modexp512-x86_64.pl 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#!/usr/bin/env perl
#
# Copyright (c) 2010-2011 Intel Corp.
#   Author: Vinodh.Gopal@intel.com
#           Jim Guilford
#           Erdinc.Ozturk@intel.com
#           Maxim.Perminov@intel.com
#
# More information about algorithm used can be found at:
#   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
#
# ====================================================================
# Copyright (c) 2011 The OpenSSL Project.  All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# 3. All advertising materials mentioning features or use of this
#    software must display the following acknowledgment:
#    "This product includes software developed by the OpenSSL Project
#    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
#
# 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
#    endorse or promote products derived from this software without
#    prior written permission. For written permission, please contact
#    licensing@OpenSSL.org.
#
# 5. Products derived from this software may not be called "OpenSSL"
#    nor may "OpenSSL" appear in their names without prior written
#    permission of the OpenSSL Project.
#
# 6. Redistributions of any form whatsoever must retain the following
#    acknowledgment:
#    "This product includes software developed by the OpenSSL Project
#    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
#
# THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
# ====================================================================

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;

use strict;
my $code=".text\n\n";
my $m=0;

#
# Define x512 macros
#

#MULSTEP_512_ADD	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
#
# uses rax, rdx, and args
sub MULSTEP_512_ADD
{
 my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
 my @X=@$x;	# make a copy
$code.=<<___;
	 mov	(+8*0)($SRC2), %rax
	 mul	$OP			# rdx:rax = %OP * [0]
	 mov	($ASRC), $X[0]
	 add	%rax, $X[0]
	 adc	\$0, %rdx
	 mov	$X[0], $DST
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
	 mov	%rdx, $TMP

	 mov	(+8*$i)($SRC2), %rax
	 mul	$OP			# rdx:rax = %OP * [$i]
	 mov	(+8*$i)($ASRC), $X[$i]
	 add	%rax, $X[$i]
	 adc	\$0, %rdx
	 add	$TMP, $X[$i]
	 adc	\$0, %rdx
___
}
$code.=<<___;
	 mov	%rdx, $X[0]
___
}

#MULSTEP_512	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
#
# uses rax, rdx, and args
sub MULSTEP_512
{
 my ($x, $DST, $SRC2, $OP, $TMP)=@_;
 my @X=@$x;	# make a copy
$code.=<<___;
	 mov	(+8*0)($SRC2), %rax
	 mul	$OP			# rdx:rax = %OP * [0]
	 add	%rax, $X[0]
	 adc	\$0, %rdx
	 mov	$X[0], $DST
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
	 mov	%rdx, $TMP

	 mov	(+8*$i)($SRC2), %rax
	 mul	$OP			# rdx:rax = %OP * [$i]
	 add	%rax, $X[$i]
	 adc	\$0, %rdx
	 add	$TMP, $X[$i]
	 adc	\$0, %rdx
___
}
$code.=<<___;
	 mov	%rdx, $X[0]
___
}

#
# Swizzle Macros
#

# macro to copy data from flat space to swizzled table
#MACRO swizzle	pDst, pSrc, tmp1, tmp2
# pDst and pSrc are modified
sub swizzle
{
 my ($pDst, $pSrc, $cnt, $d0)=@_;
$code.=<<___;
	 mov	\$8, $cnt
loop_$m:
	 mov	($pSrc), $d0
	 mov	$d0#w, ($pDst)
	 shr	\$16, $d0
	 mov	$d0#w, (+64*1)($pDst)
	 shr	\$16, $d0
	 mov	$d0#w, (+64*2)($pDst)
	 shr	\$16, $d0
	 mov	$d0#w, (+64*3)($pDst)
	 lea	8($pSrc), $pSrc
	 lea	64*4($pDst), $pDst
	 dec	$cnt
	 jnz	loop_$m
___

 $m++;
}

# macro to copy data from swizzled table to  flat space
#MACRO unswizzle	pDst, pSrc, tmp*3
sub unswizzle
{
 my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
$code.=<<___;
	 mov	\$4, $cnt
loop_$m:
	 movzxw	(+64*3+256*0)($pSrc), $d0
	 movzxw	(+64*3+256*1)($pSrc), $d1
	 shl	\$16, $d0
	 shl	\$16, $d1
	 mov	(+64*2+256*0)($pSrc), $d0#w
	 mov	(+64*2+256*1)($pSrc), $d1#w
	 shl	\$16, $d0
	 shl	\$16, $d1
	 mov	(+64*1+256*0)($pSrc), $d0#w
	 mov	(+64*1+256*1)($pSrc), $d1#w
	 shl	\$16, $d0
	 shl	\$16, $d1
	 mov	(+64*0+256*0)($pSrc), $d0#w
	 mov	(+64*0+256*1)($pSrc), $d1#w
	 mov	$d0, (+8*0)($pDst)
	 mov	$d1, (+8*1)($pDst)
	 lea	256*2($pSrc), $pSrc
	 lea	8*2($pDst), $pDst
	 sub	\$1, $cnt
	 jnz	loop_$m
___

 $m++;
}

#
# Data Structures
#

# Reduce Data
#
#
# Offset  Value
# 0C0     Carries
# 0B8     X2[10]
# 0B0     X2[9]
# 0A8     X2[8]
# 0A0     X2[7]
# 098     X2[6]
# 090     X2[5]
# 088     X2[4]
# 080     X2[3]
# 078     X2[2]
# 070     X2[1]
# 068     X2[0]
# 060     X1[12]  P[10]
# 058     X1[11]  P[9]  Z[8]
# 050     X1[10]  P[8]  Z[7]
# 048     X1[9]   P[7]  Z[6]
# 040     X1[8]   P[6]  Z[5]
# 038     X1[7]   P[5]  Z[4]
# 030     X1[6]   P[4]  Z[3]
# 028     X1[5]   P[3]  Z[2]
# 020     X1[4]   P[2]  Z[1]
# 018     X1[3]   P[1]  Z[0]
# 010     X1[2]   P[0]  Y[2]
# 008     X1[1]   Q[1]  Y[1]
# 000     X1[0]   Q[0]  Y[0]

my $X1_offset           =  0;			# 13 qwords
my $X2_offset           =  $X1_offset + 13*8;			# 11 qwords
my $Carries_offset      =  $X2_offset + 11*8;			# 1 qword
my $Q_offset            =  0;			# 2 qwords
my $P_offset            =  $Q_offset + 2*8;			# 11 qwords
my $Y_offset            =  0;			# 3 qwords
my $Z_offset            =  $Y_offset + 3*8;			# 9 qwords

my $Red_Data_Size       =  $Carries_offset + 1*8;			# (25 qwords)

#
# Stack Frame
#
#
# offset	value
# ...		<old stack contents>
# ...
# 280		Garray

# 278		tmp16[15]
# ...		...
# 200		tmp16[0]

# 1F8		tmp[7]
# ...		...
# 1C0		tmp[0]

# 1B8		GT[7]
# ...		...
# 180		GT[0]

# 178		Reduce Data
# ...		...
# 0B8		Reduce Data
# 0B0		reserved
# 0A8		reserved
# 0A0		reserved
# 098		reserved
# 090		reserved
# 088		reduce result addr
# 080		exp[8]

# ...
# 048		exp[1]
# 040		exp[0]

# 038		reserved
# 030		loop_idx
# 028		pg
# 020		i
# 018		pData	; arg 4
# 010		pG	; arg 2
# 008		pResult	; arg 1
# 000		rsp	; stack pointer before subtract

my $rsp_offset          =  0;
my $pResult_offset      =  8*1 + $rsp_offset;
my $pG_offset           =  8*1 + $pResult_offset;
my $pData_offset        =  8*1 + $pG_offset;
my $i_offset            =  8*1 + $pData_offset;
my $pg_offset           =  8*1 + $i_offset;
my $loop_idx_offset     =  8*1 + $pg_offset;
my $reserved1_offset    =  8*1 + $loop_idx_offset;
my $exp_offset          =  8*1 + $reserved1_offset;
my $red_result_addr_offset=  8*9 + $exp_offset;
my $reserved2_offset    =  8*1 + $red_result_addr_offset;
my $Reduce_Data_offset  =  8*5 + $reserved2_offset;
my $GT_offset           =  $Red_Data_Size + $Reduce_Data_offset;
my $tmp_offset          =  8*8 + $GT_offset;
my $tmp16_offset        =  8*8 + $tmp_offset;
my $garray_offset       =  8*16 + $tmp16_offset;
my $mem_size            =  8*8*32 + $garray_offset;

#
# Offsets within Reduce Data
#
#
#	struct MODF_2FOLD_MONT_512_C1_DATA {
#	UINT64 t[8][8];
#	UINT64 m[8];
#	UINT64 m1[8]; /* 2^768 % m */
#	UINT64 m2[8]; /* 2^640 % m */
#	UINT64 k1[2]; /* (- 1/m) % 2^128 */
#	};

my $T                   =  0;
my $M                   =  512;			# = 8 * 8 * 8
my $M1                  =  576;			# = 8 * 8 * 9 /* += 8 * 8 */
my $M2                  =  640;			# = 8 * 8 * 10 /* += 8 * 8 */
my $K1                  =  704;			# = 8 * 8 * 11 /* += 8 * 8 */

#
#   FUNCTIONS
#

{{{
#
# MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
#                       and add 512-bits (8 qwords)
#                       to get 640 bits (10 qwords)
# Input: 128-bit mul source: [rdi+8*1], rbp
#        512-bit mul source: [rsi+8*n]
#        512-bit add source: r15, r14, ..., r9, r8
# Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
# Clobbers all regs except: rcx, rsi, rdi
$code.=<<___;
.type	MULADD_128x512,\@abi-omnipotent
.align	16
MULADD_128x512:
___
	&MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
$code.=<<___;
	 mov	(+8*1)(%rdi), %rbp
___
	&MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
$code.=<<___;
	 ret
.size	MULADD_128x512,.-MULADD_128x512
___
}}}

{{{
#MULADD_256x512	MACRO	pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
#
# Inputs: pDst: Destination  (768 bits, 12 qwords)
#         pA:   Multiplicand (1024 bits, 16 qwords)
#         pB:   Multiplicand (512 bits, 8 qwords)
# Dst = Ah * B + Al
# where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
# Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
# Uses registers: arguments, RAX, RDX
sub MULADD_256x512
{
 my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
$code.=<<___;
	mov	(+8*12)($pA), $OP
___
	&MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
	push(@$X,shift(@$X));

$code.=<<___;
	 mov	(+8*13)($pA), $OP
___
	&MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
	push(@$X,shift(@$X));

$code.=<<___;
	 mov	(+8*14)($pA), $OP
___
	&MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
	push(@$X,shift(@$X));

$code.=<<___;
	 mov	(+8*15)($pA), $OP
___
	&MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
	push(@$X,shift(@$X));
}

#
# mont_reduce(UINT64 *x,  /* 1024 bits, 16 qwords */
#	       UINT64 *m,  /*  512 bits,  8 qwords */
#	       MODF_2FOLD_MONT_512_C1_DATA *data,
#             UINT64 *r)  /*  512 bits,  8 qwords */
# Input:  x (number to be reduced): tmp16 (Implicit)
#         m (modulus):              [pM]  (Implicit)
#         data (reduce data):       [pData] (Implicit)
# Output: r (result):		     Address in [red_res_addr]
#         result also in: r9, r8, r15, r14, r13, r12, r11, r10

my @X=map("%r$_",(8..15));

$code.=<<___;
.type	mont_reduce,\@abi-omnipotent
.align	16
mont_reduce:
___

my $STACK_DEPTH         =  8;
	#
	# X1 = Xh * M1 + Xl
$code.=<<___;
	 lea	(+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi			# pX1 (Dst) 769 bits, 13 qwords
	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rsi			# pM1 (Bsrc) 512 bits, 8 qwords
	 add	\$$M1, %rsi
	 lea	(+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx			# X (Asrc) 1024 bits, 16 qwords

___

	&MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X);	# rotates @X 4 times
	# results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]

$code.=<<___;
	 xor	%rax, %rax
	# X1 += xl
	 add	(+8*8)(%rcx), $X[4]
	 adc	(+8*9)(%rcx), $X[5]
	 adc	(+8*10)(%rcx), $X[6]
	 adc	(+8*11)(%rcx), $X[7]
	 adc	\$0, %rax
	# X1 is now rax, r11-r8, r15-r12, tmp16[3:0]

	#
	# check for carry ;; carry stored in rax
	 mov	$X[4], (+8*8)(%rdi)			# rdi points to X1
	 mov	$X[5], (+8*9)(%rdi)
	 mov	$X[6], %rbp
	 mov	$X[7], (+8*11)(%rdi)

	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)

	 mov	(+8*0)(%rdi), $X[4]
	 mov	(+8*1)(%rdi), $X[5]
	 mov	(+8*2)(%rdi), $X[6]
	 mov	(+8*3)(%rdi), $X[7]

	# X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
	# rdi -> X1
	# rsi -> M1

	#
	# X2 = Xh * M2 + Xl
	# do first part (X2 = Xh * M2)
	 add	\$8*10, %rdi			# rdi -> pXh ; 128 bits, 2 qwords
				#        Xh is actually { [rdi+8*1], rbp }
	 add	\$`$M2-$M1`, %rsi			# rsi -> M2
	 lea	(+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx			# rcx -> pX2 ; 641 bits, 11 qwords
___
	unshift(@X,pop(@X));	unshift(@X,pop(@X));
$code.=<<___;

	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax

	# X2 += Xl
	 add	(+8*8-8*10)(%rdi), $X[6]		# (-8*10) is to adjust rdi -> Xh to Xl
	 adc	(+8*9-8*10)(%rdi), $X[7]
	 mov	$X[6], (+8*8)(%rcx)
	 mov	$X[7], (+8*9)(%rcx)

	 adc	%rax, %rax
	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)

	 lea	(+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi			# rdi -> pQ ; 128 bits, 2 qwords
	 add	\$`$K1-$M2`, %rsi			# rsi -> pK1 ; 128 bits, 2 qwords

	# MUL_128x128t128	rdi, rcx, rsi	; Q = X2 * K1 (bottom half)
	# B1:B0 = rsi[1:0] = K1[1:0]
	# A1:A0 = rcx[1:0] = X2[1:0]
	# Result = rdi[1],rbp = Q[1],rbp
	 mov	(%rsi), %r8			# B0
	 mov	(+8*1)(%rsi), %rbx			# B1

	 mov	(%rcx), %rax			# A0
	 mul	%r8			# B0
	 mov	%rax, %rbp
	 mov	%rdx, %r9

	 mov	(+8*1)(%rcx), %rax			# A1
	 mul	%r8			# B0
	 add	%rax, %r9

	 mov	(%rcx), %rax			# A0
	 mul	%rbx			# B1
	 add	%rax, %r9

	 mov	%r9, (+8*1)(%rdi)
	# end MUL_128x128t128

	 sub	\$`$K1-$M`, %rsi

	 mov	(%rcx), $X[6]
	 mov	(+8*1)(%rcx), $X[7]			# r9:r8 = X2[1:0]

	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]

	# load first half of m to rdx, rdi, rbx, rax
	# moved this here for efficiency
	 mov	(+8*0)(%rsi), %rax
	 mov	(+8*1)(%rsi), %rbx
	 mov	(+8*2)(%rsi), %rdi
	 mov	(+8*3)(%rsi), %rdx

	# continue with reduction
	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp

	 add	(+8*8)(%rcx), $X[6]
	 adc	(+8*9)(%rcx), $X[7]

	#accumulate the final carry to rbp
	 adc	%rbp, %rbp

	# Add in overflow corrections: R = (X2>>128) += T[overflow]
	# R = {r9, r8, r15, r14, ..., r10}
	 shl	\$3, %rbp
	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rcx			# rsi -> Data (and points to T)
	 add	%rcx, %rbp			# pT ; 512 bits, 8 qwords, spread out

	# rsi will be used to generate a mask after the addition
	 xor	%rsi, %rsi

	 add	(+8*8*0)(%rbp), $X[0]
	 adc	(+8*8*1)(%rbp), $X[1]
	 adc	(+8*8*2)(%rbp), $X[2]
	 adc	(+8*8*3)(%rbp), $X[3]
	 adc	(+8*8*4)(%rbp), $X[4]
	 adc	(+8*8*5)(%rbp), $X[5]
	 adc	(+8*8*6)(%rbp), $X[6]
	 adc	(+8*8*7)(%rbp), $X[7]

	# if there is a carry:	rsi = 0xFFFFFFFFFFFFFFFF
	# if carry is clear:	rsi = 0x0000000000000000
	 sbb	\$0, %rsi

	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
	 and	%rsi, %rax
	 and	%rsi, %rbx
	 and	%rsi, %rdi
	 and	%rsi, %rdx

	 mov	\$1, %rbp
	 sub	%rax, $X[0]
	 sbb	%rbx, $X[1]
	 sbb	%rdi, $X[2]
	 sbb	%rdx, $X[3]

	# if there is a borrow:		rbp = 0
	# if there is no borrow:	rbp = 1
	# this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
	 sbb	\$0, %rbp

	#load second half of m to rdx, rdi, rbx, rax

	 add	\$$M, %rcx
	 mov	(+8*4)(%rcx), %rax
	 mov	(+8*5)(%rcx), %rbx
	 mov	(+8*6)(%rcx), %rdi
	 mov	(+8*7)(%rcx), %rdx

	# use the rsi mask as before
	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
	 and	%rsi, %rax
	 and	%rsi, %rbx
	 and	%rsi, %rdi
	 and	%rsi, %rdx

	# if rbp = 0, there was a borrow before, it is moved to the carry flag
	# if rbp = 1, there was not a borrow before, carry flag is cleared
	 sub	\$1, %rbp

	 sbb	%rax, $X[4]
	 sbb	%rbx, $X[5]
	 sbb	%rdi, $X[6]
	 sbb	%rdx, $X[7]

	# write R back to memory

	 mov	(+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
	 mov	$X[0], (+8*0)(%rsi)
	 mov	$X[1], (+8*1)(%rsi)
	 mov	$X[2], (+8*2)(%rsi)
	 mov	$X[3], (+8*3)(%rsi)
	 mov	$X[4], (+8*4)(%rsi)
	 mov	$X[5], (+8*5)(%rsi)
	 mov	$X[6], (+8*6)(%rsi)
	 mov	$X[7], (+8*7)(%rsi)

	 ret
.size	mont_reduce,.-mont_reduce
___
}}}

{{{
#MUL_512x512	MACRO	pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
#
# Inputs: pDst: Destination  (1024 bits, 16 qwords)
#         pA:   Multiplicand (512 bits, 8 qwords)
#         pB:   Multiplicand (512 bits, 8 qwords)
# Uses registers rax, rdx, args
#   B operand in [pB] and also in x7...x0
sub MUL_512x512
{
 my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
 my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
 my @X=@$x;	# make a copy

$code.=<<___;
	 mov	(+8*0)($pA), $OP

	 mov	$X[0], %rax
	 mul	$OP			# rdx:rax = %OP * [0]
	 mov	%rax, (+$pDst_o+8*0)($pDst)
	 mov	%rdx, $X[0]
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
	 mov	$X[$i], %rax
	 mul	$OP			# rdx:rax = %OP * [$i]
	 add	%rax, $X[$i-1]
	 adc	\$0, %rdx
	 mov	%rdx, $X[$i]
___
}

for(my $i=1;$i<8;$i++) {
$code.=<<___;
	 mov	(+8*$i)($pA), $OP
___

	&MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
	push(@X,shift(@X));
}

$code.=<<___;
	 mov	$X[0], (+$pDst_o+8*8)($pDst)
	 mov	$X[1], (+$pDst_o+8*9)($pDst)
	 mov	$X[2], (+$pDst_o+8*10)($pDst)
	 mov	$X[3], (+$pDst_o+8*11)($pDst)
	 mov	$X[4], (+$pDst_o+8*12)($pDst)
	 mov	$X[5], (+$pDst_o+8*13)($pDst)
	 mov	$X[6], (+$pDst_o+8*14)($pDst)
	 mov	$X[7], (+$pDst_o+8*15)($pDst)
___
}

#
# mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
# Input:  src1: Address of source 1: rdi
#         src2: Address of source 2: rsi
# Output: dst:  Address of destination: [red_res_addr]
#    src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
# Temp:   Clobbers [tmp16], all registers
$code.=<<___;
.type	mont_mul_a3b,\@abi-omnipotent
.align	16
mont_mul_a3b:
	#
	# multiply tmp = src1 * src2
	# For multiply: dst = rcx, src1 = rdi, src2 = rsi
	# stack depth is extra 8 from call
___
	&MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
$code.=<<___;
	#
	# Dst = tmp % m
	# Call reduce(tmp, m, data, dst)

	# tail recursion optimization: jmp to mont_reduce and return from there
	 jmp	mont_reduce
	# call	mont_reduce
	# ret
.size	mont_mul_a3b,.-mont_mul_a3b
___
}}}

{{{
#SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
#
# Input in memory [pA] and also in x7...x0
# Uses all argument registers plus rax and rdx
#
# This version computes all of the off-diagonal terms into memory,
# and then it adds in the diagonal terms

sub SQR_512
{
 my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
 my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
 my @X=@$x;	# make a copy
$code.=<<___;
	# ------------------
	# first pass 01...07
	# ------------------
	 mov	$X[0], $A

	 mov	$X[1],%rax
	 mul	$A
	 mov	%rax, (+$pDst_o+8*1)($pDst)
___
for(my $i=2;$i<8;$i++) {
$code.=<<___;
	 mov	%rdx, $X[$i-2]
	 mov	$X[$i],%rax
	 mul	$A
	 add	%rax, $X[$i-2]
	 adc	\$0, %rdx
___
}
$code.=<<___;
	 mov	%rdx, $x7

	 mov	$X[0], (+$pDst_o+8*2)($pDst)

	# ------------------
	# second pass 12...17
	# ------------------

	 mov	(+8*1)($pA), $A

	 mov	(+8*2)($pA),%rax
	 mul	$A
	 add	%rax, $X[1]
	 adc	\$0, %rdx
	 mov	$X[1], (+$pDst_o+8*3)($pDst)

	 mov	%rdx, $X[0]
	 mov	(+8*3)($pA),%rax
	 mul	$A
	 add	%rax, $X[2]
	 adc	\$0, %rdx
	 add	$X[0], $X[2]
	 adc	\$0, %rdx
	 mov	$X[2], (+$pDst_o+8*4)($pDst)

	 mov	%rdx, $X[0]
	 mov	(+8*4)($pA),%rax
	 mul	$A
	 add	%rax, $X[3]
	 adc	\$0, %rdx
	 add	$X[0], $X[3]
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	(+8*5)($pA),%rax
	 mul	$A
	 add	%rax, $X[4]
	 adc	\$0, %rdx
	 add	$X[0], $X[4]
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	$X[6],%rax
	 mul	$A
	 add	%rax, $X[5]
	 adc	\$0, %rdx
	 add	$X[0], $X[5]
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $x7
	 adc	\$0, %rdx
	 add	$X[0], $x7
	 adc	\$0, %rdx

	 mov	%rdx, $X[1]

	# ------------------
	# third pass 23...27
	# ------------------
	 mov	(+8*2)($pA), $A

	 mov	(+8*3)($pA),%rax
	 mul	$A
	 add	%rax, $X[3]
	 adc	\$0, %rdx
	 mov	$X[3], (+$pDst_o+8*5)($pDst)

	 mov	%rdx, $X[0]
	 mov	(+8*4)($pA),%rax
	 mul	$A
	 add	%rax, $X[4]
	 adc	\$0, %rdx
	 add	$X[0], $X[4]
	 adc	\$0, %rdx
	 mov	$X[4], (+$pDst_o+8*6)($pDst)

	 mov	%rdx, $X[0]
	 mov	(+8*5)($pA),%rax
	 mul	$A
	 add	%rax, $X[5]
	 adc	\$0, %rdx
	 add	$X[0], $X[5]
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	$X[6],%rax
	 mul	$A
	 add	%rax, $x7
	 adc	\$0, %rdx
	 add	$X[0], $x7
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $X[1]
	 adc	\$0, %rdx
	 add	$X[0], $X[1]
	 adc	\$0, %rdx

	 mov	%rdx, $X[2]

	# ------------------
	# fourth pass 34...37
	# ------------------

	 mov	(+8*3)($pA), $A

	 mov	(+8*4)($pA),%rax
	 mul	$A
	 add	%rax, $X[5]
	 adc	\$0, %rdx
	 mov	$X[5], (+$pDst_o+8*7)($pDst)

	 mov	%rdx, $X[0]
	 mov	(+8*5)($pA),%rax
	 mul	$A
	 add	%rax, $x7
	 adc	\$0, %rdx
	 add	$X[0], $x7
	 adc	\$0, %rdx
	 mov	$x7, (+$pDst_o+8*8)($pDst)

	 mov	%rdx, $X[0]
	 mov	$X[6],%rax
	 mul	$A
	 add	%rax, $X[1]
	 adc	\$0, %rdx
	 add	$X[0], $X[1]
	 adc	\$0, %rdx

	 mov	%rdx, $X[0]
	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $X[2]
	 adc	\$0, %rdx
	 add	$X[0], $X[2]
	 adc	\$0, %rdx

	 mov	%rdx, $X[5]

	# ------------------
	# fifth pass 45...47
	# ------------------
	 mov	(+8*4)($pA), $A

	 mov	(+8*5)($pA),%rax
	 mul	$A
	 add	%rax, $X[1]
	 adc	\$0, %rdx
	 mov	$X[1], (+$pDst_o+8*9)($pDst)

	 mov	%rdx, $X[0]
	 mov	$X[6],%rax
	 mul	$A
	 add	%rax, $X[2]
	 adc	\$0, %rdx
	 add	$X[0], $X[2]
	 adc	\$0, %rdx
	 mov	$X[2], (+$pDst_o+8*10)($pDst)

	 mov	%rdx, $X[0]
	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $X[5]
	 adc	\$0, %rdx
	 add	$X[0], $X[5]
	 adc	\$0, %rdx

	 mov	%rdx, $X[1]

	# ------------------
	# sixth pass 56...57
	# ------------------
	 mov	(+8*5)($pA), $A

	 mov	$X[6],%rax
	 mul	$A
	 add	%rax, $X[5]
	 adc	\$0, %rdx
	 mov	$X[5], (+$pDst_o+8*11)($pDst)

	 mov	%rdx, $X[0]
	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $X[1]
	 adc	\$0, %rdx
	 add	$X[0], $X[1]
	 adc	\$0, %rdx
	 mov	$X[1], (+$pDst_o+8*12)($pDst)

	 mov	%rdx, $X[2]

	# ------------------
	# seventh pass 67
	# ------------------
	 mov	$X[6], $A

	 mov	$X[7],%rax
	 mul	$A
	 add	%rax, $X[2]
	 adc	\$0, %rdx
	 mov	$X[2], (+$pDst_o+8*13)($pDst)

	 mov	%rdx, (+$pDst_o+8*14)($pDst)

	# start finalize (add	in squares, and double off-terms)
	 mov	(+$pDst_o+8*1)($pDst), $X[0]
	 mov	(+$pDst_o+8*2)($pDst), $X[1]
	 mov	(+$pDst_o+8*3)($pDst), $X[2]
	 mov	(+$pDst_o+8*4)($pDst), $X[3]
	 mov	(+$pDst_o+8*5)($pDst), $X[4]
	 mov	(+$pDst_o+8*6)($pDst), $X[5]

	 mov	(+8*3)($pA), %rax
	 mul	%rax
	 mov	%rax, $x6
	 mov	%rdx, $X[6]

	 add	$X[0], $X[0]
	 adc	$X[1], $X[1]
	 adc	$X[2], $X[2]
	 adc	$X[3], $X[3]
	 adc	$X[4], $X[4]
	 adc	$X[5], $X[5]
	 adc	\$0, $X[6]

	 mov	(+8*0)($pA), %rax
	 mul	%rax
	 mov	%rax, (+$pDst_o+8*0)($pDst)
	 mov	%rdx, $A

	 mov	(+8*1)($pA), %rax
	 mul	%rax

	 add	$A, $X[0]
	 adc	%rax, $X[1]
	 adc	\$0, %rdx

	 mov	%rdx, $A
	 mov	$X[0], (+$pDst_o+8*1)($pDst)
	 mov	$X[1], (+$pDst_o+8*2)($pDst)

	 mov	(+8*2)($pA), %rax
	 mul	%rax

	 add	$A, $X[2]
	 adc	%rax, $X[3]
	 adc	\$0, %rdx

	 mov	%rdx, $A

	 mov	$X[2], (+$pDst_o+8*3)($pDst)
	 mov	$X[3], (+$pDst_o+8*4)($pDst)

	 xor	$tmp, $tmp
	 add	$A, $X[4]
	 adc	$x6, $X[5]
	 adc	\$0, $tmp

	 mov	$X[4], (+$pDst_o+8*5)($pDst)
	 mov	$X[5], (+$pDst_o+8*6)($pDst)

	# %%tmp has 0/1 in column 7