#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Wrapper around 'rep montmul', VIA-specific instruction accessing # PadLock Montgomery Multiplier. The wrapper is designed as drop-in # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. # # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 # different software configurations on 1.5GHz VIA Esther processor. # Lines marked with "software integer" denote performance of hand- # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" # refers to hand-coded SSE2 Montgomery multiplication procedure found # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from # Padlock SDK 2.0.1 available for download from VIA, which naturally # utilizes the magic 'repz montmul' instruction. And finally "hardware # this" refers to *this* implementation which also uses 'repz montmul' # # sign verify sign/s verify/s # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this # # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this # # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this # # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this # # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this # # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this # # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this # # To give you some other reference point here is output for 2.4GHz P4 # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software # SSE2" in above terms. # # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 # # Conclusions: # - VIA SDK leaves a *lot* of room for improvement (which this # implementation successfully fills:-); # - 'rep montmul' gives up to >3x performance improvement depending on # key length; # - in terms of absolute performance it delivers approximately as much # as modern out-of-order 32-bit cores [again, for longer keys]. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; &asm_init($ARGV[0],"via-mont.pl"); # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); $func="bn_mul_mont_padlock"; $pad=16*1; # amount of reserved bytes on top of every vector # stack layout $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA $A=&DWP(4,"esp"); $B=&DWP(8,"esp"); $T=&DWP(12,"esp"); $M=&DWP(16,"esp"); $scratch=&DWP(20,"esp"); $rp=&DWP(24,"esp"); # these are mine $sp=&DWP(28,"esp"); # &DWP(32,"esp") # 32 byte scratch area # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] # Note that SDK suggests to unconditionally allocate 2K per vector. This # has quite an impact on performance. It naturally depends on key length, # but to give an example 1024 bit private RSA key operations suffer >30% # penalty. I allocate only as much as actually required... &function_begin($func); &xor ("eax","eax"); &mov ("ecx",&wparam(5)); # num # meet VIA's limitations for num [note that the specification # expresses them in bits, while we work with amount of 32-bit words] &test ("ecx",3); &jnz (&label("leave")); # num % 4 != 0 &cmp ("ecx",8); &jb (&label("leave")); # num < 8 &cmp ("ecx",1024); &ja (&label("leave")); # num > 1024 &pushf (); &cld (); &mov ("edi",&wparam(0)); # rp &mov ("eax",&wparam(1)); # ap &mov ("ebx",&wparam(2)); # bp &mov ("edx",&wparam(3)); # np &mov ("esi",&wparam(4)); # n0 &mov ("esi",&DWP(0,"esi")); # *n0 &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes &neg ("ebp"); &add ("ebp","esp"); &and ("ebp",-64); # align to cache-line &xchg ("ebp","esp"); # alloca &mov ($rp,"edi"); # save rp &mov ($sp,"ebp"); # save esp &mov ($mZeroPrime,"esi"); &lea ("esi",&DWP(64,"esp")); # tp &mov ($T,"esi"); &lea ("edi",&DWP(32,"esp")); # scratch area &mov ($scratch,"edi"); &mov ("esi","eax"); &lea ("ebp",&DWP(-$pad,"ecx")); &shr ("ebp",2); # restore original num value in ebp &xor ("eax","eax"); &mov ("ecx","ebp"); &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch &data_byte(0xf3,0xab); # rep stosl, bzero &mov ("ecx","ebp"); &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy &mov ($A,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded ap copy... &mov ("ecx","ebp"); &mov ("esi","ebx"); &mov ($B,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded bp copy... &mov ("ecx","ebp"); &mov ("esi","edx"); &mov ($M,"edi"); &data_byte(0xf3,0xa5); # rep movsl, memcpy &mov ("ecx",$pad/4); &data_byte(0xf3,0xab); # rep stosl, bzero pad # edi points at the end of padded np copy... # let magic happen... &mov ("ecx","ebp"); &mov ("esi","esp"); &shl ("ecx",5); # convert word counter to bit counter &align (4); &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul &mov ("ecx","ebp"); &lea ("esi",&DWP(64,"esp")); # tp # edi still points at the end of padded np copy... &neg ("ebp"); &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" &mov ("edi",$rp); # restore rp &xor ("edx","edx"); # i=0 and clear CF &set_label("sub",8); &mov ("eax",&DWP(0,"esi","edx",4)); &sbb ("eax",&DWP(0,"ebp","edx",4)); &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] &lea ("edx",&DWP(1,"edx")); # i++ &loop (&label("sub")); # doesn't affect CF! &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit &sbb ("eax",0); &and ("esi","eax"); ¬ ("eax"); &mov ("ebp","edi"); &and ("ebp","eax"); &or ("esi","ebp"); # tp=carry?tp:rp &mov ("ecx","edx"); # num &xor ("edx","edx"); # i=0 &set_label("copy",8); &mov ("eax",&DWP(0,"esi","edx",4)); &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp &mov (&DWP(0,"edi","edx",4),"eax"); &lea ("edx",&DWP(1,"edx")); # i++ &loop (&label("copy")); &mov ("ebp",$sp); &xor ("eax","eax"); &mov ("ecx",64/4); &mov ("edi","esp"); # zap frame including scratch area &data_byte(0xf3,0xab); # rep stosl, bzero # zap copies of ap, bp and np &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); &data_byte(0xf3,0xab); # rep stosl, bzero &mov ("esp","ebp"); &inc ("eax"); # signal "done" &popf (); &set_label("leave"); &function_end($func); &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by "); &asm_finish();