/* crypto/o_time.c -*- mode:C; c-file-style: "eay" -*- */ /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL * project 2001. */ /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL * project 2008. */ /* ==================================================================== * Copyright (c) 2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include "o_time.h" #ifdef OPENSSL_SYS_VMS # if __CRTL_VER >= 70000000 && \ (defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE) # define VMS_GMTIME_OK # endif # ifndef VMS_GMTIME_OK # include # include # include # include # include # include # endif /* ndef VMS_GMTIME_OK */ #endif struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result) { struct tm *ts = NULL; #if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_OS2) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX) && !defined(OPENSSL_SYS_SUNOS) /* should return &data, but doesn't on some systems, so we don't even look at the return value */ gmtime_r(timer,result); ts = result; #elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK) ts = gmtime(timer); if (ts == NULL) return NULL; memcpy(result, ts, sizeof(struct tm)); ts = result; #endif #if defined( OPENSSL_SYS_VMS) && !defined( VMS_GMTIME_OK) if (ts == NULL) { static $DESCRIPTOR(tabnam,"LNM$DCL_LOGICAL"); static $DESCRIPTOR(lognam,"SYS$TIMEZONE_DIFFERENTIAL"); char logvalue[256]; unsigned int reslen = 0; struct { short buflen; short code; void *bufaddr; unsigned int *reslen; } itemlist[] = { { 0, LNM$_STRING, 0, 0 }, { 0, 0, 0, 0 }, }; int status; time_t t; /* Get the value for SYS$TIMEZONE_DIFFERENTIAL */ itemlist[0].buflen = sizeof(logvalue); itemlist[0].bufaddr = logvalue; itemlist[0].reslen = &reslen; status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist); if (!(status & 1)) return NULL; logvalue[reslen] = '\0'; t = *timer; /* The following is extracted from the DEC C header time.h */ /* ** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime ** have two implementations. One implementation is provided ** for compatibility and deals with time in terms of local time, ** the other __utc_* deals with time in terms of UTC. */ /* We use the same conditions as in said time.h to check if we should assume that t contains local time (and should therefore be adjusted) or UTC (and should therefore be left untouched). */ #if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE /* Get the numerical value of the equivalence string */ status = atoi(logvalue); /* and use it to move time to GMT */ t -= status; #endif /* then convert the result to the time structure */ /* Since there was no gmtime_r() to do this stuff for us, we have to do it the hard way. */ { /* The VMS epoch is the astronomical Smithsonian date, if I remember correctly, which is November 17, 1858. Furthermore, time is measure in thenths of microseconds and stored in quadwords (64 bit integers). unix_epoch below is January 1st 1970 expressed as a VMS time. The following code was used to get this number: #include #include #include #include main() { unsigned long systime[2]; unsigned short epoch_values[7] = { 1970, 1, 1, 0, 0, 0, 0 }; lib$cvt_vectim(epoch_values, systime); printf("%u %u", systime[0], systime[1]); } */ unsigned long unix_epoch[2] = { 1273708544, 8164711 }; unsigned long deltatime[2]; unsigned long systime[2]; struct vms_vectime { short year, month, day, hour, minute, second, centi_second; } time_values; long operation; /* Turn the number of seconds since January 1st 1970 to an internal delta time. Note that lib$cvt_to_internal_time() will assume that t is signed, and will therefore break on 32-bit systems some time in 2038. */ operation = LIB$K_DELTA_SECONDS; status = lib$cvt_to_internal_time(&operation, &t, deltatime); /* Add the delta time with the Unix epoch and we have the current UTC time in internal format */ status = lib$add_times(unix_epoch, deltatime, systime); /* Turn the internal time into a time vector */ status = sys$numtim(&time_values, systime); /* Fill in the struct tm with the result */ result->tm_sec = time_values.second; result->tm_min = time_values.minute; result->tm_hour = time_values.hour; result->tm_mday = time_values.day; result->tm_mon = time_values.month - 1; result->tm_year = time_values.year - 1900; operation = LIB$K_DAY_OF_WEEK; status = lib$cvt_from_internal_time(&operation, &result->tm_wday, systime); result->tm_wday %= 7; operation = LIB$K_DAY_OF_YEAR; status = lib$cvt_from_internal_time(&operation, &result->tm_yday, systime); result->tm_yday--; result->tm_isdst = 0; /* There's no way to know... */ ts = result; } } #endif return ts; } /* Take a tm structure and add an offset to it. This avoids any OS issues * with restricted date types and overflows which cause the year 2038 * problem. */ #define SECS_PER_DAY (24 * 60 * 60) static long date_to_julian(int y, int m, int d); static void julian_to_date(long jd, int *y, int *m, int *d); int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec) { int offset_hms, offset_day; long time_jd; int time_year, time_month, time_day; /* split offset into days and day seconds */ offset_day = offset_sec / SECS_PER_DAY; /* Avoid sign issues with % operator */ offset_hms = offset_sec - (offset_day * SECS_PER_DAY); offset_day += off_day; /* Add current time seconds to offset */ offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec; /* Adjust day seconds if overflow */ if (offset_hms >= SECS_PER_DAY) { offset_day++; offset_hms -= SECS_PER_DAY; } else if (offset_hms < 0) { offset_day--; offset_hms += SECS_PER_DAY; } /* Convert date of time structure into a Julian day number. */ time_year = tm->tm_year + 1900; time_month = tm->tm_mon + 1; time_day = tm->tm_mday; time_jd = date_to_julian(time_year, time_month, time_day); /* Work out Julian day of new date */ time_jd += offset_day; if (time_jd < 0) return 0; /* Convert Julian day back to date */ julian_to_date(time_jd, &time_year, &time_month, &time_day); if (time_year < 1900 || time_year > 9999) return 0; /* Update tm structure */ tm->tm_year = time_year - 1900; tm->tm_mon = time_month - 1; tm->tm_mday = time_day; tm->tm_hour = offset_hms / 3600; tm->tm_min = (offset_hms / 60) % 60; tm->tm_sec = offset_hms % 60; return 1; } /* Convert date to and from julian day * Uses Fliegel & Van Flandern algorithm */ static long date_to_julian(int y, int m, int d) { return (1461 * (y + 4800 + (m - 14) / 12)) / 4 + (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 - (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075; } static void julian_to_date(long jd, int *y, int *m, int *d) { long L = jd + 68569; long n = (4 * L) / 146097; long i, j; L = L - (146097 * n + 3) / 4; i = (4000 * (L + 1)) / 1461001; L = L - (1461 * i) / 4 + 31; j = (80 * L) / 2447; *d = L - (2447 * j) / 80; L = j / 11; *m = j + 2 - (12 * L); *y = 100 * (n - 49) + i + L; } #ifdef OPENSSL_TIME_TEST #include /* Time checking test code. Check times are identical for a wide range of * offsets. This should be run on a machine with 64 bit time_t or it will * trigger the very errors the routines fix. */ int main(int argc, char **argv) { long offset; for (offset = 0; offset < 1000000; offset++) { check_time(offset); check_time(-offset); check_time(offset * 1000); check_time(-offset * 1000); } } int check_time(long offset) { struct tm tm1, tm2; time_t t1, t2; time(&t1); t2 = t1 + offset; OPENSSL_gmtime(&t2, &tm2); OPENSSL_gmtime(&t1, &tm1); OPENSSL_gmtime_adj(&tm1, 0, offset); if ((tm1.tm_year == tm2.tm_year) && (tm1.tm_mon == tm2.tm_mon) && (tm1.tm_mday == tm2.tm_mday) && (tm1.tm_hour == tm2.tm_hour) && (tm1.tm_min == tm2.tm_min) && (tm1.tm_sec == tm2.tm_sec)) return 1; fprintf(stderr, "TIME ERROR!!\n"); fprintf(stderr, "Time1: %d/%d/%d, %d:%02d:%02d\n", tm2.tm_mday, tm2.tm_mon + 1, tm2.tm_year + 1900, tm2.tm_hour, tm2.tm_min, tm2.tm_sec); fprintf(stderr, "Time2: %d/%d/%d, %d:%02d:%02d\n", tm1.tm_mday, tm1.tm_mon + 1, tm1.tm_year + 1900, tm1.tm_hour, tm1.tm_min, tm1.tm_sec); return 0; } #endif