/* crypto/bn/bn_asm.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef BN_DEBUG # undef NDEBUG /* avoid conflicting definitions */ # define NDEBUG #endif #include #include #include "cryptlib.h" #include "bn_lcl.h" #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1=0; assert(num >= 0); if (num <= 0) return(c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul_add(rp[0],ap[0],w,c1); mul_add(rp[1],ap[1],w,c1); mul_add(rp[2],ap[2],w,c1); mul_add(rp[3],ap[3],w,c1); ap+=4; rp+=4; num-=4; } #endif while (num) { mul_add(rp[0],ap[0],w,c1); ap++; rp++; num--; } return(c1); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1=0; assert(num >= 0); if (num <= 0) return(c1); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul(rp[0],ap[0],w,c1); mul(rp[1],ap[1],w,c1); mul(rp[2],ap[2],w,c1); mul(rp[3],ap[3],w,c1); ap+=4; rp+=4; num-=4; } #endif while (num) { mul(rp[0],ap[0],w,c1); ap++; rp++; num--; } return(c1); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { sqr(r[0],r[1],a[0]); sqr(r[2],r[3],a[1]); sqr(r[4],r[5],a[2]); sqr(r[6],r[7],a[3]); a+=4; r+=8; n-=4; } #endif while (n) { sqr(r[0],r[1],a[0]); a++; r+=2; n--; } } #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c=0; BN_ULONG bl,bh; assert(num >= 0); if (num <= 0) return((BN_ULONG)0); bl=LBITS(w); bh=HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul_add(rp[0],ap[0],bl,bh,c); mul_add(rp[1],ap[1],bl,bh,c); mul_add(rp[2],ap[2],bl,bh,c); mul_add(rp[3],ap[3],bl,bh,c); ap+=4; rp+=4; num-=4; } #endif while (num) { mul_add(rp[0],ap[0],bl,bh,c); ap++; rp++; num--; } return(c); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry=0; BN_ULONG bl,bh; assert(num >= 0); if (num <= 0) return((BN_ULONG)0); bl=LBITS(w); bh=HBITS(w); #ifndef OPENSSL_SMALL_FOOTPRINT while (num&~3) { mul(rp[0],ap[0],bl,bh,carry); mul(rp[1],ap[1],bl,bh,carry); mul(rp[2],ap[2],bl,bh,carry); mul(rp[3],ap[3],bl,bh,carry); ap+=4; rp+=4; num-=4; } #endif while (num) { mul(rp[0],ap[0],bl,bh,carry); ap++; rp++; num--; } return(carry); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { sqr64(r[0],r[1],a[0]); sqr64(r[2],r[3],a[1]); sqr64(r[4],r[5],a[2]); sqr64(r[6],r[7],a[3]); a+=4; r+=8; n-=4; } #endif while (n) { sqr64(r[0],r[1],a[0]); a++; r+=2; n--; } } #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ #if defined(BN_LLONG) && defined(BN_DIV2W) BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { return((BN_ULONG)(((((BN_ULLONG)h)<= d) h-=d; if (i) { d<<=i; h=(h<>(BN_BITS2-i)); l<<=i; } dh=(d&BN_MASK2h)>>BN_BITS4; dl=(d&BN_MASK2l); for (;;) { if ((h>>BN_BITS4) == dh) q=BN_MASK2l; else q=h/dh; th=q*dh; tl=dl*q; for (;;) { t=h-th; if ((t&BN_MASK2h) || ((tl) <= ( (t<>BN_BITS4)))) break; q--; th-=dh; tl-=dl; } t=(tl>>BN_BITS4); tl=(tl<>BN_BITS4))&BN_MASK2; l=(l&BN_MASK2l)<= 0); if (n <= 0) return((BN_ULONG)0); #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { ll+=(BN_ULLONG)a[0]+b[0]; r[0]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[1]+b[1]; r[1]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[2]+b[2]; r[2]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; ll+=(BN_ULLONG)a[3]+b[3]; r[3]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; a+=4; b+=4; r+=4; n-=4; } #endif while (n) { ll+=(BN_ULLONG)a[0]+b[0]; r[0]=(BN_ULONG)ll&BN_MASK2; ll>>=BN_BITS2; a++; b++; r++; n--; } return((BN_ULONG)ll); } #else /* !BN_LLONG */ BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG c,l,t; assert(n >= 0); if (n <= 0) return((BN_ULONG)0); c=0; #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { t=a[0]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[0])&BN_MASK2; c+=(l < t); r[0]=l; t=a[1]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[1])&BN_MASK2; c+=(l < t); r[1]=l; t=a[2]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[2])&BN_MASK2; c+=(l < t); r[2]=l; t=a[3]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[3])&BN_MASK2; c+=(l < t); r[3]=l; a+=4; b+=4; r+=4; n-=4; } #endif while(n) { t=a[0]; t=(t+c)&BN_MASK2; c=(t < c); l=(t+b[0])&BN_MASK2; c+=(l < t); r[0]=l; a++; b++; r++; n--; } return((BN_ULONG)c); } #endif /* !BN_LLONG */ BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG t1,t2; int c=0; assert(n >= 0); if (n <= 0) return((BN_ULONG)0); #ifndef OPENSSL_SMALL_FOOTPRINT while (n&~3) { t1=a[0]; t2=b[0]; r[0]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[1]; t2=b[1]; r[1]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[2]; t2=b[2]; r[2]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); t1=a[3]; t2=b[3]; r[3]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); a+=4; b+=4; r+=4; n-=4; } #endif while (n) { t1=a[0]; t2=b[0]; r[0]=(t1-t2-c)&BN_MASK2; if (t1 != t2) c=(t1 < t2); a++; b++; r++; n--; } return(c); } #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) #undef bn_mul_comba8 #undef bn_mul_comba4 #undef bn_sqr_comba8 #undef bn_sqr_comba4 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ #ifdef BN_LLONG #define mul_add_c(a,b,c0,c1,c2) \ t=(BN_ULLONG)a*b; \ t1=(BN_ULONG)Lw(t); \ t2=(BN_ULONG)Hw(t); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define mul_add_c2(a,b,c0,c1,c2) \ t=(BN_ULLONG)a*b; \ tt=(t+t)&BN_MASK; \ if (tt < t) c2++; \ t1=(BN_ULONG)Lw(tt); \ t2=(BN_ULONG)Hw(tt); \ c0=(c0+t1)&BN_MASK2; \ if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c(a,i,c0,c1,c2) \ t=(BN_ULLONG)a[i]*a[i]; \ t1=(BN_ULONG)Lw(t); \ t2=(BN_ULONG)Hw(t); \ c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; #define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) #elif defined(BN_UMULT_LOHI) #define mul_add_c(a,b,c0,c1,c2) { \ BN_ULONG ta=(a),tb=(b); \ BN_UMULT_LOHI(t1,t2,ta,tb); \ c0 += t1; t2 += (c0 /* * This is essentially reference implementation, which may or may not * result in performance improvement. E.g. on IA-32 this routine was * observed to give 40% faster rsa1024 private key operations and 10% * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a * reference implementation, one to be used as starting point for * platform-specific assembler. Mentioned numbers apply to compiler * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and * can vary not only from platform to platform, but even for compiler * versions. Assembler vs. assembler improvement coefficients can * [and are known to] differ and are to be documented elsewhere. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) { BN_ULONG c0,c1,ml,*tp,n0; #ifdef mul64 BN_ULONG mh; #endif volatile BN_ULONG *vp; int i=0,j; #if 0 /* template for platform-specific implementation */ if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); #endif vp = tp = alloca((num+2)*sizeof(BN_ULONG)); n0 = *n0p; c0 = 0; ml = bp[0]; #ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j=0;j=np[num-1]) { c0 = bn_sub_words(rp,tp,np,num); if (tp[num]!=0 || c0==0) { for(i=0;i int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) { BN_ULONG c0,c1,*tp,n0=*n0p; volatile BN_ULONG *vp; int i=0,j; vp = tp = alloca((num+2)*sizeof(BN_ULONG)); for(i=0;i<=num;i++) tp[i]=0; for(i=0;i=np[num-1]) { c0 = bn_sub_words(rp,tp,np,num); if (tp[num]!=0 || c0==0) { for(i=0;i