/* Author: Maurice Gittens */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA #include #endif #include #ifndef OPENSSL_NO_HW #ifndef OPENSSL_NO_HW_4758_CCA #ifdef FLAT_INC #include "hw_4758_cca.h" #else #include "vendor_defns/hw_4758_cca.h" #endif #include "e_4758cca_err.c" static int ibm_4758_cca_destroy(ENGINE *e); static int ibm_4758_cca_init(ENGINE *e); static int ibm_4758_cca_finish(ENGINE *e); static int ibm_4758_cca_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); /* rsa functions */ /*---------------*/ #ifndef OPENSSL_NO_RSA static int cca_rsa_pub_enc(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,int padding); static int cca_rsa_priv_dec(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,int padding); static int cca_rsa_sign(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, const RSA *rsa); static int cca_rsa_verify(int dtype, const unsigned char *m, unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen, const RSA *rsa); /* utility functions */ /*-----------------------*/ static EVP_PKEY *ibm_4758_load_privkey(ENGINE*, const char*, UI_METHOD *ui_method, void *callback_data); static EVP_PKEY *ibm_4758_load_pubkey(ENGINE*, const char*, UI_METHOD *ui_method, void *callback_data); static int getModulusAndExponent(const unsigned char *token, long *exponentLength, unsigned char *exponent, long *modulusLength, long *modulusFieldLength, unsigned char *modulus); #endif /* RAND number functions */ /*-----------------------*/ static int cca_get_random_bytes(unsigned char*, int); static int cca_random_status(void); #ifndef OPENSSL_NO_RSA static void cca_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx,long argl, void *argp); #endif /* Function pointers for CCA verbs */ /*---------------------------------*/ #ifndef OPENSSL_NO_RSA static F_KEYRECORDREAD keyRecordRead; static F_DIGITALSIGNATUREGENERATE digitalSignatureGenerate; static F_DIGITALSIGNATUREVERIFY digitalSignatureVerify; static F_PUBLICKEYEXTRACT publicKeyExtract; static F_PKAENCRYPT pkaEncrypt; static F_PKADECRYPT pkaDecrypt; #endif static F_RANDOMNUMBERGENERATE randomNumberGenerate; /* static variables */ /*------------------*/ static const char *CCA4758_LIB_NAME = NULL; static const char *get_CCA4758_LIB_NAME(void) { if(CCA4758_LIB_NAME) return CCA4758_LIB_NAME; return CCA_LIB_NAME; } static void free_CCA4758_LIB_NAME(void) { if(CCA4758_LIB_NAME) OPENSSL_free((void*)CCA4758_LIB_NAME); CCA4758_LIB_NAME = NULL; } static long set_CCA4758_LIB_NAME(const char *name) { free_CCA4758_LIB_NAME(); return (((CCA4758_LIB_NAME = BUF_strdup(name)) != NULL) ? 1 : 0); } #ifndef OPENSSL_NO_RSA static const char* n_keyRecordRead = CSNDKRR; static const char* n_digitalSignatureGenerate = CSNDDSG; static const char* n_digitalSignatureVerify = CSNDDSV; static const char* n_publicKeyExtract = CSNDPKX; static const char* n_pkaEncrypt = CSNDPKE; static const char* n_pkaDecrypt = CSNDPKD; #endif static const char* n_randomNumberGenerate = CSNBRNG; #ifndef OPENSSL_NO_RSA static int hndidx = -1; #endif static DSO *dso = NULL; /* openssl engine initialization structures */ /*------------------------------------------*/ #define CCA4758_CMD_SO_PATH ENGINE_CMD_BASE static const ENGINE_CMD_DEFN cca4758_cmd_defns[] = { {CCA4758_CMD_SO_PATH, "SO_PATH", "Specifies the path to the '4758cca' shared library", ENGINE_CMD_FLAG_STRING}, {0, NULL, NULL, 0} }; #ifndef OPENSSL_NO_RSA static RSA_METHOD ibm_4758_cca_rsa = { "IBM 4758 CCA RSA method", cca_rsa_pub_enc, NULL, NULL, cca_rsa_priv_dec, NULL, /*rsa_mod_exp,*/ NULL, /*mod_exp_mont,*/ NULL, /* init */ NULL, /* finish */ RSA_FLAG_SIGN_VER, /* flags */ NULL, /* app_data */ cca_rsa_sign, /* rsa_sign */ cca_rsa_verify, /* rsa_verify */ NULL /* rsa_keygen */ }; #endif static RAND_METHOD ibm_4758_cca_rand = { /* "IBM 4758 RAND method", */ NULL, /* seed */ cca_get_random_bytes, /* get random bytes from the card */ NULL, /* cleanup */ NULL, /* add */ cca_get_random_bytes, /* pseudo rand */ cca_random_status, /* status */ }; static const char *engine_4758_cca_id = "4758cca"; static const char *engine_4758_cca_name = "IBM 4758 CCA hardware engine support"; #ifndef OPENSSL_NO_DYNAMIC_ENGINE /* Compatibility hack, the dynamic library uses this form in the path */ static const char *engine_4758_cca_id_alt = "4758_cca"; #endif /* engine implementation */ /*-----------------------*/ static int bind_helper(ENGINE *e) { if(!ENGINE_set_id(e, engine_4758_cca_id) || !ENGINE_set_name(e, engine_4758_cca_name) || #ifndef OPENSSL_NO_RSA !ENGINE_set_RSA(e, &ibm_4758_cca_rsa) || #endif !ENGINE_set_RAND(e, &ibm_4758_cca_rand) || !ENGINE_set_destroy_function(e, ibm_4758_cca_destroy) || !ENGINE_set_init_function(e, ibm_4758_cca_init) || !ENGINE_set_finish_function(e, ibm_4758_cca_finish) || !ENGINE_set_ctrl_function(e, ibm_4758_cca_ctrl) || #ifndef OPENSSL_NO_RSA !ENGINE_set_load_privkey_function(e, ibm_4758_load_privkey) || !ENGINE_set_load_pubkey_function(e, ibm_4758_load_pubkey) || #endif !ENGINE_set_cmd_defns(e, cca4758_cmd_defns)) return 0; /* Ensure the error handling is set up */ ERR_load_CCA4758_strings(); return 1; } #ifdef OPENSSL_NO_DYNAMIC_ENGINE static ENGINE *engine_4758_cca(void) { ENGINE *ret = ENGINE_new(); if(!ret) return NULL; if(!bind_helper(ret)) { ENGINE_free(ret); return NULL; } return ret; } void ENGINE_load_4758cca(void) { ENGINE *e_4758 = engine_4758_cca(); if (!e_4758) return; ENGINE_add(e_4758); ENGINE_free(e_4758); ERR_clear_error(); } #endif static int ibm_4758_cca_destroy(ENGINE *e) { ERR_unload_CCA4758_strings(); free_CCA4758_LIB_NAME(); return 1; } static int ibm_4758_cca_init(ENGINE *e) { if(dso) { CCA4758err(CCA4758_F_IBM_4758_CCA_INIT,CCA4758_R_ALREADY_LOADED); goto err; } dso = DSO_load(NULL, get_CCA4758_LIB_NAME(), NULL, 0); if(!dso) { CCA4758err(CCA4758_F_IBM_4758_CCA_INIT,CCA4758_R_DSO_FAILURE); goto err; } #ifndef OPENSSL_NO_RSA if(!(keyRecordRead = (F_KEYRECORDREAD) DSO_bind_func(dso, n_keyRecordRead)) || !(randomNumberGenerate = (F_RANDOMNUMBERGENERATE) DSO_bind_func(dso, n_randomNumberGenerate)) || !(digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE) DSO_bind_func(dso, n_digitalSignatureGenerate)) || !(digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY) DSO_bind_func(dso, n_digitalSignatureVerify)) || !(publicKeyExtract = (F_PUBLICKEYEXTRACT) DSO_bind_func(dso, n_publicKeyExtract)) || !(pkaEncrypt = (F_PKAENCRYPT) DSO_bind_func(dso, n_pkaEncrypt)) || !(pkaDecrypt = (F_PKADECRYPT) DSO_bind_func(dso, n_pkaDecrypt))) { CCA4758err(CCA4758_F_IBM_4758_CCA_INIT,CCA4758_R_DSO_FAILURE); goto err; } #else if(!(randomNumberGenerate = (F_RANDOMNUMBERGENERATE) DSO_bind_func(dso, n_randomNumberGenerate))) { CCA4758err(CCA4758_F_IBM_4758_CCA_INIT,CCA4758_R_DSO_FAILURE); goto err; } #endif #ifndef OPENSSL_NO_RSA hndidx = RSA_get_ex_new_index(0, "IBM 4758 CCA RSA key handle", NULL, NULL, cca_ex_free); #endif return 1; err: if(dso) DSO_free(dso); dso = NULL; #ifndef OPENSSL_NO_RSA keyRecordRead = (F_KEYRECORDREAD)0; digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE)0; digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY)0; publicKeyExtract = (F_PUBLICKEYEXTRACT)0; pkaEncrypt = (F_PKAENCRYPT)0; pkaDecrypt = (F_PKADECRYPT)0; #endif randomNumberGenerate = (F_RANDOMNUMBERGENERATE)0; return 0; } static int ibm_4758_cca_finish(ENGINE *e) { free_CCA4758_LIB_NAME(); if(!dso) { CCA4758err(CCA4758_F_IBM_4758_CCA_FINISH, CCA4758_R_NOT_LOADED); return 0; } if(!DSO_free(dso)) { CCA4758err(CCA4758_F_IBM_4758_CCA_FINISH, CCA4758_R_UNIT_FAILURE); return 0; } dso = NULL; #ifndef OPENSSL_NO_RSA keyRecordRead = (F_KEYRECORDREAD)0; randomNumberGenerate = (F_RANDOMNUMBERGENERATE)0; digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE)0; digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY)0; publicKeyExtract = (F_PUBLICKEYEXTRACT)0; pkaEncrypt = (F_PKAENCRYPT)0; pkaDecrypt = (F_PKADECRYPT)0; #endif randomNumberGenerate = (F_RANDOMNUMBERGENERATE)0; return 1; } static int ibm_4758_cca_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)) { int initialised = ((dso == NULL) ? 0 : 1); switch(cmd) { case CCA4758_CMD_SO_PATH: if(p == NULL) { CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } if(initialised) { CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL, CCA4758_R_ALREADY_LOADED); return 0; } return set_CCA4758_LIB_NAME((const char *)p); default: break; } CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL, CCA4758_R_COMMAND_NOT_IMPLEMENTED); return 0; } #ifndef OPENSSL_NO_RSA #define MAX_CCA_PKA_TOKEN_SIZE 2500 static EVP_PKEY *ibm_4758_load_privkey(ENGINE* e, const char* key_id, UI_METHOD *ui_method, void *callback_data) { RSA *rtmp = NULL; EVP_PKEY *res = NULL; unsigned char* keyToken = NULL; unsigned char pubKeyToken[MAX_CCA_PKA_TOKEN_SIZE]; long pubKeyTokenLength = MAX_CCA_PKA_TOKEN_SIZE; long keyTokenLength = MAX_CCA_PKA_TOKEN_SIZE; long returnCode; long reasonCode; long exitDataLength = 0; long ruleArrayLength = 0; unsigned char exitData[8]; unsigned char ruleArray[8]; unsigned char keyLabel[64]; unsigned long keyLabelLength = strlen(key_id); unsigned char modulus[256]; long modulusFieldLength = sizeof(modulus); long modulusLength = 0; unsigned char exponent[256]; long exponentLength = sizeof(exponent); if (keyLabelLength > sizeof(keyLabel)) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return NULL; } memset(keyLabel,' ', sizeof(keyLabel)); memcpy(keyLabel, key_id, keyLabelLength); keyToken = OPENSSL_malloc(MAX_CCA_PKA_TOKEN_SIZE + sizeof(long)); if (!keyToken) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE); goto err; } keyRecordRead(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, keyLabel, &keyTokenLength, keyToken+sizeof(long)); if (returnCode) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, CCA4758_R_FAILED_LOADING_PRIVATE_KEY); goto err; } publicKeyExtract(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, &keyTokenLength, keyToken+sizeof(long), &pubKeyTokenLength, pubKeyToken); if (returnCode) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, CCA4758_R_FAILED_LOADING_PRIVATE_KEY); goto err; } if (!getModulusAndExponent(pubKeyToken, &exponentLength, exponent, &modulusLength, &modulusFieldLength, modulus)) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, CCA4758_R_FAILED_LOADING_PRIVATE_KEY); goto err; } (*(long*)keyToken) = keyTokenLength; rtmp = RSA_new_method(e); RSA_set_ex_data(rtmp, hndidx, (char *)keyToken); rtmp->e = BN_bin2bn(exponent, exponentLength, NULL); rtmp->n = BN_bin2bn(modulus, modulusFieldLength, NULL); rtmp->flags |= RSA_FLAG_EXT_PKEY; res = EVP_PKEY_new(); EVP_PKEY_assign_RSA(res, rtmp); return res; err: if (keyToken) OPENSSL_free(keyToken); return NULL; } static EVP_PKEY *ibm_4758_load_pubkey(ENGINE* e, const char* key_id, UI_METHOD *ui_method, void *callback_data) { RSA *rtmp = NULL; EVP_PKEY *res = NULL; unsigned char* keyToken = NULL; long keyTokenLength = MAX_CCA_PKA_TOKEN_SIZE; long returnCode; long reasonCode; long exitDataLength = 0; long ruleArrayLength = 0; unsigned char exitData[8]; unsigned char ruleArray[8]; unsigned char keyLabel[64]; unsigned long keyLabelLength = strlen(key_id); unsigned char modulus[512]; long modulusFieldLength = sizeof(modulus); long modulusLength = 0; unsigned char exponent[512]; long exponentLength = sizeof(exponent); if (keyLabelLength > sizeof(keyLabel)) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return NULL; } memset(keyLabel,' ', sizeof(keyLabel)); memcpy(keyLabel, key_id, keyLabelLength); keyToken = OPENSSL_malloc(MAX_CCA_PKA_TOKEN_SIZE + sizeof(long)); if (!keyToken) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, ERR_R_MALLOC_FAILURE); goto err; } keyRecordRead(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, keyLabel, &keyTokenLength, keyToken+sizeof(long)); if (returnCode) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, ERR_R_MALLOC_FAILURE); goto err; } if (!getModulusAndExponent(keyToken+sizeof(long), &exponentLength, exponent, &modulusLength, &modulusFieldLength, modulus)) { CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, CCA4758_R_FAILED_LOADING_PUBLIC_KEY); goto err; } (*(long*)keyToken) = keyTokenLength; rtmp = RSA_new_method(e); RSA_set_ex_data(rtmp, hndidx, (char *)keyToken); rtmp->e = BN_bin2bn(exponent, exponentLength, NULL); rtmp->n = BN_bin2bn(modulus, modulusFieldLength, NULL); rtmp->flags |= RSA_FLAG_EXT_PKEY; res = EVP_PKEY_new(); EVP_PKEY_assign_RSA(res, rtmp); return res; err: if (keyToken) OPENSSL_free(keyToken); return NULL; } static int cca_rsa_pub_enc(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,int padding) { long returnCode; long reasonCode; long lflen = flen; long exitDataLength = 0; unsigned char exitData[8]; long ruleArrayLength = 1; unsigned char ruleArray[8] = "PKCS-1.2"; long dataStructureLength = 0; unsigned char dataStructure[8]; long outputLength = RSA_size(rsa); long keyTokenLength; unsigned char* keyToken = (unsigned char*)RSA_get_ex_data(rsa, hndidx); keyTokenLength = *(long*)keyToken; keyToken+=sizeof(long); pkaEncrypt(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, &lflen, (unsigned char*)from, &dataStructureLength, dataStructure, &keyTokenLength, keyToken, &outputLength, to); if (returnCode || reasonCode) return -(returnCode << 16 | reasonCode); return outputLength; } static int cca_rsa_priv_dec(int flen, const unsigned char *from, unsigned char *to, RSA *rsa,int padding) { long returnCode; long reasonCode; long lflen = flen; long exitDataLength = 0; unsigned char exitData[8]; long ruleArrayLength = 1; unsigned char ruleArray[8] = "PKCS-1.2"; long dataStructureLength = 0; unsigned char dataStructure[8]; long outputLength = RSA_size(rsa); long keyTokenLength; unsigned char* keyToken = (unsigned char*)RSA_get_ex_data(rsa, hndidx); keyTokenLength = *(long*)keyToken; keyToken+=sizeof(long); pkaDecrypt(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, &lflen, (unsigned char*)from, &dataStructureLength, dataStructure, &keyTokenLength, keyToken, &outputLength, to); return (returnCode | reasonCode) ? 0 : 1; } #define SSL_SIG_LEN 36 static int cca_rsa_verify(int type, const unsigned char *m, unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen, const RSA *rsa) { long returnCode; long reasonCode; long lsiglen = siglen; long exitDataLength = 0; unsigned char exitData[8]; long ruleArrayLength = 1; unsigned char ruleArray[8] = "PKCS-1.1"; long keyTokenLength; unsigned char* keyToken = (unsigned char*)RSA_get_ex_data(rsa, hndidx); long length = SSL_SIG_LEN; long keyLength ; unsigned char *hashBuffer = NULL; X509_SIG sig; ASN1_TYPE parameter; X509_ALGOR algorithm; ASN1_OCTET_STRING digest; keyTokenLength = *(long*)keyToken; keyToken+=sizeof(long); if (type == NID_md5 || type == NID_sha1) { sig.algor = &algorithm; algorithm.algorithm = OBJ_nid2obj(type); if (!algorithm.algorithm) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, CCA4758_R_UNKNOWN_ALGORITHM_TYPE); return 0; } if (!algorithm.algorithm->length) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, CCA4758_R_ASN1_OID_UNKNOWN_FOR_MD); return 0; } parameter.type = V_ASN1_NULL; parameter.value.ptr = NULL; algorithm.parameter = ¶meter; sig.digest = &digest; sig.digest->data = (unsigned char*)m; sig.digest->length = m_len; length = i2d_X509_SIG(&sig, NULL); } keyLength = RSA_size(rsa); if (length - RSA_PKCS1_PADDING > keyLength) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return 0; } switch (type) { case NID_md5_sha1 : if (m_len != SSL_SIG_LEN) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return 0; } hashBuffer = (unsigned char *)m; length = m_len; break; case NID_md5 : { unsigned char *ptr; ptr = hashBuffer = OPENSSL_malloc( (unsigned int)keyLength+1); if (!hashBuffer) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, ERR_R_MALLOC_FAILURE); return 0; } i2d_X509_SIG(&sig, &ptr); } break; case NID_sha1 : { unsigned char *ptr; ptr = hashBuffer = OPENSSL_malloc( (unsigned int)keyLength+1); if (!hashBuffer) { CCA4758err(CCA4758_F_CCA_RSA_VERIFY, ERR_R_MALLOC_FAILURE); return 0; } i2d_X509_SIG(&sig, &ptr); } break; default: return 0; } digitalSignatureVerify(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, &keyTokenLength, keyToken, &length, hashBuffer, &lsiglen, (unsigned char *)sigbuf); if (type == NID_sha1 || type == NID_md5) { OPENSSL_cleanse(hashBuffer, keyLength+1); OPENSSL_free(hashBuffer); } return ((returnCode || reasonCode) ? 0 : 1); } #define SSL_SIG_LEN 36 static int cca_rsa_sign(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, const RSA *rsa) { long returnCode; long reasonCode; long exitDataLength = 0; unsigned char exitData[8]; long ruleArrayLength = 1; unsigned char ruleArray[8] = "PKCS-1.1"; long outputLength=256; long outputBitLength; long keyTokenLength; unsigned char *hashBuffer = NULL; unsigned char* keyToken = (unsigned char*)RSA_get_ex_data(rsa, hndidx); long length = SSL_SIG_LEN; long keyLength ; X509_SIG sig; ASN1_TYPE parameter; X509_ALGOR algorithm; ASN1_OCTET_STRING digest; keyTokenLength = *(long*)keyToken; keyToken+=sizeof(long); if (type == NID_md5 || type == NID_sha1) { sig.algor = &algorithm; algorithm.algorithm = OBJ_nid2obj(type); if (!algorithm.algorithm) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, CCA4758_R_UNKNOWN_ALGORITHM_TYPE); return 0; } if (!algorithm.algorithm->length) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, CCA4758_R_ASN1_OID_UNKNOWN_FOR_MD); return 0; } parameter.type = V_ASN1_NULL; parameter.value.ptr = NULL; algorithm.parameter = ¶meter; sig.digest = &digest; sig.digest->data = (unsigned char*)m; sig.digest->length = m_len; length = i2d_X509_SIG(&sig, NULL); } keyLength = RSA_size(rsa); if (length - RSA_PKCS1_PADDING > keyLength) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return 0; } switch (type) { case NID_md5_sha1 : if (m_len != SSL_SIG_LEN) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return 0; } hashBuffer = (unsigned char*)m; length = m_len; break; case NID_md5 : { unsigned char *ptr; ptr = hashBuffer = OPENSSL_malloc( (unsigned int)keyLength+1); if (!hashBuffer) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, ERR_R_MALLOC_FAILURE); return 0; } i2d_X509_SIG(&sig, &ptr); } break; case NID_sha1 : { unsigned char *ptr; ptr = hashBuffer = OPENSSL_malloc( (unsigned int)keyLength+1); if (!hashBuffer) { CCA4758err(CCA4758_F_CCA_RSA_SIGN, ERR_R_MALLOC_FAILURE); return 0; } i2d_X509_SIG(&sig, &ptr); } break; default: return 0; } digitalSignatureGenerate(&returnCode, &reasonCode, &exitDataLength, exitData, &ruleArrayLength, ruleArray, &keyTokenLength, keyToken, &length, hashBuffer, &outputLength, &outputBitLength, sigret); if (type == NID_sha1 || type == NID_md5) { OPENSSL_cleanse(hashBuffer, keyLength+1); OPENSSL_free(hashBuffer); } *siglen = outputLength; return ((returnCode || reasonCode) ? 0 : 1); } static int getModulusAndExponent(const unsigned char*token, long *exponentLength, unsigned char *exponent, long *modulusLength, long *modulusFieldLength, unsigned char *modulus) { unsigned long len; if (*token++ != (char)0x1E) /* internal PKA token? */ return 0; if (*token++) /* token version must be zero */ return 0; len = *token++; len = len << 8; len |= (unsigned char)*token++; token += 4; /* skip reserved bytes */ if (*token++ == (char)0x04) { if (*token++) /* token version must be zero */ return 0; len = *token++; len = len << 8; len |= (unsigned char)*token++; token+=2; /* skip reserved section */ len = *token++; len = len << 8; len |= (unsigned char)*token++; *exponentLength = len; len = *token++; len = len << 8; len |= (unsigned char)*token++; *modulusLength = len; len = *token++; len = len << 8; len |= (unsigned char)*token++; *modulusFieldLength = len; memcpy(exponent, token, *exponentLength); token+= *exponentLength; memcpy(modulus, token, *modulusFieldLength); return 1; } return 0; } #endif /* OPENSSL_NO_RSA */ static int cca_random_status(void) { return 1; } static int cca_get_random_bytes(unsigned char* buf, int num) { long ret_code; long reason_code; long exit_data_length; unsigned char exit_data[4]; unsigned char form[] = "RANDOM "; unsigned char rand_buf[8]; while(num >= (int)sizeof(rand_buf)) { randomNumberGenerate(&ret_code, &reason_code, &exit_data_length, exit_data, form, rand_buf); if (ret_code) return 0; num -= sizeof(rand_buf); memcpy(buf, rand_buf, sizeof(rand_buf)); buf += sizeof(rand_buf); } if (num) { randomNumberGenerate(&ret_code, &reason_code, NULL, NULL, form, rand_buf); if (ret_code) return 0; memcpy(buf, rand_buf, num); } return 1; } #ifndef OPENSSL_NO_RSA static void cca_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (item) OPENSSL_free(item); } #endif /* Goo to handle building as a dynamic engine */ #ifndef OPENSSL_NO_DYNAMIC_ENGINE static int bind_fn(ENGINE *e, const char *id) { if(id && (strcmp(id, engine_4758_cca_id) != 0) && (strcmp(id, engine_4758_cca_id_alt) != 0)) return 0; if(!bind_helper(e)) return 0; return 1; } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_fn) #endif /* OPENSSL_NO_DYNAMIC_ENGINE */ #endif /* !OPENSSL_NO_HW_4758_CCA */ #endif /* !OPENSSL_NO_HW */