiColon Assignment ")" StatementBlock
ForKeyword ::= "for"
Initial ::= VarInstance | Assignment
WhileStatement ::= WhileKeyword " (" BooleanExpression ")" StatementBlock
WhileKeyword ::= "while"
DoWhileStatement ::= DoKeyword StatementBlock WhileKeyword " (" BooleanExpression

myn

DoKeyword ::= "do"
ConditionalConstruct ::= IfKeyword " (" BooleanExpression ")" StatementBlock
{ElseIfClause} [ElseClause]

IfKeyword ::= "if"
ElseIfClause ::= ElseKeyword IfKeyword " (" BooleanExpression ")" StatementBlock
ElseKeyword ::= "else"
ElseClause ::= ElseKeyword StatementBlock
SelectCaseConstruct ::= SelectKeyword " (" SingleExpression ")" SelectCaseBody
SelectKeyword ::= "select"
SelectCaseBody ::= "{" {SelectCase}+ "}"
SelectCase ::= CaseKeyword (" (" InLineTemplate {"," InLineTemplate}
")" | ElseKeyword) StatementBlock

CaseKeyword ::= "case"

ExtendedIdentifier ::= [Identifier Dot] Identifier

IdentifierList ::= Identifier {"," Identifier}

QualifiedIdentifierList ::= QualifiedIdentifier {"," QualifiedIdentifier}

A.1.6.9 Miscellaneous productions

560.
561.
562.
563.
564.
565.

Dot ::= "."

Minus ::= "-"

SemiColon ::= ";"

Colon ::= ":"
Underscore ::= "_"
AssignmentChar ::= ":="

ETSI

238 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex B (normative):
Matching values

B.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards.

Unless otherwise specified, atemplate field matches the corresponding field value if, and only if, the field value has
exactly the same value as the value to which the expression in the template eval uates.

EXAMPLE:

// Given the message type definition
type record MyMessageType

{

integer fieldl,
charstring field2,

boolean field3 optional,
integer field4 [4]

}

// A message template using specific values could be
template MyMessageType MyTemplate:=

{

fieldl := 3+2, // specific value of integer type
field2 := "My string", // specific value of charstring type
field3 := true, // specific value of boolean type
fieldda := {1,2,3,4} // specific value of integer array

B.1.2 Matching mechanisms instead of values

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Template list

Template lists specify lists of acceptable values. It can be used on values of all types. A template list may also contain
templates.

A template field that uses a template list matches the corresponding field if, and only if, the field value matches any one
of the values or templates in the template list. Each value or template in the template list shall be of the type declared
for the template field in which this mechanism is used.

EXAMPLE:
template MyMessage MyTemplate:=

fieldl :
field2 :

(2,4,6), // list of integer values
("Stringl", "String2"), // list of charstring values

ETSI

239 ETSI ES 201 873-1 V4.4.1 (2012-04)

B.1.2.2 Complemented template list

The keyword complement denotes alist of valuesthat will not be accepted asvalues (i.e. it is the complement of a
template list). It can be used on all values of al types. A complemented value list may al so contain templates.

Each value or template in the list shall be of the type declared for the template field in which the complement is used.

A template field that uses complement matches the corresponding field if and only if the field does not match any of the
values or templates listed in the template list. The template list may be asingle value, of course.

EXAMPLE:
template MyMessage MyTemplate:=
{

complement (1,3,5), // list of unacceptable integer values

field3 not (true) // will match false

B.1.2.3 Any value

The matching symbol "?* (AnyValue) matches any value of the specified type. It can be used on values of all types.

A template field that uses the any value mechanism matches the corresponding field if, and only if, the field evaluates to
asingle element of the specified type.

EXAMPLE:

template MyMessage MyTemplate:=

{

fieldl := ?, // will match any integer

field2 := ?, // will match any non-empty charstring value
field3 := ?, // will match true or false

field4 := 7 // will match any sequence of integers

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid value, including omission of that value,
is acceptable. It can be used on values of all types, provided that the template field is declared as optional .

A template field that uses this symbol matches the corresponding field if, and only if, either the field evaluates to any
element of the specified type, or if the field is absent.

EXAMPLE:
template MyMessage MyTemplate:=

field3 := *, // will match true or false or omitted field

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values, including or excluding the boundaries. When used for val ues of
integer or £loat types(and integer or float subtypes), a boundary value shall be either:

a) infinity or -infinity;
b) anexpression that evaluates to a specific integer or float value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary.

A template field that uses a range matches the corresponding field if, and only if, the field value is equal to one of the
valuesin the range.

ETSI

240 ETSI ES 201 873-1 V4.4.1 (2012-04)

When used in templates or template fields of charstring or universal charstring types, the boundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid
values of the specified range.

EXAMPLE:

template MyMessage MyTemplate:=

{

fieldl := (1 .. !6), // range of integer type from 1 to 5

// other entries for fieldl might be (-infinity to 8) or (!12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on values of set of types. SuperSet is denoted by the
keyword superset. SuperSet matches a set of valuesif, and only if, the set of values contains at least all of the
elements defined within the SuperSet, and may contain more. The argument of SuperSet shall be of the type replicated
by the set of. This argument may contain templates (including template variables) and matching mechanisms, with the
exception of omit, AnyValueOrNone, superset, subset and the matching attributes (length restriction and ifpresent).
However, the length matching attribute may be attached to the SuperSet itself, in which case the minimal length
alowed by the length attribute shall not be less than the number of the elements in the SuperSet.

EXAMPLE:
type set of integer MySetOfType (0 .. 10);
template MySetOfType MyTemplatel := superset (1, 2, 3);

// matches any sequence of integers which contains at least one occurrences of the numbers
// 1, 2 and 3 in any order and position

template MySetOfType MyTemplate2 AnyValue := superset (1, 2, ?);

// matches any sequence of integers which contains at least one occurrences of the numbers

// 1, 2 and at least one more valid integer value (i.e. between 0 and 10, inclusively), in any
// order and position

template MySetOfType MyTemplate3 := superset (1, 2, (3, 4));
// matches any sequence of integers which contains at least one occurrences of the numbers
// 1, 2 and a number with the value 3 or 4, in any order and position

template MySetOfType MyTemplate4 := superset (1, 2, complement (3, 4));
// any sequence of integers matches which contains at least one occurrences of the numbers
// 1, 2 and a valid integer value which is not 3 or 4, in any order and position

template MySetOfType MyTemplate6é := superset (1, 2, 3) length (7);
// matches any sequence of 7 integers which contains at least one occurrences of the numbers
// 1, 2 and 3 in any order and position

template MySetOfType MyTemplate7 := superset (1, 2, ?) length (7 .. infinity);
// matches any sequence of at least 7 integers which contains at least one occurrences of the
// numbers 1, 2 and 3 in any order and position

template MySetOfType MyTemplate8 := superset (1, 2, 3) length (2 .. 7);
// causes an error, the lower bound of the length attribute contradicts to the minimum number
// of elements imposed by the superset argument

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset. SubSet matches a set of valuesif, and only if, the set of values contains only elements defined
within the SubSet, and may contain less. The argument of SubSet shall be of the type replicated by the set of. This
argument may contain templates (including template variables) and matching mechanisms, with the exception of omit,
AnyVaueOrNone, superset, subset and the matching attributes (Iength restriction and ifpresent). However, the length
matching attribute may be attached to the SubSet itself, in which case the maximum length allowed by the length
attribute shall not exceed the number of the elementsin the SubSet.

ETSI

241 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:

template MySetOfType MyTemplatel:= subset (1, 2, 3);
// matches any sequence of integers which contains zero or one occurrences of the numbers
// 1, 2 and 3 in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, ?);
// matches any sequence of integers which contains zero or one occurrences of the numbers
// 1, 2 and a valid integer value (i.e. between 0 and 10, inclusive) in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, (3, 4));
// matches any sequence of integers which contains zero or one occurrences of the numbers
// 1, 2 and one of the numbers 3 or 4, in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, complement (3, 4));
// matches any sequence of integers which contains zero or one occurrences of the numbers

// 1, 2 and a valid integer number which is not 3 or 4, in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, 3) length (2);
// matches any sequence of two integers which contains zero or one occurrences of
// the numbers 1, 2 and 3, in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, ?) length (0 .. 2);

// matches any sequence of zero, one or two integers which contains zero or one occurrences of
// the numbers 1, 2 and of a valid integer value, in any order and position

template MySetOfType MyTemplatel:= subset (1, 2, 3) length (0 .. 4);

// causes an error, the upper bound of length attribute contradicts to the maximum number of
// elements imposed by the subset argument

B.1.2.8 Omitting optional fields

The keyword omi t denotes that an optional field shall be absent. It can be assigned to templates, but shall only be used
in fields of record and set types provided that the fields are optional.

EXAMPLE:

template MyMessage MyTemplate:=

{

field3 := omit, // omit the optional field field3

B.1.3 Matching mechanisms inside values

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings, see table 4 for the lengths of the units being matched by "?" in astring), arecord of,aset of or anarray.
It shall be used only within values of string types, record of types, set of typesand arrays.

EXAMPLE:

template MyMessage MyTemplate:=
{ .

field2 := "abcxyz",

field3 := '10???'B, // where each "?" may either be 0 or 1
fieldsa := {1, ?, 3} // where ? may be any integer value

}

NOTE: The"?'infield4 can beinterpreted as AnyValue as an integer value, or AnyElement inside arecord
of, set of or array. Since both interpretations lead to the same match no problem arises.

ETSI

242 ETSI ES 201 873-1 V4.4.1 (2012-04)

B.1.3.1.1 Using single character wildcards

If it isrequired to express the"?" wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abcexyz”, "abexxyz" etc. will all match pattern "abc?xyz". However,
"abcxyz", "abedefxyz”, etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), arecord of, aset of or anarray. The"*" symbol matchesthe
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:

template Mymessage MyTemplate:=

field2 :

= "abcxyz",
field3 := '10%11'B, // where "*" may be any sequence of bits (possibly empty)
field4 := {*, 2, 3} // where "*"may be any number of integer values or omitted

}

var charstring MyStrings[4];
MyPCO.receive (MyStrings: {"abyz", *, "abc" });

If a"*" appears a the highest level inside astring, arecord of, set of or array, it shal be interpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
element inside astring, record of, set of or array.

B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz” etc. will all match pattern "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on values of record of types. Permutationis
denoted by the keyword permutation. Expressions, templates and AnyElement and AnyElementsOrNone are
allowed as permutation elements. Each element listed in the permutation shall be of the type replicated by the record
of type.

A permutation without AnyElementsOrNone in place of a single record of element means that any series of elementsis
acceptable provided that there is a one to one mapping between elements in the record of and in the permutation list
such that each element matches its corresponding element in the permutation list.

AnyElementsOrNone used inside permutation (directly or via reference) replaces none or any number of elements
within the segment of the record of value matched by permutation. The permutation matching is successful, if a subset
of the elements in the record of matches the permutation list without the AnyElementsOrNone. If both permutation and
AnyElementsOrNone are used in arecord of template, they shall be evaluated jointly.

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOrNone replaces consecutive elements only.
For example, {permutation(1,2,*)} isequivaent to ({*,1,*,2,*} {*,2,*,1,*}), while
{permutation(1,2),*} isequivalentto ({1,2,*},{2,1,*}).

NOTE 2: When AnyElementsOrNone is inside a permutation, alength attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1).

ETSI

243 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:

type record of integer MySequenceOfType;

template MySequenceOfType MyTemplatel := { permutation (1, 2, 3), 5 };

// matches any of the following sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
// 2,3,1,5; 3,1,2,5; or 3,2,1,5

template MySequenceOfType MyTemplate2 := { permutation (1, 2, ?), 5 };

// matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at least once in
// other positions

template MySequenceOfType MyTemplate3 := { permutation (1, 2, 3), *
// matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

template MySequenceOfType MyTemplate4 := { *, permutation (1, 2,
// matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1
template MySequenceOfType MyTemplate5 := { *, permutation (1, 2, 3),* };

// matches any sequence of integers containing any of the following substrings at any position:
// 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

template MySequenceOfType MyTemplate6 := { permutation (1, 2, *), 5 };
// matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
// other positions

template MySequenceOfType MyTemplate7 := { permutation (1, 2, 3), * length (0..5)};
// matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
// 3,1,2 or 3,2,1

template integer MyIntl := (
template integer MyInt2 := (
template integer MyInt3 := ?;
template integer MyInt4 := *;

1,2,3);
1,2,?

12,?);

template MySequenceOfType MyTemplatelO := { permutation (MyIntl, 2, 3), 5 };
// matches any of the sequences of 4 integers:

!/ 1,3,2,5; 2,1,3,5; 2,3,1,5; 3,1,2,5; or 3,2,1,5;
// 2,3,2,5; 2,2,3,5; 2,3,2,5; 3,2,2,5; or 3,2,2,5;
// 3,3,2,5; 2,3,3,5; 2,3,3,5; 3,3,2,5; or 3,2,3,5;
template MySequenceOfType MyTemplatell := { permutation (MyInt2, 2, 3), 5 };

// matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
// other positions

template MySequenceOfType MyTemplatel2 := { permutation (MyInt3, 2, 3), 5 };
// matches any sequence of 4 integers that ends with 5 and contains 2 and 3 at least once in
// other positions

template MySequenceOfType MyTemplatel3 := { permutation (MyInt4, 2, 3), 5 };
// matches any sequence of integers that ends with 5 and containing 2 and 3 at least once in
// other positions

template MySequenceOfType MyTemplatel4 := { permutation (MyInt3, 2, ?), 5 };
// matches any sequence of 4 integers that ends with 5 and contains 2 at least once in
// other positions

template MySequenceOfType MyTemplatel5 := { permutation (MyInt4, 2, *), 5 };
// matches any sequence of integers that ends with 5 and contains 2 at least once in
// other positions

B.1.4 Matching attributes of values

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The 1length restriction attribute is used to restrict the length of string values matching the template or the number of
elementsin aset of, record of or array structure. It shall be used only as an attribute of the following matching
mechanisms: template list, complemented template list, AnyValue, AnyValueOrNone, AnyElement,
AnyElementsOrNone, superset, subset, and pattern. It shall not be used directly with templates and template fields
produced by concatenation (see clause 15.11). If the length of atemplate or template field produced by concatenation is
wished to be restricted, the concatenation shall be enclosed into a pair of parentheses.

ETSI

244 ETSI ES 201 873-1 V4.4.1 (2012-04)

It can also be used in conjunction with the i fpresent matching attribute. The syntax for 1length can be found in
clauses 6.2.3.

NOTE: Whenthe length attributeis used with atemplate list, elements of the list may be disabled by the
attribute.

When both the complement and the length restriction matching mechanisms are used for atemplate or template field,
restrictions implied by them shall apply to the template or template field independently.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of, record of typesand arraysthe unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negative integer values. Alternatively, the keyword
infinity can be used asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type.

A template field that uses length as an attribute of a symbol matches the corresponding field if, and only if, the field
matches both the symbol and its associated attribute. The length attribute matches if the length of the field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a single length value
the length attribute matches only if the length of the received field is exactly the specified value.

It isallowed to use alength restriction in conjunction with the special value omi t, however in this case the length
attribute has no effect (i.e. with omi t it is redundant). With AnyValueOrNone and i fpresent it places arestriction
onthevalue, if any.

EXAMPLE:

template Mymessage MyTemplate:=

{

fieldl := complement ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,
// 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}
field2 := "ab*ab" length(5), // matches the character string "ab*ab" only
field3 := "ab*ab" length(13), // never matches as the specific value is of length 5
// and not of length 13
field4 := pattern "ab*ab" length(13),

// max length of the AnyElementsOrNone string is 9 characters

B.1.4.2 The IfPresent indicator

The i fpresent indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided this field is declared as optional.

A template field that uses 1 fpresent matches the corresponding field if, and only if, the field matches according to
the associated matching mechanism, or if the field is absent.

EXAMPLE:

template Mymessage MyTemplate:=

field2 := "abcd" ifpresent, // matches "abcd" if not omitted

}

NOTE: AnyValueOrNone has exactly the same meaningas? ifpresent.

ETSI

245 ETSI ES 201 873-1 V4.4.1 (2012-04)

B.1.5 Matching character pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match charstring and universal charstring values. Inaddition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
template charstring MyTemplate:= pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it isrequired to interpret any metacharacter literally it shall be preceded with the metacharacter "\".

EXAMPLE 2:

template charstring MyTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters " ?xyz", followed by any number of any characters.

Thelist of meta characters for TTCN-3 patternsis shown in table B.1. Metacharacters shall not contain whitespaces
except a whitespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number of
characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3). When

preceding a character without defined metacharacter meaning "\" and the character
together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning inside a pair of square brackets ("[" and "]") only, except
the first and last positions within the bracket. Allows to specify a range of characters;
see clause B.1.5.1 for more details

n Has a metacharacter meaning as the first character following the opening square
bracket inside a pair of square brackets ("[" and "]") only and cause to match any
character complementing the set of characters following this metacharacter;

see clause B.1.5.1for more details

\g{group,plane,row,cell} |Match the Universal character specified by the quadruple

{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
\N{reference} Match any character within the set of characters, where the set is defined by the
referenced definition; see clause B.1.5.4 for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see ITU-T Recommendation T.50 [4])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13) (see
ITU-T Recommendation T.50 [4]) (jointly called newline characters, see clause A.1.5.1)
\r Match the CO control character CR (see ITU-T Recommendation T.50 [4])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11), FF(12),

CR(13), SP(32) (see ITU-T Recommendation T.50 [4]) (jointly called white-space
characters, see clause A.1.5.1)

\b Match a word boundary (any graphical character except SP or DEL is preceded or
followed by any of the whitespace or newline characters)
\" Match the double guote character

Match the double guote character

| Used to denote two alternative expressions

@) Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times (postfix).
See clause B.1.5.3 for more details

ETSI

246 ETSI ES 201 873-1 V4.4.1 (2012-04)

Metacharacter Description
#n Match the previous expression exactly n times (where n is a single digit) (postfix); the
same as #(n)
+ Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

Character patterns may be composed from several fragments using the concatenation operation. The fragments of the
pattern shall be concatenated before any evaluation of the pattern expression. See a so the shorthand notation for
referenced definitions at concatenation in clause B.1.5.2.

EXAMPLE 3:

template charstring MyTemplate:= pattern "ab?\?" & "xyz*"; // results in the same pattern as
// in example2

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expressionis
delimited by the"[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and all characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character losesits special meaning.

The set expression can also be negated by placing the caret """ character asthe first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. "1" not at the first position and not immediately following a"" at the first position;
. "-" not at thefirst or last positionsin thelist;
. "~ at the first position in the list except when immediately followed by a closing square bracket;
o VT, M, MW, MV, M\nt Mst and M\b';
. "\gf group,plane,row,cell}";
e "\N{reference}".

NOTE 1: Embedded lists are not allowed (for example in pattern "[ab[r-Z]]" the second "[" denotes alitera "[", the
first"]" closesthelist and the second "]" causes an error as no related opening bracket in the pattern).

NOTE 2: Toinclude alitera caret character "*", place it anywhere except in the first position or precede it with a
backslash. To include aliteral hyphen "-", place it first or last in the list, or precede it with a backslash.
Toinclude aliteral closing square bracket "1", place it first or precede it with a backsash. If the first
character inthe list isthe caret "*", then the characters"-" and "1" aso match themselves when they
immediately follow that caret.

ETSI

247 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:
template charstring RegExpl:= pattern "[a-z]"; // this will match any character from a to z
template charstring RegExp2:= pattern "["a-z]"; // this will match any character except a to z

template charstring RegExp3:= pattern "[AC-E] [0-9] [0-9] [0-9]YKE";

// RegExp3 will match a string which starts with the letter A or a letter between
// C and E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values, it is aso possible within the pattern to use references to templates, constants,
variables, formal parameters, module parameters, or to their fields. The reference shall be enclosed within the

"{" "}" characters and reference shall resolve a compatible character string type. Contents of the referenced templates,
constants or variables shall be handled as aregular expression. Each expression shall be dereferenced only once, before
the insertion (i.e. the expression dereferenced and inserted into the referencing pattern shall not be dereferenced again).

EXAMPLE 1.
const charstring MyString:= "ab?";
template charstring MyTemplate:= pattern "{MyString}";
This template would match any character string that consists of the characters "ab" followed by any character.
template universal charstring MyTemplatel:= pattern "{MyString}de\g{1, 1, 13, 7}";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "de", followed by the character in 1SO10646-1 with group=1, plane=1, row=13 and cell=7.

If areferenced definition or field of a definition contains one or more reference expressions, then these references shall
recursively be dereferenced before inserting their contentsinto the referencing pattern.

If afragment of a pattern contains a single reference only, it is allowed, as a shorthand notation, to reference the
definition or the field of the definition directly, i.e. leave out double quotes (") and the pair of curly brackets ({ }).

EXAMPLE 2
const charstring MyConst2 := "ab";
template charstring RegExpl := pattern "{MyConst2}";
// matches the string "ab"
template charstring RegExpla := pattern MyConst2;
// the same as above, matches the string "ab"
template charstring RegExp2 := pattern "{RegExpl}{RegExpl}";
// matches the string "abab"
template charstring RegExp2a := pattern "{RegExpl}" & "{RegExpl}";
// the same as above, matches the string "abab"
template charstring RegExp2b := pattern RegExpl & RegExpl;
// the same as above, matches the string "abab"
template charstring RegExp3 := pattern "c{RegExp2}d";

// matches the string "cababd"

template charstring RegExp4 := pattern "{Reg";
template charstring RegExp5 := pattern "Expl}";
template charstring RegExp6 := pattern "{RegExp4}{RegExp5}";

// matches the string "{RegExpl}" only (i.e. shall not be handled as a reference expression
// after insertion)
template charstring RegExp7 := pattern "{Reg" & "Expl}";
// note the difference to the previous example; in this case the fragments of the
// pattern are joined before any evaluation, i.e. this template will match the string "ab"

EXAMPLE 3:
template charstring RefO:= "My String";
template charstring Refl:= "{Re";
template charstring Ref2:= "f0}";
template charstring Ref3:= "{Refl}{Ref2}";

//this matches "{Ref0}"
//i.e. there is no further dereferencing
//as Refl and Ref2 do not contain a reference

ETSI

248 ETSI ES 201 873-1 V4.4.1 (2012-04)

template charstring Ref4:= "{RefO}";
template charstring Ref5:= "";
template charstring Ref6:= "{Ref4}{Ref5}";
//this matches "My String" - here Ref0 is dereferenced, because Ref4 contains

//the reference expression {Ref0} with the reference Ref0

EXAMPLE 4:

type record MyRecord ({
integer i,
charstring c

const MyRecord referencedRecord:= {1,"this"}
const charstring referencedConstant := referencedRecord.c;
template charstring referencingPattern := pattern "{referencedConstant}"

//this matches "this" as the referencedConstant is dereferenced

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression must
be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding
expression must be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression must be matched
exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be asingle digit. The metacharacter postfix
"+" denotes that the preceding expression must be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:

template charstring RegExp4:= pattern "[a-z]#(9, 11)"; // match at least 9 but no more than 11

// characters from a to z
template charstring RegExpS5a:= pattern "[a-z]#(9)"; // match exactly 9

// characters from a to z
template charstring RegExpSb:= pattern "[a-z]#9"; // match exactly 9

// characters from a to z
template charstring RegExp6:= pattern "[a-z]#(9,)"; // match at least 9

// characters from a to z
template charstring RegExp7:= pattern "[a-z]#(, 11)"; // match no more than 11

// characters from a to z
template charstring RegExp8:= pattern "[a-z]+"; // match at least 1

// characters from a to z,

B.1.5.4 Match a referenced character set

A notation of the form »\n{reference} », where reference is denoting a one-character-length template, constant,
variable, forma parameter or module parameter, matches the character in the referenced value or template.

Referencing atemplate, constant, variable, formal parameter or module parameter that is not of length 1 shall cause an
error.

A notation of the form »\n{typereference}, where "typereference" isareferenceto acharstring or universal
charstring type, matches any character of the character set denoted by the referenced type.

NOTE 1: Caseswhen the referenced set of charactersis not a subset of values allowed by the type definition of the
template or template field for which the character pattern is used, are not be treated as an error (but e.g.
matching never can occur if the two sets do not overlap).

NOTE 2: \N{charstring} isequivaent to ? when the latter is applied to atemplate or template field of
charstringtypeand\N{universal charstring} isequivaentto ?when the latter isapplied to
atemplate or template field of universal charstring type (but causesan error if applied to a
template or template field of charstring type).

ETSI

249 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:

type charstring MyCharRange ("a".."z");

type charstring MyCharList ("a", "z");

const MyCharRange myCharR := "r";

template charstring myTempPattl := pattern "\N{myCharR}";

// myTempPattl shall match the string "r" only

template charstring myTempPatt2 := pattern "\N{MyCharRange}";
// myTempPatt2 shall match any string containing a single character from a to z

template MyCharRange myTempPatt3 := pattern "\N{MyCharList}";
// myTempPatt3 shall match strings "a" or "z" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type
charstring aways can be used in the pattern specification of atemplate or template field of universal
charstring type; areferenced type, template or value of thetypeuniversal charstring canbeusedinthe
pattern specification of atemplate or template field of charstring typeif al characters used in the referenced
template or value and the character set alowed by the referenced type has their corresponding charactersin the
charstring type (see definition of corresponding charactersin clause 6.3.1).

ETSI

250 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one run-time error isa
tool implementation option.

C.1 Conversion functions

C.1.1 Integer to character

int2char (in integer invalue) return charstring

This function converts an integer value in the range of 0 to 127 (8-bit encoding) into a single-character-length
charstring value. Theinteger value describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are:

o invalue islessthan O or greater than 127.

C.1.2 Integer to universal character

int2unichar (in integer invalue) return universal charstring

This function converts an integer value in the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-length universal charstring value. Theinteger vaue describes the 32-bit encoding of the
character.

In addition to the general error causesin clause 16.1.2, error causes are:

. invalue islessthan O or greater than 2147483647.

C.1.3 Integer to bitstring

int2bit (in integer invalue, in integer length) return bitstring

Thisfunction convertsasingle integer vauetoasinglebitstring value. Theresulting string is 1ength bits
long.

For the purposes of this conversion, abitstring shall beinterpreted as a positive base 2 integer value. The
rightmost bit is least significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the Length parameter, then the
bitstring shal be padded on the left with zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
J invalue islessthan zero;

. the conversion yields a return value with more bits than specified by 1ength.

ETSI

251 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.4 Integer to enumerated

int2enum (in integer inpar, out Enumerated_ type outpar)

This function converts an integer value into an enumerated value of a given enumerated type. The integer value shall be
provided asin parameter and the result of the conversion shall be stored in an out parameter. The type of the out
parameter determines the type into which the in parameter is converted.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
Vi

type enumerated MySecondEnumType {
Saturday (-3), Sunday (0), Monday
}i

//within a dynamic language element:
var MyFirstEnumType firstEnum := Tuesday;
var MySecondEnumType secondEnum := Sunday;

int2enum (0, firstEnum) // firstEnum == Monday
int2enum(1l, secondEnum) // secondEnum == Monday

C.1.5 Integer to hexstring

int2hex (in integer invalue, in integer length) return hexstring

Thisfunction convertsasingle integer valueto asingle hexstring value. The resulting string is 1ength
hexadecimal digitslong.

For the purposes of this conversion, ahexstring shall be interpreted as a positive base 16 integer vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the 1ength parameter, then the hexstring shal be padded on the left with zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
. invalue islessthan zero;

. the conversion yields a return value with more hexadecimal characters than specified by 1ength.

C.1.6 Integer to octetstring

int2oct (in integer invalue, in integer length) return octetstring

Thisfunction convertsasingle integer valueto asingle octetstring value. Theresulting stringis length
octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer vaue. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the Length parameter, then the hexstring shall be padded on the left with
Zeros.

In addition to the general error causesin clause 16.1.2, error causes are:
. invalue islessthan zero;

e theconversion yields areturn value with more octets than specified by 1ength.

ETSI

252 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.7 Integer to charstring

int2str(in integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causesin clause 16.1.2 apply.

EXAMPLE:
int2str (66) // will return the charstring value "66"
int2str (-66) // will return the charstring value "-66"
int2str (0) // will return the charstring value "0"

C.1.8 Integer to float

int2float (in integer invalue) return float
Thisfunction convertsan integer valueinto a float value.
The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2float (4) = 4.0

C.1.9 Float to integer

float2int (in float invalue) return integer

Thisfunction convertsa £1loat value into an integer value by removing the fractional part of the argument and
returning the resulting integer.

In addition to the general error causesin clause 16.1.2, error causes are:

. invalueisinfinity, -infinity Ornot_a number.
EXAMPLE:
float2int (3.12345E2) = float2int (312.345) = 312

C.1.10 Character to integer

char2int (in charstring invalue) return integer

This function converts a single-character-length charstring valueinto an integer value in the range of 0 to 127. The
integer val ue describes the 8-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are:

e length of invalue doesnot equal 1.

C.1.11 Character to octetstring

char2oct (in charstring invalue) return octetstring

Thisfunction convertsacharstring invalue to an octetstring. Each octet of theoctetstring will
contain the ITU-T Recommendation T.50 [4] codes (according to the IRV) of the appropriate characters of invalue.

The general error causesin clause 16.1.2 apply.

ETSI

253 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:

char2oct ("Tinky-Winky") = '54696E6B792D57696E6B79'0

C.1.12 Universal character to integer

unichar2int (in universal charstring invalue) return integer

This function converts a single-character-length universal charstring valueinto an integer valuein the range of
0to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

In addition to the general error causesin clause 16.1.2, error causes are:

e length of invalue doesnot equal 1.

C.1.13 Bitstring to integer
bit2int (in bitstring invalue) return integer
Thisfunction convertsasinglebitstring valueto asingle integer value.

For the purposes of this conversion, abitstring shall beinterpreted as a positive base 2 integer vaue. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: Onreal test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.14 Bitstring to hexstring

bit2hex (in bitstring invalue) return hexstring

Thisfunction convertsasinglebitstring valueto asingle hexstring. The resulting hexstring represents the
samevaueasthebitstring.

For the purpose of this conversion, abitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:

'‘0000B — '0'H, '0001'B — '1'H, '0010B — '2'H, '0011'B — '3'H, '0100'B — '4'H, '0101'B — '5'H,
'0110B — '6'H, '0111'B — '7'H, '1000B — '8'H, '1001'B — '9'H, '1010'B — '‘A'H, '1011'B — 'B'H,
'1100B — 'CH, '1101'B — 'D'H, '1110B — 'E'H, and '1111'B — 'FH.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digitsin the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2hex ('111010111'B)= '1D7'H

C.1.15 Bitstring to octetstring

bit2oct (in bitstring invalue) return octetstring

Thisfunction convertsasinglebitstring vaueto asingle octetstring. Theresulting octetstring
represents the same value asthebitstring.

For the conversion the following holds: bit2oct(val ue)=hex2oct(bit2hex(val ue)).

ETSI

254 ETSI ES 201 873-1 V4.4.1 (2012-04)

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2o0ct('111010111'B)= '01D7'0O

C.1.16 Bitstring to charstring

bit2str (in bitstring invalue) return charstring

Thisfunction convertsasinglebitstring vauetoasingle charstring. Theresulting charstring hasthe
same length asthebitstring and contains only the characters'0' and '1'.

For the purpose of thisconversion, abitstring shall be converted into acharstring. Each bit of the
bitstring isconverted into acharacter '0' or '1' depending on the value O or 1 of the bit. The consecutive order of
charactersin theresulting charstring isthe same asthe order of bitsinthebitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2str('1110101'B) will return "1110101"

C.1.17 Hexstring to integer
hex2int (in hexstring invalue) return integer
Thisfunction convertsasingle hexstring valueto asingle integer value.

For the purposes of this conversion, ahexstring shall beinterpreted as a positive base 16 integer value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values O to 15 respectively.

NOTE: Onreal test systemsthe integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.18 Hexstring to bitstring

hex2bit (in hexstring invalue) return bitstring

Thisfunction convertsasingle hexstring valueto asinglebitstring. Theresulting bitstring representsthe
same value asthe hexstring.

For the purpose of this conversion, ahexstring shall be converted into abitstring, where the hex digits of the
hexstring are converted in groups of bits as follows:

'O'H — '0000'B, 'I'H — '0001'B, '2’H — '0010'B, '3H — '0011'B, '4'H — '0100'B, '5'H — '0101'B,
'6'H — '0110B, '7'H — '0111'B, '8H — '1000B, '9'H — '1001'B, 'A'H — '1010B, 'B'H — '1011'B,
'CH — '1100B, 'D'H — '1101'B, 'E'H — '1110'B, and 'FH — '1111'B.

The consecutive order of the groups of 4 bitsin the resulting bitstring isthe same as the order of hex digitsin the
hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2bit ('1D7'H)= '000111010111'B

ETSI

255 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.19 Hexstring to octetstring

hex2oct (in hexstring invalue) return octetstring

Thisfunction convertsasingle hexstring valueto asingle octetstring. Theresulting octetstring
represents the same value asthe hexstring.

For the purpose of this conversion, ahexstring shall be converted into aoctetstring, wherethe
octetstring contains the same sequence of hex digits asthe hexstring when the length of the hexstring
modulo 2 is 0. Otherwise, the resulting octetstring contains 0 asleftmost hex digit followed by the same sequence
of hex digitsasinthe hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2oct ('1D7'H)= '01D7'0O

C.1.20 Hexstring to charstring

hex2str (in hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters'0' to '9'and ‘A’ to 'F'.

For the purpose of this conversion, ahexstring shall be converted into acharstring. Each hex digit of the
hexstring isconverted into a character '0'to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting charstring isthe same as the order of digitsin the
hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2str ('AB801'H) will return "AB8O1"

C.1.21 Octetstring to integer

oct2int (in octetstring invalue) return integer
Thisfunction convertsasingle octetstring vaueto asingle integer vaue.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

NOTE: Onred test systemstheinteger interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.1.22 Octetstring to bitstring

oct2bit (in octetstring invalue) return bitstring

Thisfunction convertsasingle octetstring vaueto asinglebitstring. Theresulting bitstring represents
the samevalue asthe octetstring.

For the conversion the following holds: oct2bit(value)=hex2hit(oct2hex(value)).

The general error causesin clause 16.1.2 apply.

ETSI

256 ETSI ES 201 873-1 V4.4.1 (2012-04)

EXAMPLE:

oct2bit ('01D7'0)='0000000111010111"'B

C.1.23 Octetstring to hexstring

oct2hex (in octetstring invalue) return hexstring

Thisfunction convertsasingle octetstring valueto asingle hexstring. The resulting hexstring represents
the samevalue asthe octetstring.

For the purpose of this conversion, aoctetstring shall be converted into ahexstring containing the same
sequence of hex digitsasthe octetstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2hex ('1D74'0)= '1D74'H

C.1.24 Octetstring to character string

oct2str (in octetstring invalue) return charstring

Thisfunction convertsan octetstring invalue to an charstring representing the string equivalent of the
input value. Theresulting charstring shall have the same length asthe incoming octetstring.

For the purpose of this conversion each hex digit of invalue isconverted into a character '0’, '1', '2', '3, '4', '5', '6', 7,
'8,'9,'A', 'B', 'C, 'D’, 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
charstring isthe same asthe order of hex digitsinthe octetstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2str('4469707379'0) = "4469707379"

C.1.25 Octetstring to character string, version Il

oct2char (in octetstring invalue) return charstring

Thisfunction convertsan octetstring invalue to acharstring. Theinput parameter invalue shal not
contain octet values higher than 7F. Theresulting charstring shall have the same length as the input
octetstring. Theoctets are interpreted as | TU-T Recommendation T.50 [4] codes (according to the IRV) and the
resulting characters are appended to the returned val ue.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2char ('4469707379'0) = "Dipsy"

NOTE: The character string returned may contain non-graphical characters, which cannot be presented between
the double quotes.

ETSI

257 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.26 Charstring to integer

str2int (in charstring invalue) return integer
Thisfunction convertsacharstring representing an integer valueto the equivalent integer.
In addition to the general error causesin clause 16.1.2, error causes are:
o invalue contains characters other than "0", "1, "2","3","4","5","6","7","8","9" and "-".
. invalue containsthe character "-" at another position than the leftmost one.

NOTE: Onreal test systemsthe integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:
str2int ("66") // will return the integer value 66
str2int ("-66") // will return the integer value -66
str2int ("6-6") // will cause an error
str2int ("abc") // will cause an error
str2int ("0") // will return the integer value 0

C.1.27 Character string to hexstring

str2hex (in charstring invalue) return hexstring
Thisfunction converts astring of thetype charstringto ahexstring. The string invalue shal containthe
IIOII, lllll, lI2Il, Il3ll, Il4ll, ll5ll, Il6ll, Il7ll, ll8ll, Il9ll, Ilall, Ilbll, "C", Ildll, Ilell Ilfll, IIAII, IIBII, IICII, " Dll, IIEII Or IIF!I graphical
characters only. Each character of invalue shall be converted to the corresponding hexadecimal digit. The resulting
hexstring will have the same length asthe incoming charstring.

In addition to the general error causesin clause 16.1.2, error causeiis:
. invalue contains characters other than specified above.

EXAMPLE:

str2hex ("54696E6B792D57696E6B7") = '54696E6B792D57696E6B7'H

C.1.28 Character string to octetstring

str2oct (in charstring invalue) return octetstring
Thisfunction converts a string of thetype charstringtoanoctetstring. Thestring invalue shall contain
the IIOII, Illll, lI2lI , ll3ll, Il4ll, Il5ll , ll6ll, Il7ll, Il8ll , lI9II , Ilall , n bll , IICII , Ildll, Ilell Ilfll, IIAII , n BII , IICII, n DII, n EII OI' n FII graphi Ca]
characters only. When the string invalue contains even number characters the resulting octetstring contains0
as leftmost character followed by the same sequence of charactersasinthe charstring.

lengthof (seeclause C.2.1 for theresulting octetstring will return half of lengtho£ of theincoming
charstring. In addition to the general error causesin clause 16.1.2, error causesis.

. invalue contains characters other than specified above.

EXAMPLE:
str2oct ("54696E6B792D57696E6B79") = '54696E6B792D57696E6B79'0
str2oct ("1D7")= '01D7'0

NOTE: The semantic of the str2oct function cause asymmetric behaviour:

oct2str(str2oct ("1D7"))// results the charstring value "01D7"

ETSI

258 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.1.29 Character string to float

str2float (in charstring invalue) return float

Thisfunction convertsacharstring comprising a number into a £1loat value. The format of the number in the
charstring shal follow rulesin clause 6.1.0, items @) or b) with the following exceptions:

. leading zeros are allowed,;

e leading "+" sign before positive valuesis allowed;

e "-0.0"isallowed;

0 no numbers after the dot in the decimal notation are allowed.
In addition to the general error causesin clause 16.1.2, error causes are:

e theformat of invalueis different than defined above.

NOTE: Onred test systemsthe float interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:
str2float ("12345.6") // 1s the same as str2float ("123.456E+02")
str2float ("1.6") // returns a float value equal to 1.6
str2float ("+001.") // returns a float value equal to 1.0
str2float ("+001") // returns a float value equal to 1.0
str2float ("-0.0") // returns a float value equal to -0.0

C.1.30 Enumerated to integer

enum2int (in Enumerated type inpar) return integer

This function accepts an enumerated value and returnsthe integer value associated to the enumerated value (see also
clause 6.2.4).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
}i

type enumerated MySecondEnumType {
Saturday (-3), Sunday (0), Monday
Vi

//within a dynamic language element:
var MyFirstEnumType vl FirstEnum := Monday;
var MySecondEnumType vl SecondEnum := Monday;

enum2int (vl _FirstEnum) // returns 0
enum2int (vl _SecondEnum) // returns 1

vl _FirstEnum := Wednesday;
vl_SecondEnum := Saturday;
enum2int (vl FirstEnum) // returns 2
enum2int (vl_SecondEnum) // returns -3

vl FirstEnum := Friday;
vl _SecondEnum := Sunday;
enum2int (vl FirstEnum) // returns 4
enum2int (vl _SecondEnum) // returns 0

ETSI

259 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.2 Length/size functions

C.2.1 Length of strings and lists

lengthof (in template (present) any string or list type inpar) return integer

This function returns the length of avalue or template that is of typebitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, or aray. Theunitsof length for each string
type are defined in table 4 in the main body of the present document.

For values or templates of record of or set of type, the value to be returned is the maximum of the minimal length
restriction value of the type, or O for types with no minimal length restriction, and the index of the last initialized
element plus 1.

The length value returned in case of length restricted string or list type shall be at least the minimum length according to
the type definition. In particular, the length of afixed length record of or set of vaue will aways be the fixed
length according to the type definition. For array values or templates, the value to be returned is the fixed length of the
corresponding record of type.

NOTE 1: Asin formal parameters does not allow passing in uninitialized values or templates, even in these cases
inpar will be at least partially initialized.

Thelength of anuniversal charstring shal be calculated by counting each combining character and hangul
syllable character (including fillers) on its own (see ISO/IEC 10646 [2], clauses 23 and 24).

When the function 1engtho £ is applied to string-type templates, inpar shal only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?' (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templates inpar shall match values of the same length only.
If inpar contains uninitialized elements, each of them shall be counted as 1 element, i.e. they shall be matched asiif
they contained the "?" (AnyElement inside value) matching character in case of binary strings or asif they werea"?"
(Match any character) character pattern for textual strings.

When the function 1engthof is applied to templates of record of or set of types, inpar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?* (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?* (AnyElement inside value) and "*"
(AnyElementsOrNone inside value), permutation and the length restriction matching attribute. The parameter inpar
shall only match values, for which the 1Lengtho £ function would give the same result. If inpar contains uninitialized
elements, each of them shall be counted as 1 element, i.e. they shall be matched asif they contained the " ?"
(AnyElement inside value) matching character.

NOTE 2: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account when determining the
return value.

In addition to the general error causesin clause 16.1.2, error causes are:

. inpar isastring-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body;

. inpar isarecord of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elementsin the template body.

NOTE 3: Onreal test systems the length calculation of inpar may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE 1. Using lengthof for values
lengthof ('010'B) // returns 3

lengthof ('F3'H) // returns 2

ETSI

260 ETSI ES 201 873-1 V4.4.1 (2012-04)

lengthof ('F2'0) // returns 1

lengthof (universal charstring : "Length of Example") // returns 17
// Given

type record length(0..10) of integer MyList;

var MyList MyListvar := { 0, 1, -, 2, - };

lengthof (MyListVar) ;
// returns 4 without respect to the fact, that the element MyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates

lengthof (charstring : "HELLO") // returns 5
lengthof (octetstring : ('12'0, '34'0)) // returns 1
lengthof ('1??1'B) // returns 4

lengthof (universal charstring : ? length(8)) // returns 8
lengthof ('1*F'H) // shall cause an error
lengthof ('1*F'H length (8)) // returns 8

lengthof (bitstring : ? length(2..infinity)) // shall cause an error

lengthof ('00*FF'O length(1..2)) // returns 2

lengthof ('1*49'H length(1l..2)) // shall cause an error

lengthof ('1'B length(3)) // shall cause an error

lengthof ('1*1'B length(10..20)) // shall cause an error
EXAMPLE 3

type record of integer RoOI;

template RoI tr roIl := { 1, permutation(2, 3), ? }
template RoI tr roI2 := {1, *, (2, 3) }

template RoI tr roI3 := { , 10 } length(5)
template RoI tr rol4 := { , 3, * } length(1..2)
template RoI tr roI5 { , 3, * } length(1..3)
lengthof (tr rolIl) // returns 4

lengthof (tr roI2) // shall cause an error
lengthof (tr roI3) // returns 5

lengthof (tr roI4) // shall cause an error

lengthof (tr roI5) // returns 3

C.2.2 Number of elements in a structured value

sizeof (in template (present) any record set type inpar) return integer
This function returns the actual number of elements of avalue or template of arecord or set type (see note).

Thefunction sizeof isapplicable to templates of record and set types. The function is applicable only if the sizeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

In addition to the general error causesin clause 16.1.2, error causes are;

e when inpar isatemplate and it can match values of different sizes.

ETSI

261

EXAMPLE:

// Given
type record MyPDU
{ ©boolean fieldl optional,
integer field2
}i

template MyPDU MyTemplate :=
{ fieldl := omit,
field2 := 5

bi

sizeof (MyTemplate); // returns 1

type set S {
integer f1,
bitstring f2 optional,
charstring f3 optional

}

template S tr S1 :
template S tr S2
template S tr S3
template S tr_S4 :

1 (0..99), f2 := omit, £f3 := ? }
3 := *, f1 := 1, £2 := '00'B ifpresent }
f1 := 1, f2 := omit, f3 := "ABC" }, { f1

O
[

// returns 2
// shall cause an error
// returns 2
// shall cause an error

sizeof
sizeof
sizeof
sizeof

tr_si
tr_s2
tr_s3

)
)
)
tr S4)

ETSI ES 201 873-1 V4.4.1 (2012-04)

:= 2, £3 := omit, f2 := '1'B })

C.3 Presence checking functions

C.3.1 The IsPresent function

ispresent (in template any type inpar) return boolean

Thisfunction is alowed for templates of all datatypes and returns:

. the value true if the data object reference fulfils the (present) template restriction as described in clause 15.8;

. the value false otherwise.

NOTE 1: When the argument of ispresent isasubfield of atemplate field to which the"?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This meansthat whenever ispresent (MyTemplate) F€tUrns true:

- MyTemplate Can safely be assigned to anon-optional field of the type of the template in atemplate

variable;

- MyTemplate Can safely be used as an actual template(present) parameter or assigned to a variable of

kind template(present).

The application of the i spresent function to a semantically correct data object reference shall never result in an
error, even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE:

// Given
type record MyRecord

record ({
boolean innerFieldl optional,
integer innerField2 optional,
MyRecord innerField3 optional
} fieldl optional,
integer field2
}

ETSI

262 ETSI ES 201 873-1 V4.4.1 (2012-04)

var MyRecord vl MyRecord := { fieldl := {}, field2 := 5 }
// type of fieldl is record with fields, therefore fieldl remains uninitialized
// after this assignment (no value is assigned to any of the fields of vl MyRecord.fieldl)

ispresent (vl MyRecord.fieldl) // returns false

vl _MyRecord.fieldl := omit

ispresent (vl MyRecord.fieldl) // returns false
// and therefore, vl MyRecord.fieldl.innerFieldl is an inaccessible reference

ispresent (vl MyRecord.fieldl.innerField3.field2) // shall return false because innerField3 is
// unintialized and therefore, vl MyRecord.fieldl.innerField3.field2 is an

// inaccessible reference

ispresent (vl MyRecord.fieldl.innerFieldl) // shall return false because fieldl is omitted
var template MyRecord vlt MyRecord := { fieldl := ?, field2 := 5 }

ispresent (vlt_MyRecord.fieldl) // returns true

ispresent (vlt_MyRecord.fieldl.innerFieldl) // returns false because fieldl is AnyValue

// (pls. note, that at expansion of fieldl the optional field innerFieldl obtains "*"

// that can match both a present and an omitted field

type record R { integer fl optional, integer f2 optional }

template R tl := {f1 := 1, f2 :=(2 .. 4) }
template R t2 := { f1 := omit, f2 := (5, 7) ifpresent }
template R t3 := {f1 := *, f2 :=? }

ispresent (t1.f1) // returns true
ispresent (t1.f2) // returns true
ispresent (t2.f1) // returns false
ispresent (t2.f2) // returns false
ispresent (t3.f1) // returns false

ispresent (t3.f2) // returns true

C.3.2 The IsChosen function

ischosen (in template any union_ type inpar) return boolean
Thisfunction is alowed for templates of all data types that are a union-field-reference. This function returns;

e thevalue true if and only if the data object reference specifies the variant of the union type that is actually
selected for a given data object;

. inal other cases false.

The function ischosen is applicable to templates of union types containing a specific value or avauelist. It returns
true if al the values matched by inpar havethe given field selected. Theresult is false if thereisanother field of
the union type on which i schosen would return true.

The application of the i schosen function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1:
type union U { integer fl, octetstring f2 }
template U t Ul := {f1 := 1}
template U t U2 := {f2 := ?}
template U t U3 := ?
template U t U4 := ({ f1 := 2 }, {f2 := 'AB'O })
template U t US := ({ £2 := '12?'0 }, { £2 := '%*34'0 length(2) })

ischosen(t_Ul.f1l) // returns true

ETSI

263

ischosen(t Ul.£f2) // returns false
ischosen(t _U2.f1l) // returns false
ischosen(t_U2.f2) // returns true
ischosen(t _U3.f1l) // returns false
ischosen(t_U3.f2) // returns false
ischosen(t U4.f1) // returns false
ischosen(t _U4.f2) // returns false
ischosen(t U5.f1) // returns false
ischosen(t_U5.f2) // returns true
type record R { U u optional }
template R t R1 := { omit }
ischosen(t R1.u.fl) // returns false

EXAMPLE 2:

// Given
type union MyUnion
{ PDU typel pl,
PDU_type2 P2,
PDU_type P3

}

// and given that MyPDU is a template of MyUnion type
// and received PDU is also of MyUnion type

// then

MyPort .receive (MyPDU) -> value received PDU

ischosen (received PDU.p2)

ETSI ES 201 873-1 V4.4.1 (2012-04)

// returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

C.3.3 The IsValue function

isvalue (in template any type inpar) return boolean;

Thisfunction is alowed for templates of all datatypes. The function shall return true, if inpar iscompletely
initialized and resolves to a specific value. If inpar isof record or set type, omitted optional fields shall be
considered asinitialized, i.e. the function shall also return true if optional fields of inpar are set to omit. The function

shall return £alse otherwise.

Thenull vaue assigned to default and component references shall be considered as concrete values.

The application of the i svalue function to a semantically correct data object reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simpletypes

template charstring ts char0 := "ABCD"; //template containing a specific value matching

template charstring tr charl := "AB?D"; //template containing a specific value matching
//note, that "?" is not a matching symbol in this case

template charstring tr char2 := pattern "ABCD"; //a pattern matching a single value only

template charstring tr char3 := pattern "AB?D"; //pattern matching

template charstring tr char4 := ("ABCD"); // template containing a specific value (expression)

template charstring tr char5 := ("ABCD","EFGH"); //a value list matching a single value only

isvalue (ts_char0); // shall return true

isvalue (tr_charl); // shall return true

isvalue (tr _char2); // shall return false

isvalue (tr _char3); // shall return false

isvalue (tr_char4); // shall return true similarly to e.g. isvalue((2)) shall return true

isvalue (tr_char5); // shall return false

ETSI

264

EXAMPLE 2: Special types

var default vl default := null;
isvalue (vl _default); // shall return true
EXAMPLE 3: Record/set types
type record MyRec (

integer fl1 optional,
integer f2 optional

}

var MyRec vl _MyRec;
var template MyRec vlt_ MyRec;

// shall return false
// shall return false

isvalue (vl _MyRec) ;
isvalue (vlt_MyRec) ;

vl MyRec := { f1 := 5, f2 := omit }

vlt MyRec := { f1 := ?, f2 := 5 }

isvalue (vl MyRec) ; // shall return true
isvalue (vl MyRec.f2); // shall return false;

isvalue (vlt _MyRec.fl); // shall return false

(
(
isvalue (vlt_MyRec) ; // shall return false
(
isvalue (vlt_MyRec.f2); // shall return true

vlt_MyRec.f2 := omit;

isvalue (vlt MyRec.f2); // shall return false

EXAMPLE 4: Uniontypes
type union MyUnion ({
integer chil,
integer ch2

}

template MyUnion ts MyUnion :=
template MyUnion tr MyUnion :

{ ch1
{ ch1

|
Ul
—

isvalue (ts_MyUnion) ; // shall return true

isvalue (tr MyUnion) ; // shall return false
isvalue (tr MyUnion.chl); // shall return false

// note, this is different from ischosen(tr MyUnion.chl)
// choice chl, while ischosen is checking if chl has been selected or not
isvalue (tr MyUnion.ch2); // shall return false

EXAMPLE5: Nested types

type record MyRecord {
MyUnion u optional

template MyRecord ts MyRecord := { u := ts MyUnion }
template MyRecord tr MyRecord := { u := tr MyUnion }
template MyRecord ts MyRecord2 := { u := omit }
isvalue (ts_MyRecord.u.chl); // shall return true
isvalue (tr MyRecord.u.chl); // shall return false
isvalue (tr MyRecord.u.ch2); // shall return false
isvalue (ts_MyRecord.u.ch2); // shall return false

C.3.4 The IsBound function

isbound (in template any type inpar) return boolean;

ETSI ES 201 873-1 V4.4.1 (2012-04)

as isvalue checks the content of the

Thisfunction is alowed for templates of all datatypes. The function shall return true, if inpar isat least partialy
initidlized. If inpar isof arecord or set type, omitted optional fields shall be considered asinitialized, i.e. the
function shall aso return true if a least one optiona field of inpar isset to omit. The function shall return false
otherwise. Inaccessible fields (e.g. non-selected alternatives of union types, subfields of omitted record and set types
or subfields of non-selected union fields) shall be considered as uninitialized, i.e. isbound shall return for them false.

ETSI

265 ETSI ES 201 873-1 V4.4.1 (2012-04)

Thenull vaue assigned to default and component references shall be considered as concrete values.

The application of the i sbound function to a semantically correct template reference shall never result in an error,
even if using the reference would normally cause a runtime error when being used e.g. in an expression.

EXAMPLE 1: Simpletypes

var template charstring vlt_char;

isbound (vlt_char) ; // shall return false as v_char is uninitialized;
vlt_char := "AB?D"; // template containing a specific value

isbound (v1lt_char) ; // shall return true

vlt _char := pattern "AB?D"; //template containing a pattern matching

isbound (v1lt_char) ; // shall return true

EXAMPLE 2: Special types

var default vl default := null;
isbound (vl _default) ; // shall return true

EXAMPLE 3: Record/set types

type record MyRec (
integer f1,
MyRec f2 optional

}

var MyRec vl _MyRec;

isbound (vl MyRec) ; // shall return false
vl MyRec.f2 := omit;
isbound (vl MyRec) ; // shall return true as vl MyRec is partially initialized,

// field f2 is set to omit

vl MyRec := { f1 := 5, f2 := omit }

isbound (vl MyRec) ; // shall return true as vl MyRec is completely initialized
isbound (vl MyRec.f2.f1l); // shall return false as vl MyRec.f2.fl is inaccessible
isbound (vl MyRec.f1/0); // shall cause an error already during evaluating the argument

// as division by zero is not allowed

type union MyUnion ({
integer chl,
MyRec ch2

}

var template MyUnion vlt MyUnion;

isbound (vlt_MyUnion) ; // shall return false, as vlt MyUnion is uninitialized

isbound (vlt_MyUnion.chl) ; // shall return false, as alternative chl is uninitialized
vlt MyUnion := { chl := 5 };

isbound (v1lt_ MyUnion) ; // shall return true

isbound (vlt_MyUnion.chl) ; // shall return true

isbound (vlt_MyUnion.ch2) ; // shall return false as the ch2 alternative is not selected
isbound (vlt_MyUnion.ch2.f1l); // shall return false as the field f1 is inaccessible

isbound (vlt_MyUnion.chl/0); // shall cause an error already during evaluating the argument

// as division by zero is not allowed

ETSI

266 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.4 String/list handling functions

C.4.1 The Regexp function

regexp (
in template (value) any character string type inpar,
in template (present) any character string type expression,
in integer groupno

) return any character string type

This function first matches the parameter inpar (or in case inpar isatemplate, its value equivalent)against the
expression inthe second parameter according to the pattern matching specified in clause B.1.5. If expression is
not a template containing a pattern matching mechanism, it shall be processed by this predefined function asif it wasa
character pattern as described in clause B.1.5.

If this matching is unsuccessful, an empty string shall be returned.

If this matching is successful, the substring of inpar shall be returned, which matched the groupno-s group of
expression during the matching. Group numbers are assigned by the order of occurrences of the opening bracket of
agroup and counted starting from 0 by step 1.

The parameters inpar and expression shal beavalue or atemplate of charstring or universal
charstring types. In case inpar isatemplate, it shall contain the specific value matching mechanism only. The
type of expression shall beuniversal charstring only whenthetype of inpar isuniversal
charstring. When expression isatemplateit shall contain the specific value or pattern matching mechanisms
only. The parameter groupno shall be a non-negative integer. The type of the character string returned is the root type
of inpar.

NOTE: Thisfunction differs from other well-known regular expression matching implementations in that:
a) It must match the whole inpar string instead of only a substring.

b) It starts counting groups from 0, while in some other implementations the first group is referenced
by 1 and the whole substring matched by the expression is referenced by 0.

In addition to the general error causesin clause 16.1.2, error causes are:
e when inpar isatemplate, it contains other matching mechanism than specific value or character pattern;

. when expression isatemplate, it contains other matching mechanism than specific value or character
pattern;

. inpar isof charstring type and expression isof universal charstring type;
. groupno isanegative integer;
. thereisno groupno -sgroup in expression.

EXAMPLE:

// Given
var charstring myInput := " simple text for a regexp example ",
var charstring myString;

myString := regexp (myInput,charstring:"?+ (text)?+",0) //will return "text"
myString := regexp (myInput,charstring:"?+(text)?+",1) //causes an error as there is
//no group with index 1
myString := regexp (myInput,charstring:" (?+) (text) (?+)",0) //will return " simple "
myString := regexp (myInput,charstring:" (?+) (text) (?+)",2) //will return
//" for a regexp example "
myString := regexp (myInput,charstring:" ((?+) (text) (?+))",0) //will return the whole inpar,
//i.e. " simple text for a regexp example "
myString := regexp (myInput,charstring:" (([]+) (text) (?+))",0) //will return an empty string

//as expression does not matches inpar

ETSI

267 ETSI ES 201 873-1 V4.4.1 (2012-04)

myString := regexp (myInput,universal charstring:"?+ (text)?+",0) //will cause an error as
// inpar is of type charstring, while
// expression is of type universal charstring

myInput := " date: 2001-10-20 ; msgno: 17; exp "

var template charstring myPattern := pattern"([/tJ#(,)date:[\d\-1#(,);[t]#(,)msgno: (\d#(1,3)); (exp)#(0,1))"
//please note, that only the very first opening bracket and the bracket before "\d" denotes

// groups; "#(,)", "#(1,3)" and "#(0,1)" denotes matching the preceding expression several time

myString := regexp (myInput, myPattern,l) //will return the value "17".

//An example of a wrapper function to count groups from 1 and return the complete p inpar
//if p_groupno equals 0
function regexpoO (
in template charstring p_inpar,
in template charstring p expression,
in integer p groupno)
return charstring {
var template charstring extended expr := pattern " ({p expression})";
return regexp(p inpar, extended expr, p_groupno)

)
C.4.2 The Substring function

substr (
in template (present) any string or sequence_type inpar,
in integer index,
in integer count

) return input string or sequence_type

This function returns a substring or subsequence from avalue that is of abinary string type (bitstring,
hexstring, octetstring), acharacter string type (charstring, universal charstring), Or asequence
type (record of, set of or array). Thetype of the substring or subsequence returned is the root type of the input
parameter. The starting point of substring or subsequence to return is defined by the second parameter (index).
Indexing starts from zero. Thethird input parameter (count) defines the length of the substring or subsequence to be
returned. The units of length for string types are as defined in table 4 of the present document. For sequence types, the
unit of length is element.

NOTE: Please note that the root types of arraysisrecord of, thereforeif inpar isan array the returned type
isrecord of. This, in same cases, may lead to different indexing in inpar and in the returned value.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed in inpar and the function shall return the character representation of the matching
mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is atemplate of binary string or
sequence type or is an array, only the specific value and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

In addition to the general error causesin clause 16.1.2, error causes are:
. index islessthan zero;
o count islessthan zero;
. index+count isgreater than lengthof(inpar);

. inpar isatemplate of acharacter string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

. inpar isatemplate of abinary string or sequence type or array and it contains other matching mechanism as
specific value and AnyElement;

. inpar isatemplate of abinary string or sequence type or array and the substring or subsequence to be
returned contains the AnyElement matching mechanism.

EXAMPLE:

substr ('00100110'B, 3, 4) // returns '0011'B

ETSI

268 ETSI ES 201 873-1 V4.4.1 (2012-04)

substr ('ABCDEF'H, 2, 3) // returns 'CDE'H
substr ('01AB23CD'O, 1, 2) // returns 'AB23'0
substr ("My name is JJ", 11, 2) // returns "JJ"

substr({ 4, 5, 6 }, 1, 2) // returns {5, 6}

C.4.3 The Replace function

replace (
in any string or sequence_type inpar,
in integer index,
in integer len,
in any string or sequence_type repl
) return any string or sequence type

This function replaces the substring or subsequence of value inpar at index index of length 1en with the string or
sequence value repl and returns the resulting string or sequence. inparshall not be modified. If 1en is 0 the string
or sequence repl isinserted. If index is0, repl isinserted at the beginning of inpar. If index is

lengthof (inpar), repl isinserted at the end of inpar. inparand repl, and the returned string or sequence
shall be of the same root type. The function replace can be applied tobitstring, hexstring, octetstring, or
any character string, record of, set of, or arrays. Note that indexing in strings starts from zero.

NOTE: Please note that the root types of arraysisrecord of, thereforeif inpar or repl or both are an
array, thereturned typeisrecord of. This, in same cases, may lead to different indexing in inpar
and/or repl and in the returned value.

In addition to the general error causesin clause 16.1.2, error causes are:
. inpar or repl arenot of string, record of, set of, or array type;
. inpar and repl are of different root type;
. index islessthan 0 or greater than lengthof (inpar);
. len islessthan 0 or greater than lengthof (inpar) ;
. index+1len isgreater than lengthof (inpar).

EXAMPLE:

replace ('00000110'B, 1, 3, '111'B) // returns '01110110'B

replace ('ABCDEF'H, 0, 2, '1l23'H) // returns '123CDEF'H
replace ('01AB23CD'O, 2, 1, 'FF96'0) // returns '01ABFF96CD'O
replace ("My name is JJ", 11, 1, "xx") // returns "My name is xxJ"
replace ("My name is JJ", 11, 0, "xx") // returns "My name is xxJJ"
replace ("My name is JJ", 2, 2, "x") // returns "Myxame is JJ",
replace ("My name is JJ", 12, 2, "xx") // produces test case error
replace ("My name is JJ", 13, 2, "xx") // produces test case error
replace ("My name is JJ", 13, 0, "xx") // returns "My name is JJxx"

ETSI

269 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.5 Codec functions

C.5.1 The encoding function

encvalue (in template (value) any type inpar) return bitstring

The encvalue function encodes avalue or template into a bitstring. When the actual parameter that is passed to
inpar isatemplate, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of inpar, however, the TTCN-3 test system need not
make any check on its correctness.

In addition to the general error causesin clause 16.1.2, error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actua type of
inpar).

C.5.2 The decoding function

decvalue (inout bitstring encoded value, out any type decoded value) return integer

Thedecvalue function decodes abitstring into avalue. The test system shall suppose that the bitstring
encoded_value represents an encoded instance of the actua type of decoded value.

If the decoding was successful, then the used bits are removed from the parameter encoded_value, therestis
returned (in the parameter encoded_value), and the decoded value isreturned in the parameter decoded_value.
If the decoding was unsuccessful, the actual parametersfor encoded value and decoded_value are not
changed. The function shall return an integer value to indicate success or failure of the decoding below:

. The return value 0 indicates that decoding was successful.
e Thereturnvaue 1 indicates an unspecified cause of decoding failure.

e Thereturnvalue 2 indicates that decoding could not be completed as encoded_value did not contain
enough bits.

The restrictionsin clause 16.1.2 apply. If any of these restrictionsis applicable, the return value shall be 1.

C.6 Other functions

C.6.1 The random number generator function

rnd([in float seed]) return float

Thernd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value (a numerical float value). If no new seed is provided, the last
generated number will be used as seed for the next random number. Without a previous initiaization a value calculated
from the system time will be used as seed value when rnd isused thefirst time.

Each timethe rnd function isinitialized with the same seed value, it shall repeat the same sequence of random
numbers.

To produce a random integers in a given range, the following formula can be used:

float2int (int2float (upperbound - lowerbound +1)*rnd()) + lowerbound
// Here, upperbound and lowerbound denote highest and lowest number in range.

In addition to the general error causesin clause 16.1.2, error causes are:

U seed iSinfinity, -infinity Ornot a number.

ETSI

270 ETSI ES 201 873-1 V4.4.1 (2012-04)

C.6.2 The testcasename function

testcasename () return charstring
The testcasename function shall return the unqualified name of the actually executing test case.

EXAMPLE 1:
module MyTCModule {
testcase MyTestCasel () runs on MTC system TSI

{

var charstring v_TCname := testcasename ();
// will return the charstring "MyTestCasel"

}

testcase MyTestCase2 () runs on MTC system TSI

(
?

module MyTSModule {
function MyStartAPTC() runs on PTC
var charstring v_TCname := testcasename ();
// will return charstring "MyTestCasel", if the function is
// called by a test component during the execution of MyTestCasel

// will return charstring "MyTestCase2", if the function is
// called by a test component when MyTestCase2 is being executed

}

When the function testcasename is called if the control part is being executed but no testcase, it shall return the
empty string.

EXAMPLE 2:
module MyModule {

control

{

var charstring v_TCname := testcasename () // will return charstring ""

}

The general error causesin clause 16.1.2 apply.

ETSI

271 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex D (normative):
Preprocessing macros

This annex defines a set of preprocessing macros. A preprocessing macro isamacro that is replaced by a preprocessor
or acompiler withacharstring or integer value respectively before compilation. Preprocessing macros shall not
be replaced inside literal charstring values and templates and not in TTCN-3 comments. In the TTCN-3 code, it
can beused likeacharstring or an integer value respectively.

D.1 Preprocessing macro _ MODULE_

The MODULE _ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler shall replace all occurrencesof MODULE___ with the actual module name in form of acharstring value.

D.2 Preprocessing macro _ FILE_

The FILE preprocessing macro denotes the canonical (absolute) file name, i.e. the full path and the basic file
name, in which the macro is used. A preprocessor or compiler shall replace all occurrencesof ~ FILE with the
actual canonical (absolute) file namein form of acharstring value.

NOTE: Theformat of the canonical file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= _ FILE ;
//MyConst is for example "/home/myhome/MyTest.ttcn"

D.3 Preprocessing macro _ BFILE

The BFILE _ preprocessing macro denotes the basic (relative) file name, i.e. without path, in which the macro is
used. A preprocessor or compiler shall replace all occurrencesof BFILE with the actual basic (relative) file name
inform of acharstring value.

NOTE: Theformat of the basic file name depends on the operating system and is not specified by the present
document.

EXAMPLE:

const charstring MyConst:= _ BFILE ;
// MyConst is for example "MyTest.ttcn"

D.4 Preprocessing macro __ LINE_

The LINE preprocessing macro denotes the line number of the file in which the macro is used. A preprocessor or
compiler shall replace each occurrence of LINE _ with the actual line number in form of an integer value.

A file starts with line number 1. Each newline shall increase the line number by 1 (see clause A.1.5.1). Also newlines
of commented lines shall increase the line number by 1.

ETSI

272 ETSI ES 201 873-1 V4.4.1 (2012-04)

D.5 Preprocessing macro _ SCOPE___

The SCOPE__ preprocessing macro denotes the unqualified name of the lowest named basic scope unit in which the
macro is used. According to clause 5.2, basic scope units of TTCN-3 are module definitions part, module control part,
component types, functions, altsteps, test cases, statement blocks, templates and user defined named types. Statement
blocks have no name and therefore, a SCOPE__ preprocessing macro used in a statement block refersto the next
higher named basic scope unit.

A preprocessor or compiler shall replace all occurrencesof SCOPE_ with acharstring value which includes:
a) the module name, if the lowest named scope unit is the modul e definitions part;
b) “control", if thelowest named scope unit isthe module control part;
Cc) acomponent type name, if the lowest named scope unit is a component type definition;
d) atest case name, if the lowest named scope unit is atest case definition;
€) an dtstep name, if the lowest named scope is an atstep definition;
f) afunction name, if the lowest named scope is a function definition;
g) atemplate name, if the lowest named scope is atemplate definition (local or global); or
h) thetype name, if the lowest named scope is a user defined named type definition.

NOTE: The SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions or names of global constants.

EXAMPLE 1. Using ___SCOPE__ in constant and template definitions

module MyModule

{

const charstring MyConst := _ SCOPE__ ; // MyConst contains "MyModule"
template charstring MyTemplate := _ SCOPE__ ; // MyTemplate contains "MyTemplate"

type record MyRecordl

{

charstring fieldll,
charstring fieldl2

}

template MyRecordl MyTemplatel (charstring p := _ SCOPE) :=
fieldll := p,
fieldl2 := _ SCOPE__ // fieldl2 contains "MyTemplatel"

}

function MyFunction() {
var template MyRecordl v_Myvarl := MyTemplatel;
// fieldll of MyTemplatel will contain the default value of parameter p,
// i.e. "MyTemplatel"
}i
}

EXAMPLE 2: Using__ SCOPE__inastructured type scope

type record MyRecord2 ({
charstring field21l,

charstring field22 ("a", "b", _ SCOPE_)
// list constrained field: a legal values are "a", "b" or "MyRecord2"
}
template MyRecord2 MyTemplate2 := {
field21l := "a",
field22 := "MyRecord2" // a valid specific value matching

ETSI

273 ETSI ES 201 873-1 V4.4.1 (2012-04)

template MyRecord2 MyTemplate3 := {
field21l := "a",
field22 := _ SCOPE___

// Causes an error as _ SCOPE__ is replaced with "MyTemplate3",
// which is violating the list constraint of field22

1
EXAMPLE 3: Using__ SCOPE__ in an embedded structured type scope

type record MyRecord3 ({
charstring field31l,

record ({

charstring field321 ("a", "b", _ SCOPE_)

// list constrained field: a legal value shall be "a", "b" or "MyRecord3"
} fields2

}

template MyRecord3 MyTemplate4 :=

{

field31l := "a",
field32

{
}

field321 := "MyRecord3" // a valid specific value matching

}

template MyRecord3 MyTemplate5 :=

field31l := "a",

field32 :=

{
field321 := _ SCOPE__
// Causes and error as _ SCOPE__ is replaced with "MyTemplate5",
// which is violating the list constraint of field321

ETSI

274 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to this library are to be unique within the whole language and within the library (i.e. are not to be
one of the names defined in annex C). Names defined in this library are not to be used by TTCN-3 users asidentifiers of
other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types support integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned type.
The value notation for these types is the same as the value notation for the integer type. Values of these types are to be
encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byte (-128 .. 127) with { variant "8 bit" };

type integer unsignedbyte (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types is the same as the value notation for the integer type. Values of these
types are to be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsignedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

275 ETSI ES 201 873-1 V4.4.1 (2012-04)

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to

4 294 967 295 for the unsigned type. The value notation for these types is the same as the value notation for the integer
type. Values of these types are to be encoded and decoded as they were represented on four bytes within the system
independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer long (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsignedlong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these typesis the same
as the value notation for the integer type. Values of these types are to be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer longlong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsignedlonglong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 IEEE 754 floats

These types support the ANSI/IEEE 754 [6] for binary floating-point arithmetic. The type |IEEE 754 [6] float supports
floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type |EEE 754 [6]
double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and a sign bit. The type
|EEE 754 [6] ext £ loat supports floating-point numbers with base 10, minimal exponent of size 11, minimal
mantissa of size 32 and asign bit. The type IEEE 754 [6] extdouble supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and a sign hit.

Values of these types are to be encoded and decoded according to the IEEE 754 [6] definitions. The value notation for
these types is the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type float IEEE754float with { variant "IEEE754 float" };
type float IEEE754double with { variant "IEEE754 double" };
type float IEEE754extfloat with { variant "IEEE754 extended float" };
type float IEEE754extdouble with { variant "IEEE754 extended double" };

ETSI

276 ETSI ES 201 873-1 V4.4.1 (2012-04)

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 typeuniversal charstring (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of thistype are entirely
(e.0. each character of the value individually) to be encoded and decoded according to the UCS Transformation Format
8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2]. The value notation for thistype is the same as the value
notation for theuniversal charstring type.

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of |SO/IEC 10646 [2]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype are entirely (e.g. each character of the value
individually) to be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [2]). The value notation for this type is the same as the value notation for theuniversal
charstring type.

NOTE: Thetype"bmpstring" supports a subset of the TTCN-3 typeuniversal charstring.

The type definition for thistypeis:

type universal charstring bmpstring (char (0,0,0,0) .. char (0,0,255,255))
with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
I|SO/IEC 10646 [2]). Its distinguished values are zero, one, or more characters from this set. Values of thistype are
entirely (e.g. each character of the value individually) to be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [2]. The value notation for thistype is the same as the
value notation for theuniversal charstring type

NOTE: Thetype"utf16string” supports a subset of the TTCN-3 typeuniversal charstring.

The type definition for thistypeis:

type universal charstring utfléstring (char (0,0,0,0) .. char (0,16,255,255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 10646 character string "iso8859string"

Thistype supports al charactersin al aphabets defined in the multiparty standard | SO/IEC 10646 [2]. Its distinguished
values are zero, one, or more characters from the |SO/IEC 10646 [2] character set. Values of thistype are entirely

(e.g. each character of the value individually) to be encoded and decoded according to the coded representation as
specified in ISO/IEC 10646 [2] (an 8-bit coding). The value notation for this type is the same as the value notation for
theuniversal charstring type.

NOTE 1. Thetype "iso8859string" supports a subset of the TTCN-3 typeuniversal charstring.

NOTE 2: Ineach ISO/IEC 10646 [2] aphabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the ITU-T Recommendation T.50 [4] character set. Hence all extra language specific
characters are defined for the upper part of the character table only (positions 10/00 to 15/15).

ETSI

277 ETSI ES 201 873-1 V4.4.1 (2012-04)

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

E.2.2.4 Status values for TTCN-3 objects

Type and constants defined in this clause support the secure usage of the checkstate port operation defined in
clause 22.5.5.

The type definition for thistypeis:

type charstring objState ("Started", "Halted", "Stopped", "Connected", "Mapped", "Linked");

Useful constant definitions for working with object states are:

const objState STARTED := "Started";
const objState HALTED := "Halted";

const objState STOPPED := "Stopped";
const objState CONNECTED := "Connected";
const objState MAPPED := "Mapped";

const objState LINKED := "Linked";

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.10].
It is specified by an integer part, adecimal point and a fraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digitsis stored in "digits' and the size of the fraction part is given
in"scale'. Thedigitsitself are stored in "value_". Value notation for this type is the same as the value notation for the
record type. Vaues of thistype are to be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for thistypeis:
type record IDLfixed {
unsignedshort digits,

short scale,
charstring value_

}

with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single ITU-T Recommendation T.50 character type

A type whose distinguished values are single characters of the version of ITU-T Recommendation T.50 [4] complying
to the International Reference Version (IRV) as specified in clause 8.2 of ITU-T Recommendation T.50 [4] (see also
note 1 to clause 6.1.1).

The type definition for thistypeis:

type charstring charé646 length (1);

NOTE: The specia string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.

ETSI

278 ETSI ES 201 873-1 V4.4.1 (2012-04)

E.2.4.2 Single universal character type
A type whose distinguished values are single characters from | SO/IEC 10646 [2].

The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Specia strings defined in clause 27.5 except "8 bit" may be used with this type to specify agiven
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type
A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1);

E.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

E.2.4.5 Single octet type
A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

279 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex F (informative):
Operations on TTCN-3 active objects

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

the states being named and identified as nodes;

theinitial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows,

e transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/":

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as aresulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [1]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [1] the latter takes precedence.

F.1 Test components

F.1.1 Test component references

Variables of test component types, the sel £ and mtc operations are used to reference test components. The start,
stop, done and running operations are not directly applied on test components but on component references. The
test system has to decide if the operation requested should affect the component object itself or other action is
appropriate (e.g. an error occurs when the reference of a stopped PTC isused in a component start operation). The
create operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to a test
component variable. The behaviour related to test component variables themselvesis shown in figure F.1.

ETSI

280 ETSI ES 201 873-1 V4.4.1 (2012-04)

done/error killed/error

variable running/error alive/error
declaration stop/error kill/error
start/error
Uninitialized N Error

(see note)

/—("assignment of the return value of create"/"references created test component

"assignment of the return value of create"/"references created
test component” (and "looses the previous reference’)

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or dive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their
dynamic behaviour is shown in figure F.2.

create/creation of anon-alive PTC
start/"component executes function"

done/no match killed/no match
running/true aliveltrue

/—("run-time error"/error

Error

(see note 3)

done/no match killed/no match
running/false aliveltrue

stop/"component terminates” (senote 2a)
kill/"component terminates’ (see note 2b)

stop/"component terminates” (see note 1a)
kill/"component terminates” (see note 1b)
"return from function"/" component terminates’
"completion of function"/"component terminates’

start/error

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false aliveffalse

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system
(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

281 ETSI ES 201 873-1 V4.4.1 (2012-04)

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shownin
figure F.3.

create alive/creation of an dive PTC

done/no match killed/no match
runningfalse aliveltrue

stop/"component stops” (see note 2a)
start/"component executes function”

done/no match killed/no match

kill/" component terminates” (see note 2b) +\
runningtrue aliveltrue

kill/"component terminates” (see note 1b) run-time error"/error

Error

(see note 3)

start/"component
executes function”

stop/"component stops” (see note 12)

"return from function"/"component terminates"

"completion of function"/"component terminates’ stop/null (seenote 22
done/match

killed/no matc

runningfalse

aliveftrue

stop/null (see note 2a)
Kill/null (see note 2b)

done/match Stopped

killed/match <

running/false \1))

alivelfalse kill/"component terminates” (see note 2b) start/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system
(in error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

282 ETSI ES 201 873-1 V4.4.1 (2012-04)

F.1.3 Dynamic behaviour of the MTC
The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"creates the MTC" and "starts the testcase”

(see note 3)

stop/"component terminates’ (see note 1a)
kill/"component terminates” (see note 1b)
"completing of the test case"/" component terminates"

done/no match killed/no match
running/true aliveltrue

start/error

stopfrom another component/error
kill from another component/er ror
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system

(in error cases).
NOTE 2: All remaining PTCs are to be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict,
the test case terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

ETSI

283 ETSI ES 201 873-1 V4.4.1 (2012-04)

F.2 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure F.5.

Test component timers: "component created"”;
Other local timers: "testcase, function, altstep,
statement block entered or default activated"

stop/null
running/false
read/0.0
timeout/no match

stop/stop timer

timeout/match
stop/null

start/"timer starts with
non-negative duration”

start/"timer starts with non-negative duration"

N
start/"timer restarts with non-negative duration

running/true
read/elapsed time
timeout/no match

Running

(seenote 1)

(timer expiry)/null

running/false
read/0.0

(see note 3)

(see note 2)

start with negative duration/error

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.

NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state,
assigns a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.3 Ports

Ports can be in Started or Stopped state. As their behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop and clear) and of communication operations (i.e. send, receive, cal, getcall,
raise, catch, reply, getreply and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

F.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map and unmap) are indifferent to the state of the port. They
show the behaviour shown in figure F.6.

ETSI

284 ETSI ES 201 873-1 V4.4.1 (2012-04)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "remove thislink" else null

create/"creates

test component™
(see note 1)

Error connect/if ("illegal connection") then error

(seenote 2) map/if ("illegal connection") then "store link to other port" error
connect/if ("legal connection™)

then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

F.3.2 Port Controlling Operations

The results of port controlling operations are shown in figure F.7.

create/"creates

test component"
(see note)

clear/"clears queue"
start/"clears queue”

halt/"puts halt marker
at the end of the queue”

ﬂ stop/null

start/"clears queue" and A start/"clears queue"

"removes halt maker"
halt/"puts halt
marker at the

top of the queue"

clear/"clears queue"
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue”
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

285 ETSI ES 201 873-1 V4.4.1 (2012-04)

F.3.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shownin

figure F.8.

receive/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue"
elseno match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue”
elseno match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if ("unique receiver") then "transmit" (see note 2)
receiveif ("top queue element matches")
then match and "remove from queue"
elseno match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue"
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue"
else no match
raisef/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
elseno match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(see note 1)

send/if ("ambiguous" or "no receiver") error (seenote 2)
call/if ("ambiguous" or "no receiver") error (seenote2)

reply/if ("ambiguous' or "no receiver") error (seenote 2)
raise/if ("ambiguous' or "no receiver") error (seenote 2)

Error

(see note 3)

send/error
call/error
replylerror
raiselerror
receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

286 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

Previous versions of the present document (up to and including V2.2.1) required to use a group-like syntax shown in the
example below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave atime period for tool providers
and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the standard.

EXAMPLE (superfluous syntax):

module MyModuleWithParameters

{
modulepar { integer TS Par0, TS Parl := 0;
boolean TS Par2 := true
n}.

modulepar { hexstring TS Par3 };

}

G.2 Recursive import

Previous versions of the present document (up to and including V2.2.1) allowed to import named definitionsimplicitly,
viaimporting other definitions of the same module using them in a recursive mode. Thisfeature is deprecated and
may be fully removed in a future edition of the standard.

G.3 Using all in port type definitions

Previous versions of the present document (up to and including V2.2.1) allowed to use the a1l keyword in port type
definitions instead of an explicit list of types and signatures allowed via the given port. This feature is deprecated and
may be fully removed in a future edition of the standard.

G.4 sizeof for length of lists

Previous versions of the present document (up to and including V3.2.2) alowed to use the built-in function sizeof to
compute the length of record of, set of, and array. Thishasbeen replaced by 1lengthof. The use of
sizeof for list like typesis deprecated and is planned to be fully removed in the next published edition.

G.5 sizeoftype predefined function

The previous version of the present document (up to and including V3.3.1) defined the sizeoftype predefined
function. This feature is deprecated in this version of the standard and may be fully removed in the next published
edition.

G.6 Mixed ports

Previous versions of the present document (up to and including V3.2.2) allowed to usemixed ports. Thisfeatureis
deprecated and may be fully removed in a future edition of the standard.

ETSI

287 ETSI ES 201 873-1 V4.4.1 (2012-04)

G.7 External constants

Previous versions of the present document (up to and including 3.4.1) allowed to use external constants. This
feature is deprecated and may be fully removed in a future edition of the standard.

G.8 Prefixing enumerated values

Previous versions of the present document (up to and including V4.2.1) did not explicitly specify how to resolve name
conflicts between imported enumerated values and global names defined in the importing or in another TTCN-3
module. Some tool implementations resolved thisissue by allowing prefixing enumerated values with the name of the
module in which the given enumerated type is defined. Version 4.3.1 added in clause 8.2.3.1 arule to resolve such
name clashes, therefore prefixing enumerated values is deprecated.

G.9 Record of/arrays not compatible to record; set of not
compatible with set

Previous versions of the present document (up to and including V4.3.1) did define specia cases when record of types
and single-dimension arrays would be compatible with record types. These rules are deprecated.

ETSI

288 ETSI ES 201 873-1 V4.4.1 (2012-04)

Annex H (informative):
Bibliography

. ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language”, 2001.

o ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language", 2003.

o ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2005.

. ETSI ES201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language”, 2007.

. ETSI ES201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language", 2008.

o ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", 2008.

. ETSI ES201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2009.

. ETSI ES201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language”, 2010.

. ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, 2011.

ETSI

289

ETSI ES 201 873-1 V4.4.1 (2012-04)

History
Document history

V111 March 2001 Publication

V112 June 2001 Publication

V221 February 2003 Publication

V311 June 2005 Publication

V321l February 2007 Publication

V3.3.2 April 2008 Publication

Vv34.1 September 2008 | Publication

V4.1.1 June 2009 Publication

V421 July 2010 Publication

V4.3.1 June 2011 Publication

V4.4.0 February 2012 Membership Approval Procedure MV 20120401: 2012-02-01 to 2012-04-02
V441 April 2012 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	5.5 Cyclic Definitions

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Subtyping of basic types
	6.1.2.1 Lists of templates
	6.1.2.2 Lists of types
	6.1.2.3 Ranges
	6.1.2.4 String length restrictions
	6.1.2.5 Pattern subtyping of character string types
	6.1.2.6 Mixing subtyping mechanisms
	6.1.2.6.1 Mixing patterns, lists and ranges
	6.1.2.6.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions
	6.2.3.2 Referencing elements of record of and set of types

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT
	6.2.13 Subtyping of structured types
	6.2.13.1 Length subtyping of record ofs and set ofs
	6.2.13.2 List subtyping of structured types and anytype
	6.2.13.3 Subtyping of the iterated type of record ofs and set ofs
	6.2.13.4 Mixing subtyping mechanisms

	6.3 Type compatibility
	6.3.1 Compatibility of non-structured types
	6.3.2 Compatibility of structured types
	6.3.2.1 Compatibility of enumerated types
	6.3.2.2 Compatibility of record and record of types
	6.3.2.3 Compatibility of set and set of types
	6.3.2.4 Compatibility of union types
	6.3.2.5 Compatibility of anytype types
	6.3.2.6 Compatibility between sub-structures

	6.3.3 Compatibility of component types
	6.3.4 Type compatibility of communication operations
	6.3.5 Type conversion

	6.4 Type synonym

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	7.2 Field references and list elements

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules
	8.2.3.7 Importing of import statements from TTCN-3 modules
	8.2.3.8 Compatibility of language specifications in imports

	8.2.4 Definition of friend modules
	8.2.5 Visibility of definitions

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements
	15.6.4 Referencing signature parameters

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation
	15.11 Concatenating templates of string and list types

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select case statement
	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement
	19.14 Statement block

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test case operations
	21.2.1 Test case stop operation

	21.3 Test Component Operations
	21.3.1 The Create operation
	21.3.2 The Start test component operation
	21.3.3 The Stop test behaviour operation
	21.3.4 The Kill test component operation
	21.3.5 The Alive operation
	21.3.6 The Running operation
	21.3.7 The Done operation
	21.3.8 The Killed operation
	21.3.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation
	22.5.5 The Checkstate port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.5.1 Use of whitespaces and newlines

	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions
	A.1.6.1.13 Friend module definitions

	A.1.6.2 Control part
	A.1.6.3 Local definitions
	A.1.6.3.1 Variable instantiation
	A.1.6.3.2 Timer instantiation

	A.1.6.4 Operations
	A.1.6.4.1 Component operations
	A.1.6.4.2 Port operations
	A.1.6.4.3 Timer operations
	A.1.6.4.4 Testcase operation

	A.1.6.5 Type
	A.1.6.6 Value
	A.1.6.7 Parameterization
	A.1.6.8 Statements
	A.1.6.8.1 With statement
	A.1.6.8.2 Behaviour statements
	A.1.6.8.3 Basic statements

	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Template list
	B.1.2.2 Complemented template list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet
	B.1.2.8 Omitting optional fields

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Conversion functions
	C.1.1 Integer to character
	C.1.2 Integer to universal character
	C.1.3 Integer to bitstring
	C.1.4 Integer to enumerated
	C.1.5 Integer to hexstring
	C.1.6 Integer to octetstring
	C.1.7 Integer to charstring
	C.1.8 Integer to float
	C.1.9 Float to integer
	C.1.10 Character to integer
	C.1.11 Character to octetstring
	C.1.12 Universal character to integer
	C.1.13 Bitstring to integer
	C.1.14 Bitstring to hexstring
	C.1.15 Bitstring to octetstring
	C.1.16 Bitstring to charstring
	C.1.17 Hexstring to integer
	C.1.18 Hexstring to bitstring
	C.1.19 Hexstring to octetstring
	C.1.20 Hexstring to charstring
	C.1.21 Octetstring to integer
	C.1.22 Octetstring to bitstring
	C.1.23 Octetstring to hexstring
	C.1.24 Octetstring to character string
	C.1.25 Octetstring to character string, version II
	C.1.26 Charstring to integer
	C.1.27 Character string to hexstring
	C.1.28 Character string to octetstring
	C.1.29 Character string to float
	C.1.30 Enumerated to integer

	C.2 Length/size functions
	C.2.1 Length of strings and lists
	C.2.2 Number of elements in a structured value

	C.3 Presence checking functions
	C.3.1 The IsPresent function
	C.3.2 The IsChosen function
	C.3.3 The IsValue function
	C.3.4 The IsBound function

	C.4 String/list handling functions
	C.4.1 The Regexp function
	C.4.2 The Substring function
	C.4.3 The Replace function

	C.5 Codec functions
	C.5.1 The encoding function
	C.5.2 The decoding function

	C.6 Other functions
	C.6.1 The random number generator function
	C.6.2 The testcasename function

	Annex D (normative): Preprocessing macros
	D.1 Preprocessing macro __MODULE__
	D.2 Preprocessing macro __FILE__
	D.3 Preprocessing macro __BFILE__
	D.4 Preprocessing macro __LINE__
	D.5 Preprocessing macro __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 10646 character string "iso8859string"
	E.2.2.4 Status values for TTCN-3 objects

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single ITU-T Recommendation T.50 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 sizeoftype predefined function
	G.6 Mixed ports
	G.7 External constants
	G.8 Prefixing enumerated values
	G.9 Record of/arrays not compatible to record; set of not compatible with set

	Annex H (informative): Bibliography
	History

