parisc-mont.pl 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
#!/usr/bin/env perl

# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# On PA-7100LC this module performs ~90-50% better, less for longer
# keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means
# that compiler utilized xmpyu instruction to perform 32x32=64-bit
# multiplication, which in turn means that "baseline" performance was
# optimal in respect to instruction set capabilities. Fair comparison
# with vendor compiler is problematic, because OpenSSL doesn't define
# BN_LLONG [presumably] for historical reasons, which drives compiler
# toward 4 times 16x16=32-bit multiplicatons [plus complementary
# shifts and additions] instead. This means that you should observe
# several times improvement over code generated by vendor compiler
# for PA-RISC 1.1, but the "baseline" is far from optimal. The actual
# improvement coefficient was never collected on PA-7100LC, or any
# other 1.1 CPU, because I don't have access to such machine with
# vendor compiler. But to give you a taste, PA-RISC 1.1 code path
# reportedly outperformed code generated by cc +DA1.1 +O3 by factor
# of ~5x on PA-8600.
#
# On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is
# reportedly ~2x faster than vendor compiler generated code [according
# to comment in pa-risc2[W].s]. Here comes a catch. Execution core of
# this implementation is actually 32-bit one, in the sense that it
# operates on 32-bit values. But pa-risc2[W].s operates on arrays of
# 64-bit BN_LONGs... How do they interoperate then? No problem. This
# module picks halves of 64-bit values in reverse order and pretends
# they were 32-bit BN_LONGs. But can 32-bit core compete with "pure"
# 64-bit code such as pa-risc2[W].s then? Well, the thing is that
# 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do,
# i.e. there is no "wider" multiplication like on most other 64-bit
# platforms. This means that even being effectively 32-bit, this
# implementation performs "64-bit" computational task in same amount
# of arithmetic operations, most notably multiplications. It requires
# more memory references, most notably to tp[num], but this doesn't
# seem to exhaust memory port capacity. And indeed, dedicated PA-RISC
# 2.0 code path provides virtually same performance as pa-risc2[W].s:
# it's ~10% better for shortest key length and ~10% worse for longest
# one.
#
# In case it wasn't clear. The module has two distinct code paths:
# PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit
# additions and 64-bit integer loads, not to mention specific
# instruction scheduling. In 64-bit build naturally only 2.0 code path
# is assembled. In 32-bit application context both code paths are
# assembled, PA-RISC 2.0 CPU is detected at run-time and proper path
# is taken automatically. Also, in 32-bit build the module imposes
# couple of limitations: vector lengths has to be even and vector
# addresses has to be 64-bit aligned. Normally neither is a problem:
# most common key lengths are even and vectors are commonly malloc-ed,
# which ensures alignment.
#
# Special thanks to polarhome.com for providing HP-UX account on
# PA-RISC 1.1 machine, and to correspondent who chose to remain
# anonymous for testing the code on PA-RISC 2.0 machine.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;

$flavour = shift;
$output = shift;

open STDOUT,">$output";

if ($flavour =~ /64/) {
	$LEVEL		="2.0W";
	$SIZE_T		=8;
	$FRAME_MARKER	=80;
	$SAVED_RP	=16;
	$PUSH		="std";
	$PUSHMA		="std,ma";
	$POP		="ldd";
	$POPMB		="ldd,mb";
	$BN_SZ		=$SIZE_T;
} else {
	$LEVEL		="1.1";	#$LEVEL.="\n\t.ALLOW\t2.0";
	$SIZE_T		=4;
	$FRAME_MARKER	=48;
	$SAVED_RP	=20;
	$PUSH		="stw";
	$PUSHMA		="stwm";
	$POP		="ldw";
	$POPMB		="ldwm";
	$BN_SZ		=$SIZE_T;
	if (open CONF,"<${dir}../../opensslconf.h") {
	    while(<CONF>) {
		if (m/#\s*define\s+SIXTY_FOUR_BIT/) {
		    $BN_SZ=8;
		    $LEVEL="2.0";
		    last;
		}
	    }
	    close CONF;
	}
}

$FRAME=8*$SIZE_T+$FRAME_MARKER;	# 8 saved regs + frame marker
				#                [+ argument transfer]
$LOCALS=$FRAME-$FRAME_MARKER;
$FRAME+=32;			# local variables

$tp="%r31";
$ti1="%r29";
$ti0="%r28";

$rp="%r26";
$ap="%r25";
$bp="%r24";
$np="%r23";
$n0="%r22";	# passed through stack in 32-bit
$num="%r21";	# passed through stack in 32-bit
$idx="%r20";
$arrsz="%r19";

$nm1="%r7";
$nm0="%r6";
$ab1="%r5";
$ab0="%r4";

$fp="%r3";
$hi1="%r2";
$hi0="%r1";

$xfer=$n0;	# accomodates [-16..15] offset in fld[dw]s

$fm0="%fr4";	$fti=$fm0;
$fbi="%fr5L";
$fn0="%fr5R";
$fai="%fr6";	$fab0="%fr7";	$fab1="%fr8";
$fni="%fr9";	$fnm0="%fr10";	$fnm1="%fr11";

$code=<<___;
	.LEVEL	$LEVEL
	.SPACE	\$TEXT\$
	.SUBSPA	\$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY

	.EXPORT	bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
	.ALIGN	64
bn_mul_mont
	.PROC
	.CALLINFO	FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6
	.ENTRY
	$PUSH	%r2,-$SAVED_RP(%sp)		; standard prologue
	$PUSHMA	%r3,$FRAME(%sp)
	$PUSH	%r4,`-$FRAME+1*$SIZE_T`(%sp)
	$PUSH	%r5,`-$FRAME+2*$SIZE_T`(%sp)
	$PUSH	%r6,`-$FRAME+3*$SIZE_T`(%sp)
	$PUSH	%r7,`-$FRAME+4*$SIZE_T`(%sp)
	$PUSH	%r8,`-$FRAME+5*$SIZE_T`(%sp)
	$PUSH	%r9,`-$FRAME+6*$SIZE_T`(%sp)
	$PUSH	%r10,`-$FRAME+7*$SIZE_T`(%sp)
	ldo	-$FRAME(%sp),$fp
___
$code.=<<___ if ($SIZE_T==4);
	ldw	`-$FRAME_MARKER-4`($fp),$n0
	ldw	`-$FRAME_MARKER-8`($fp),$num
	nop
	nop					; alignment
___
$code.=<<___ if ($BN_SZ==4);
	comiclr,<=	6,$num,%r0		; are vectors long enough?
	b		L\$abort
	ldi		0,%r28			; signal "unhandled"
	add,ev		%r0,$num,$num		; is $num even?
	b		L\$abort
	nop
	or		$ap,$np,$ti1
	extru,=		$ti1,31,3,%r0		; are ap and np 64-bit aligned?
	b		L\$abort
	nop
	nop					; alignment
	nop

	fldws		0($n0),${fn0}
	fldws,ma	4($bp),${fbi}		; bp[0]
___
$code.=<<___ if ($BN_SZ==8);
	comib,>		3,$num,L\$abort		; are vectors long enough?
	ldi		0,%r28			; signal "unhandled"
	addl		$num,$num,$num		; I operate on 32-bit values

	fldws		4($n0),${fn0}		; only low part of n0
	fldws		4($bp),${fbi}		; bp[0] in flipped word order
___
$code.=<<___;
	fldds		0($ap),${fai}		; ap[0,1]
	fldds		0($np),${fni}		; np[0,1]

	sh2addl		$num,%r0,$arrsz
	ldi		31,$hi0
	ldo		36($arrsz),$hi1		; space for tp[num+1]
	andcm		$hi1,$hi0,$hi1		; align
	addl		$hi1,%sp,%sp
	$PUSH		$fp,-$SIZE_T(%sp)

	ldo		`$LOCALS+16`($fp),$xfer
	ldo		`$LOCALS+32+4`($fp),$tp

	xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[0]
	xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[0]
	xmpyu		${fn0},${fab0}R,${fm0}

	addl		$arrsz,$ap,$ap		; point at the end
	addl		$arrsz,$np,$np
	subi		0,$arrsz,$idx		; j=0
	ldo		8($idx),$idx		; j++++

	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
	fstds		${fab0},-16($xfer)
	fstds		${fnm0},-8($xfer)
	fstds		${fab1},0($xfer)
	fstds		${fnm1},8($xfer)
	 flddx		$idx($ap),${fai}	; ap[2,3]
	 flddx		$idx($np),${fni}	; np[2,3]
___
$code.=<<___ if ($BN_SZ==4);
	mtctl		$hi0,%cr11		; $hi0 still holds 31
	extrd,u,*=	$hi0,%sar,1,$hi0	; executes on PA-RISC 1.0
	b		L\$parisc11
	nop
___
$code.=<<___;					# PA-RISC 2.0 code-path
	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldd		-16($xfer),$ab0
	fstds		${fab0},-16($xfer)

	extrd,u		$ab0,31,32,$hi0
	extrd,u		$ab0,63,32,$ab0
	ldd		-8($xfer),$nm0
	fstds		${fnm0},-8($xfer)
	 ldo		8($idx),$idx		; j++++
	 addl		$ab0,$nm0,$nm0		; low part is discarded
	 extrd,u	$nm0,31,32,$hi1

L\$1st
	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[0]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
	ldd		0($xfer),$ab1
	fstds		${fab1},0($xfer)
	 addl		$hi0,$ab1,$ab1
	 extrd,u	$ab1,31,32,$hi0
	ldd		8($xfer),$nm1
	fstds		${fnm1},8($xfer)
	 extrd,u	$ab1,63,32,$ab1
	 addl		$hi1,$nm1,$nm1
	flddx		$idx($ap),${fai}	; ap[j,j+1]
	flddx		$idx($np),${fni}	; np[j,j+1]
	 addl		$ab1,$nm1,$nm1
	 extrd,u	$nm1,31,32,$hi1

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldd		-16($xfer),$ab0
	fstds		${fab0},-16($xfer)
	 addl		$hi0,$ab0,$ab0
	 extrd,u	$ab0,31,32,$hi0
	ldd		-8($xfer),$nm0
	fstds		${fnm0},-8($xfer)
	 extrd,u	$ab0,63,32,$ab0
	 addl		$hi1,$nm0,$nm0
	stw		$nm1,-4($tp)		; tp[j-1]
	 addl		$ab0,$nm0,$nm0
	 stw,ma		$nm0,8($tp)		; tp[j-1]
	addib,<>	8,$idx,L\$1st		; j++++
	 extrd,u	$nm0,31,32,$hi1

	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[0]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
	ldd		0($xfer),$ab1
	fstds		${fab1},0($xfer)
	 addl		$hi0,$ab1,$ab1
	 extrd,u	$ab1,31,32,$hi0
	ldd		8($xfer),$nm1
	fstds		${fnm1},8($xfer)
	 extrd,u	$ab1,63,32,$ab1
	 addl		$hi1,$nm1,$nm1
	ldd		-16($xfer),$ab0
	 addl		$ab1,$nm1,$nm1
	ldd		-8($xfer),$nm0
	 extrd,u	$nm1,31,32,$hi1

	 addl		$hi0,$ab0,$ab0
	 extrd,u	$ab0,31,32,$hi0
	stw		$nm1,-4($tp)		; tp[j-1]
	 extrd,u	$ab0,63,32,$ab0
	 addl		$hi1,$nm0,$nm0
	ldd		0($xfer),$ab1
	 addl		$ab0,$nm0,$nm0
	ldd,mb		8($xfer),$nm1
	 extrd,u	$nm0,31,32,$hi1
	stw,ma		$nm0,8($tp)		; tp[j-1]

	ldo		-1($num),$num		; i--
	subi		0,$arrsz,$idx		; j=0
___
$code.=<<___ if ($BN_SZ==4);
	fldws,ma	4($bp),${fbi}		; bp[1]
___
$code.=<<___ if ($BN_SZ==8);
	fldws		0($bp),${fbi}		; bp[1] in flipped word order
___
$code.=<<___;
	 flddx		$idx($ap),${fai}	; ap[0,1]
	 flddx		$idx($np),${fni}	; np[0,1]
	 fldws		8($xfer),${fti}R	; tp[0]
	addl		$hi0,$ab1,$ab1
	 extrd,u	$ab1,31,32,$hi0
	 extrd,u	$ab1,63,32,$ab1
	 ldo		8($idx),$idx		; j++++
	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[1]
	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[1]
	addl		$hi1,$nm1,$nm1
	addl		$ab1,$nm1,$nm1
	extrd,u		$nm1,31,32,$hi1
	 fstws,mb	${fab0}L,-8($xfer)	; save high part
	stw		$nm1,-4($tp)		; tp[j-1]

	 fcpy,sgl	%fr0,${fti}L		; zero high part
	 fcpy,sgl	%fr0,${fab0}L
	addl		$hi1,$hi0,$hi0
	extrd,u		$hi0,31,32,$hi1
	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
	 fcnvxf,dbl,dbl	${fab0},${fab0}
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)

	fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
	fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
	xmpyu		${fn0},${fab0}R,${fm0}
	ldo		`$LOCALS+32+4`($fp),$tp
L\$outer
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
	fstds		${fab0},-16($xfer)	; 33-bit value
	fstds		${fnm0},-8($xfer)
	 flddx		$idx($ap),${fai}	; ap[2]
	 flddx		$idx($np),${fni}	; np[2]
	 ldo		8($idx),$idx		; j++++
	ldd		-16($xfer),$ab0		; 33-bit value
	ldd		-8($xfer),$nm0
	ldw		0($xfer),$hi0		; high part

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	 extrd,u	$ab0,31,32,$ti0		; carry bit
	 extrd,u	$ab0,63,32,$ab0
	fstds		${fab1},0($xfer)
	 addl		$ti0,$hi0,$hi0		; account carry bit
	fstds		${fnm1},8($xfer)
	 addl		$ab0,$nm0,$nm0		; low part is discarded
	ldw		0($tp),$ti1		; tp[1]
	 extrd,u	$nm0,31,32,$hi1
	fstds		${fab0},-16($xfer)
	fstds		${fnm0},-8($xfer)

L\$inner
	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[i]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
	ldd		0($xfer),$ab1
	fstds		${fab1},0($xfer)
	 addl		$hi0,$ti1,$ti1
	 addl		$ti1,$ab1,$ab1
	ldd		8($xfer),$nm1
	fstds		${fnm1},8($xfer)
	 extrd,u	$ab1,31,32,$hi0
	 extrd,u	$ab1,63,32,$ab1
	flddx		$idx($ap),${fai}	; ap[j,j+1]
	flddx		$idx($np),${fni}	; np[j,j+1]
	 addl		$hi1,$nm1,$nm1
	 addl		$ab1,$nm1,$nm1
	ldw		4($tp),$ti0		; tp[j]
	stw		$nm1,-4($tp)		; tp[j-1]

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldd		-16($xfer),$ab0
	fstds		${fab0},-16($xfer)
	 addl		$hi0,$ti0,$ti0
	 addl		$ti0,$ab0,$ab0
	ldd		-8($xfer),$nm0
	fstds		${fnm0},-8($xfer)
	 extrd,u	$ab0,31,32,$hi0
	 extrd,u	$nm1,31,32,$hi1
	ldw		8($tp),$ti1		; tp[j]
	 extrd,u	$ab0,63,32,$ab0
	 addl		$hi1,$nm0,$nm0
	 addl		$ab0,$nm0,$nm0
	 stw,ma		$nm0,8($tp)		; tp[j-1]
	addib,<>	8,$idx,L\$inner		; j++++
	 extrd,u	$nm0,31,32,$hi1

	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[i]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
	ldd		0($xfer),$ab1
	fstds		${fab1},0($xfer)
	 addl		$hi0,$ti1,$ti1
	 addl		$ti1,$ab1,$ab1
	ldd		8($xfer),$nm1
	fstds		${fnm1},8($xfer)
	 extrd,u	$ab1,31,32,$hi0
	 extrd,u	$ab1,63,32,$ab1
	ldw		4($tp),$ti0		; tp[j]
	 addl		$hi1,$nm1,$nm1
	 addl		$ab1,$nm1,$nm1
	ldd		-16($xfer),$ab0
	ldd		-8($xfer),$nm0
	 extrd,u	$nm1,31,32,$hi1

	addl		$hi0,$ab0,$ab0
	 addl		$ti0,$ab0,$ab0
	 stw		$nm1,-4($tp)		; tp[j-1]
	 extrd,u	$ab0,31,32,$hi0
	ldw		8($tp),$ti1		; tp[j]
	 extrd,u	$ab0,63,32,$ab0
	 addl		$hi1,$nm0,$nm0
	ldd		0($xfer),$ab1
	 addl		$ab0,$nm0,$nm0
	ldd,mb		8($xfer),$nm1
	 extrd,u	$nm0,31,32,$hi1
	 stw,ma		$nm0,8($tp)		; tp[j-1]

	addib,=		-1,$num,L\$outerdone	; i--
	subi		0,$arrsz,$idx		; j=0
___
$code.=<<___ if ($BN_SZ==4);
	fldws,ma	4($bp),${fbi}		; bp[i]
___
$code.=<<___ if ($BN_SZ==8);
	ldi		12,$ti0			; bp[i] in flipped word order
	addl,ev		%r0,$num,$num
	ldi		-4,$ti0
	addl		$ti0,$bp,$bp
	fldws		0($bp),${fbi}
___
$code.=<<___;
	 flddx		$idx($ap),${fai}	; ap[0]
	addl		$hi0,$ab1,$ab1
	 flddx		$idx($np),${fni}	; np[0]
	 fldws		8($xfer),${fti}R	; tp[0]
	addl		$ti1,$ab1,$ab1
	extrd,u		$ab1,31,32,$hi0
	extrd,u		$ab1,63,32,$ab1

	 ldo		8($idx),$idx		; j++++
	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[i]
	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[i]
	ldw		4($tp),$ti0		; tp[j]

	addl		$hi1,$nm1,$nm1
	 fstws,mb	${fab0}L,-8($xfer)	; save high part
	addl		$ab1,$nm1,$nm1
	extrd,u		$nm1,31,32,$hi1
	 fcpy,sgl	%fr0,${fti}L		; zero high part
	 fcpy,sgl	%fr0,${fab0}L
	stw		$nm1,-4($tp)		; tp[j-1]

	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
	 fcnvxf,dbl,dbl	${fab0},${fab0}
	addl		$hi1,$hi0,$hi0
	 fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
	addl		$ti0,$hi0,$hi0
	extrd,u		$hi0,31,32,$hi1
	 fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)
	 xmpyu		${fn0},${fab0}R,${fm0}

	b		L\$outer
	ldo		`$LOCALS+32+4`($fp),$tp

L\$outerdone
	addl		$hi0,$ab1,$ab1
	addl		$ti1,$ab1,$ab1
	extrd,u		$ab1,31,32,$hi0
	extrd,u		$ab1,63,32,$ab1

	ldw		4($tp),$ti0		; tp[j]

	addl		$hi1,$nm1,$nm1
	addl		$ab1,$nm1,$nm1
	extrd,u		$nm1,31,32,$hi1
	stw		$nm1,-4($tp)		; tp[j-1]

	addl		$hi1,$hi0,$hi0
	addl		$ti0,$hi0,$hi0
	extrd,u		$hi0,31,32,$hi1
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)

	ldo		`$LOCALS+32`($fp),$tp
	sub		%r0,%r0,%r0		; clear borrow
___
$code.=<<___ if ($BN_SZ==4);
	ldws,ma		4($tp),$ti0
	extru,=		$rp,31,3,%r0		; is rp 64-bit aligned?
	b		L\$sub_pa11
	addl		$tp,$arrsz,$tp
L\$sub
	ldwx		$idx($np),$hi0
	subb		$ti0,$hi0,$hi1
	ldwx		$idx($tp),$ti0
	addib,<>	4,$idx,L\$sub
	stws,ma		$hi1,4($rp)

	subb		$ti0,%r0,$hi1
	ldo		-4($tp),$tp
___
$code.=<<___ if ($BN_SZ==8);
	ldd,ma		8($tp),$ti0
L\$sub
	ldd		$idx($np),$hi0
	shrpd		$ti0,$ti0,32,$ti0	; flip word order
	std		$ti0,-8($tp)		; save flipped value
	sub,db		$ti0,$hi0,$hi1
	ldd,ma		8($tp),$ti0
	addib,<>	8,$idx,L\$sub
	std,ma		$hi1,8($rp)

	extrd,u		$ti0,31,32,$ti0		; carry in flipped word order
	sub,db		$ti0,%r0,$hi1
	ldo		-8($tp),$tp
___
$code.=<<___;
	and		$tp,$hi1,$ap
	andcm		$rp,$hi1,$bp
	or		$ap,$bp,$np

	sub		$rp,$arrsz,$rp		; rewind rp
	subi		0,$arrsz,$idx
	ldo		`$LOCALS+32`($fp),$tp
L\$copy
	ldd		$idx($np),$hi0
	std,ma		%r0,8($tp)
	addib,<>	8,$idx,.-8		; L\$copy
	std,ma		$hi0,8($rp)	
___

if ($BN_SZ==4) {				# PA-RISC 1.1 code-path
$ablo=$ab0;
$abhi=$ab1;
$nmlo0=$nm0;
$nmhi0=$nm1;
$nmlo1="%r9";
$nmhi1="%r8";

$code.=<<___;
	b		L\$done
	nop

	.ALIGN		8
L\$parisc11
	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldw		-12($xfer),$ablo
	ldw		-16($xfer),$hi0
	ldw		-4($xfer),$nmlo0
	ldw		-8($xfer),$nmhi0
	fstds		${fab0},-16($xfer)
	fstds		${fnm0},-8($xfer)

	 ldo		8($idx),$idx		; j++++
	 add		$ablo,$nmlo0,$nmlo0	; discarded
	 addc		%r0,$nmhi0,$hi1
	ldw		4($xfer),$ablo
	ldw		0($xfer),$abhi
	nop

L\$1st_pa11
	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[0]
	flddx		$idx($ap),${fai}	; ap[j,j+1]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
	flddx		$idx($np),${fni}	; np[j,j+1]
	 add		$hi0,$ablo,$ablo
	ldw		12($xfer),$nmlo1
	 addc		%r0,$abhi,$hi0
	ldw		8($xfer),$nmhi1
	 add		$ablo,$nmlo1,$nmlo1
	fstds		${fab1},0($xfer)
	 addc		%r0,$nmhi1,$nmhi1
	fstds		${fnm1},8($xfer)
	 add		$hi1,$nmlo1,$nmlo1
	ldw		-12($xfer),$ablo
	 addc		%r0,$nmhi1,$hi1
	ldw		-16($xfer),$abhi

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
	ldw		-4($xfer),$nmlo0
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldw		-8($xfer),$nmhi0
	 add		$hi0,$ablo,$ablo
	stw		$nmlo1,-4($tp)		; tp[j-1]
	 addc		%r0,$abhi,$hi0
	fstds		${fab0},-16($xfer)
	 add		$ablo,$nmlo0,$nmlo0
	fstds		${fnm0},-8($xfer)
	 addc		%r0,$nmhi0,$nmhi0
	ldw		0($xfer),$abhi
	 add		$hi1,$nmlo0,$nmlo0
	ldw		4($xfer),$ablo
	 stws,ma	$nmlo0,8($tp)		; tp[j-1]
	addib,<>	8,$idx,L\$1st_pa11	; j++++
	 addc		%r0,$nmhi0,$hi1

	 ldw		8($xfer),$nmhi1
	 ldw		12($xfer),$nmlo1
	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[0]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
	 add		$hi0,$ablo,$ablo
	fstds		${fab1},0($xfer)
	 addc		%r0,$abhi,$hi0
	fstds		${fnm1},8($xfer)
	 add		$ablo,$nmlo1,$nmlo1
	ldw		-16($xfer),$abhi
	 addc		%r0,$nmhi1,$nmhi1
	ldw		-12($xfer),$ablo
	 add		$hi1,$nmlo1,$nmlo1
	ldw		-8($xfer),$nmhi0
	 addc		%r0,$nmhi1,$hi1
	ldw		-4($xfer),$nmlo0

	 add		$hi0,$ablo,$ablo
	stw		$nmlo1,-4($tp)		; tp[j-1]
	 addc		%r0,$abhi,$hi0
	ldw		0($xfer),$abhi
	 add		$ablo,$nmlo0,$nmlo0
	ldw		4($xfer),$ablo
	 addc		%r0,$nmhi0,$nmhi0
	ldws,mb		8($xfer),$nmhi1
	 add		$hi1,$nmlo0,$nmlo0
	ldw		4($xfer),$nmlo1
	 addc		%r0,$nmhi0,$hi1
	stws,ma		$nmlo0,8($tp)		; tp[j-1]

	ldo		-1($num),$num		; i--
	subi		0,$arrsz,$idx		; j=0

	 fldws,ma	4($bp),${fbi}		; bp[1]
	 flddx		$idx($ap),${fai}	; ap[0,1]
	 flddx		$idx($np),${fni}	; np[0,1]
	 fldws		8($xfer),${fti}R	; tp[0]
	add		$hi0,$ablo,$ablo
	addc		%r0,$abhi,$hi0
	 ldo		8($idx),$idx		; j++++
	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[1]
	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[1]
	add		$hi1,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$nmhi1
	add		$ablo,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$hi1
	 fstws,mb	${fab0}L,-8($xfer)	; save high part
	stw		$nmlo1,-4($tp)		; tp[j-1]

	 fcpy,sgl	%fr0,${fti}L		; zero high part
	 fcpy,sgl	%fr0,${fab0}L
	add		$hi1,$hi0,$hi0
	addc		%r0,%r0,$hi1
	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
	 fcnvxf,dbl,dbl	${fab0},${fab0}
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)

	fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
	fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
	xmpyu		${fn0},${fab0}R,${fm0}
	ldo		`$LOCALS+32+4`($fp),$tp
L\$outer_pa11
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
	fstds		${fab0},-16($xfer)	; 33-bit value
	fstds		${fnm0},-8($xfer)
	 flddx		$idx($ap),${fai}	; ap[2,3]
	 flddx		$idx($np),${fni}	; np[2,3]
	ldw		-16($xfer),$abhi	; carry bit actually
	 ldo		8($idx),$idx		; j++++
	ldw		-12($xfer),$ablo
	ldw		-8($xfer),$nmhi0
	ldw		-4($xfer),$nmlo0
	ldw		0($xfer),$hi0		; high part

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	fstds		${fab1},0($xfer)
	 addl		$abhi,$hi0,$hi0		; account carry bit
	fstds		${fnm1},8($xfer)
	 add		$ablo,$nmlo0,$nmlo0	; discarded
	ldw		0($tp),$ti1		; tp[1]
	 addc		%r0,$nmhi0,$hi1
	fstds		${fab0},-16($xfer)
	fstds		${fnm0},-8($xfer)
	ldw		4($xfer),$ablo
	ldw		0($xfer),$abhi

L\$inner_pa11
	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[i]
	flddx		$idx($ap),${fai}	; ap[j,j+1]
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
	flddx		$idx($np),${fni}	; np[j,j+1]
	 add		$hi0,$ablo,$ablo
	ldw		4($tp),$ti0		; tp[j]
	 addc		%r0,$abhi,$abhi
	ldw		12($xfer),$nmlo1
	 add		$ti1,$ablo,$ablo
	ldw		8($xfer),$nmhi1
	 addc		%r0,$abhi,$hi0
	fstds		${fab1},0($xfer)
	 add		$ablo,$nmlo1,$nmlo1
	fstds		${fnm1},8($xfer)
	 addc		%r0,$nmhi1,$nmhi1
	ldw		-12($xfer),$ablo
	 add		$hi1,$nmlo1,$nmlo1
	ldw		-16($xfer),$abhi
	 addc		%r0,$nmhi1,$hi1

	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
	ldw		8($tp),$ti1		; tp[j]
	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
	ldw		-4($xfer),$nmlo0
	 add		$hi0,$ablo,$ablo
	ldw		-8($xfer),$nmhi0
	 addc		%r0,$abhi,$abhi
	stw		$nmlo1,-4($tp)		; tp[j-1]
	 add		$ti0,$ablo,$ablo
	fstds		${fab0},-16($xfer)
	 addc		%r0,$abhi,$hi0
	fstds		${fnm0},-8($xfer)
	 add		$ablo,$nmlo0,$nmlo0
	ldw		4($xfer),$ablo
	 addc		%r0,$nmhi0,$nmhi0
	ldw		0($xfer),$abhi
	 add		$hi1,$nmlo0,$nmlo0
	 stws,ma	$nmlo0,8($tp)		; tp[j-1]
	addib,<>	8,$idx,L\$inner_pa11	; j++++
	 addc		%r0,$nmhi0,$hi1

	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[i]
	ldw		12($xfer),$nmlo1
	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
	ldw		8($xfer),$nmhi1
	 add		$hi0,$ablo,$ablo
	ldw		4($tp),$ti0		; tp[j]
	 addc		%r0,$abhi,$abhi
	fstds		${fab1},0($xfer)
	 add		$ti1,$ablo,$ablo
	fstds		${fnm1},8($xfer)
	 addc		%r0,$abhi,$hi0
	ldw		-16($xfer),$abhi
	 add		$ablo,$nmlo1,$nmlo1
	ldw		-12($xfer),$ablo
	 addc		%r0,$nmhi1,$nmhi1
	ldw		-8($xfer),$nmhi0
	 add		$hi1,$nmlo1,$nmlo1
	ldw		-4($xfer),$nmlo0
	 addc		%r0,$nmhi1,$hi1

	add		$hi0,$ablo,$ablo
	 stw		$nmlo1,-4($tp)		; tp[j-1]
	addc		%r0,$abhi,$abhi
	 add		$ti0,$ablo,$ablo
	ldw		8($tp),$ti1		; tp[j]
	 addc		%r0,$abhi,$hi0
	ldw		0($xfer),$abhi
	 add		$ablo,$nmlo0,$nmlo0
	ldw		4($xfer),$ablo
	 addc		%r0,$nmhi0,$nmhi0
	ldws,mb		8($xfer),$nmhi1
	 add		$hi1,$nmlo0,$nmlo0
	ldw		4($xfer),$nmlo1
	 addc		%r0,$nmhi0,$hi1
	 stws,ma	$nmlo0,8($tp)		; tp[j-1]

	addib,=		-1,$num,L\$outerdone_pa11; i--
	subi		0,$arrsz,$idx		; j=0

	 fldws,ma	4($bp),${fbi}		; bp[i]
	 flddx		$idx($ap),${fai}	; ap[0]
	add		$hi0,$ablo,$ablo
	addc		%r0,$abhi,$abhi
	 flddx		$idx($np),${fni}	; np[0]
	 fldws		8($xfer),${fti}R	; tp[0]
	add		$ti1,$ablo,$ablo
	addc		%r0,$abhi,$hi0

	 ldo		8($idx),$idx		; j++++
	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[i]
	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[i]
	ldw		4($tp),$ti0		; tp[j]

	add		$hi1,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$nmhi1
	 fstws,mb	${fab0}L,-8($xfer)	; save high part
	add		$ablo,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$hi1
	 fcpy,sgl	%fr0,${fti}L		; zero high part
	 fcpy,sgl	%fr0,${fab0}L
	stw		$nmlo1,-4($tp)		; tp[j-1]

	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
	 fcnvxf,dbl,dbl	${fab0},${fab0}
	add		$hi1,$hi0,$hi0
	addc		%r0,%r0,$hi1
	 fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
	add		$ti0,$hi0,$hi0
	addc		%r0,$hi1,$hi1
	 fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)
	 xmpyu		${fn0},${fab0}R,${fm0}

	b		L\$outer_pa11
	ldo		`$LOCALS+32+4`($fp),$tp

L\$outerdone_pa11
	add		$hi0,$ablo,$ablo
	addc		%r0,$abhi,$abhi
	add		$ti1,$ablo,$ablo
	addc		%r0,$abhi,$hi0

	ldw		4($tp),$ti0		; tp[j]

	add		$hi1,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$nmhi1
	add		$ablo,$nmlo1,$nmlo1
	addc		%r0,$nmhi1,$hi1
	stw		$nmlo1,-4($tp)		; tp[j-1]

	add		$hi1,$hi0,$hi0
	addc		%r0,%r0,$hi1
	add		$ti0,$hi0,$hi0
	addc		%r0,$hi1,$hi1
	stw		$hi0,0($tp)
	stw		$hi1,4($tp)

	ldo		`$LOCALS+32+4`($fp),$tp
	sub		%r0,%r0,%r0		; clear borrow
	ldw		-4($tp),$ti0
	addl		$tp,$arrsz,$tp
L\$sub_pa11
	ldwx		$idx($np),$hi0
	subb		$ti0,$hi0,$hi1
	ldwx		$idx($tp),$ti0
	addib,<>	4,$idx,L\$sub_pa11
	stws,ma		$hi1,4($rp)

	subb		$ti0,%r0,$hi1
	ldo		-4($tp),$tp
	and		$tp,$hi1,$ap
	andcm		$rp,$hi1,$bp
	or		$ap,$bp,$np

	sub		$rp,$arrsz,$rp		; rewind rp
	subi		0,$arrsz,$idx
	ldo		`$LOCALS+32`($fp),$tp
L\$copy_pa11
	ldwx		$idx($np),$hi0
	stws,ma		%r0,4($tp)
	addib,<>	4,$idx,L\$copy_pa11
	stws,ma		$hi0,4($rp)	

	nop					; alignment
L\$done
___
}

$code.=<<___;
	ldi		1,%r28			; signal "handled"
	ldo		$FRAME($fp),%sp		; destroy tp[num+1]

	$POP	`-$FRAME-$SAVED_RP`(%sp),%r2	; standard epilogue
	$POP	`-$FRAME+1*$SIZE_T`(%sp),%r4
	$POP	`-$FRAME+2*$SIZE_T`(%sp),%r5
	$POP	`-$FRAME+3*$SIZE_T`(%sp),%r6
	$POP	`-$FRAME+4*$SIZE_T`(%sp),%r7
	$POP	`-$FRAME+5*$SIZE_T`(%sp),%r8
	$POP	`-$FRAME+6*$SIZE_T`(%sp),%r9
	$POP	`-$FRAME+7*$SIZE_T`(%sp),%r10
L\$abort
	bv	(%r2)
	.EXIT
	$POPMB	-$FRAME(%sp),%r3
	.PROCEND
	.STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
___

# Explicitly encode PA-RISC 2.0 instructions used in this module, so
# that it can be compiled with .LEVEL 1.0. It should be noted that I
# wouldn't have to do this, if GNU assembler understood .ALLOW 2.0
# directive...

my $ldd = sub {
  my ($mod,$args) = @_;
  my $orig = "ldd$mod\t$args";

    if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/)		# format 4
    {	my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3;
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/)	# format 5
    {	my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3;
	$opcode|=(($1&0xF)<<17)|(($1&0x10)<<12);		# encode offset
	$opcode|=(1<<5)  if ($mod =~ /^,m/);
	$opcode|=(1<<13) if ($mod =~ /^,mb/);
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    else { "\t".$orig; }
};

my $std = sub {
  my ($mod,$args) = @_;
  my $orig = "std$mod\t$args";

    if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/)	# format 6
    {	my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6);
	$opcode|=(($2&0xF)<<1)|(($2&0x10)>>4);			# encode offset
	$opcode|=(1<<5)  if ($mod =~ /^,m/);
	$opcode|=(1<<13) if ($mod =~ /^,mb/);
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    else { "\t".$orig; }
};

my $extrd = sub {
  my ($mod,$args) = @_;
  my $orig = "extrd$mod\t$args";

    # I only have ",u" completer, it's implicitly encoded...
    if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/)	# format 15
    {	my $opcode=(0x36<<26)|($1<<21)|($4<<16);
	my $len=32-$3;
	$opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5);		# encode pos
	$opcode |= (($len&0x20)<<7)|($len&0x1f);		# encode len
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/)	# format 12
    {	my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9);
	my $len=32-$2;
	$opcode |= (($len&0x20)<<3)|($len&0x1f);		# encode len
	$opcode |= (1<<13) if ($mod =~ /,\**=/);
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    else { "\t".$orig; }
};

my $shrpd = sub {
  my ($mod,$args) = @_;
  my $orig = "shrpd$mod\t$args";

    if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/)	# format 14
    {	my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4;
	my $cpos=63-$3;
	$opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5);		# encode sa
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
    }
    else { "\t".$orig; }
};

my $sub = sub {
  my ($mod,$args) = @_;
  my $orig = "sub$mod\t$args";

    if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) {
	my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3;
	$opcode|=(1<<10);	# e1
	$opcode|=(1<<8);	# e2
	$opcode|=(1<<5);	# d
	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig
    }
    else { "\t".$orig; }
};

sub assemble {
  my ($mnemonic,$mod,$args)=@_;
  my $opcode = eval("\$$mnemonic");

    ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args";
}

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/ge;
	# flip word order in 64-bit mode...
	s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8);
	# assemble 2.0 instructions in 32-bit mode...
	s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4);

	s/\bbv\b/bve/gm	if ($SIZE_T==8);

	print $_,"\n";
}
close STDOUT;