/** * The Whirlpool hashing function. * *

* References * *

* The Whirlpool algorithm was developed by * Paulo S. L. M. Barreto and * Vincent Rijmen. * * See * P.S.L.M. Barreto, V. Rijmen, * ``The Whirlpool hashing function,'' * NESSIE submission, 2000 (tweaked version, 2001), * * * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and * Vincent Rijmen. Lookup "reference implementations" on * * * ============================================================================= * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * OpenSSL-specific implementation notes. * * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect * number of *bytes* as input length argument. Bit-oriented routine * as specified by authors is called WHIRLPOOL_BitUpdate[!] and * does not have one-stroke counterpart. * * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially * to serve WHIRLPOOL_Update. This is done for performance. * * Unlike authors' reference implementation, block processing * routine whirlpool_block is designed to operate on multi-block * input. This is done for perfomance. */ #include "wp_locl.h" #include #include fips_md_init(WHIRLPOOL) { memset (c,0,sizeof(*c)); return(1); } int WHIRLPOOL_Update (WHIRLPOOL_CTX *c,const void *_inp,size_t bytes) { /* Well, largest suitable chunk size actually is * (1<<(sizeof(size_t)*8-3))-64, but below number * is large enough for not to care about excessive * calls to WHIRLPOOL_BitUpdate... */ size_t chunk = ((size_t)1)<<(sizeof(size_t)*8-4); const unsigned char *inp = _inp; while (bytes>=chunk) { WHIRLPOOL_BitUpdate(c,inp,chunk*8); bytes -= chunk; inp += chunk; } if (bytes) WHIRLPOOL_BitUpdate(c,inp,bytes*8); return(1); } void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c,const void *_inp,size_t bits) { size_t n; unsigned int bitoff = c->bitoff, bitrem = bitoff%8, inpgap = (8-(unsigned int)bits%8)&7; const unsigned char *inp=_inp; /* This 256-bit increment procedure relies on the size_t * being natural size of CPU register, so that we don't * have to mask the value in order to detect overflows. */ c->bitlen[0] += bits; if (c->bitlen[0] < bits) /* overflow */ { n = 1; do { c->bitlen[n]++; } while(c->bitlen[n]==0 && ++n<(WHIRLPOOL_COUNTER/sizeof(size_t))); } #ifndef OPENSSL_SMALL_FOOTPRINT reconsider: if (inpgap==0 && bitrem==0) /* byte-oriented loop */ { while (bits) { if (bitoff==0 && (n=bits/WHIRLPOOL_BBLOCK)) { whirlpool_block(c,inp,n); inp += n*WHIRLPOOL_BBLOCK/8; bits %= WHIRLPOOL_BBLOCK; } else { unsigned int byteoff = bitoff/8; bitrem = WHIRLPOOL_BBLOCK - bitoff;/* re-use bitrem */ if (bits >= bitrem) { bits -= bitrem; bitrem /= 8; memcpy(c->data+byteoff,inp,bitrem); inp += bitrem; whirlpool_block(c,c->data,1); bitoff = 0; } else { memcpy(c->data+byteoff,inp,bits/8); bitoff += (unsigned int)bits; bits = 0; } c->bitoff = bitoff; } } } else /* bit-oriented loop */ #endif { /* inp | +-------+-------+------- ||||||||||||||||||||| +-------+-------+------- +-------+-------+-------+-------+------- |||||||||||||| c->data +-------+-------+-------+-------+------- | c->bitoff/8 */ while (bits) { unsigned int byteoff = bitoff/8; unsigned char b; #ifndef OPENSSL_SMALL_FOOTPRINT if (bitrem==inpgap) { c->data[byteoff++] |= inp[0] & (0xff>>inpgap); inpgap = 8-inpgap; bitoff += inpgap; bitrem = 0; /* bitoff%8 */ bits -= inpgap; inpgap = 0; /* bits%8 */ inp++; if (bitoff==WHIRLPOOL_BBLOCK) { whirlpool_block(c,c->data,1); bitoff = 0; } c->bitoff = bitoff; goto reconsider; } else #endif if (bits>=8) { b = ((inp[0]<>(8-inpgap))); b &= 0xff; if (bitrem) c->data[byteoff++] |= b>>bitrem; else c->data[byteoff++] = b; bitoff += 8; bits -= 8; inp++; if (bitoff>=WHIRLPOOL_BBLOCK) { whirlpool_block(c,c->data,1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b<<(8-bitrem); } else /* remaining less than 8 bits */ { b = (inp[0]<data[byteoff++] |= b>>bitrem; else c->data[byteoff++] = b; bitoff += (unsigned int)bits; if (bitoff==WHIRLPOOL_BBLOCK) { whirlpool_block(c,c->data,1); byteoff = 0; bitoff %= WHIRLPOOL_BBLOCK; } if (bitrem) c->data[byteoff] = b<<(8-bitrem); bits = 0; } c->bitoff = bitoff; } } } int WHIRLPOOL_Final (unsigned char *md,WHIRLPOOL_CTX *c) { unsigned int bitoff = c->bitoff, byteoff = bitoff/8; size_t i,j,v; unsigned char *p; bitoff %= 8; if (bitoff) c->data[byteoff] |= 0x80>>bitoff; else c->data[byteoff] = 0x80; byteoff++; /* pad with zeros */ if (byteoff > (WHIRLPOOL_BBLOCK/8-WHIRLPOOL_COUNTER)) { if (byteoffdata[byteoff],0,WHIRLPOOL_BBLOCK/8-byteoff); whirlpool_block(c,c->data,1); byteoff = 0; } if (byteoff < (WHIRLPOOL_BBLOCK/8-WHIRLPOOL_COUNTER)) memset(&c->data[byteoff],0, (WHIRLPOOL_BBLOCK/8-WHIRLPOOL_COUNTER)-byteoff); /* smash 256-bit c->bitlen in big-endian order */ p = &c->data[WHIRLPOOL_BBLOCK/8-1]; /* last byte in c->data */ for(i=0;ibitlen[i],j=0;j>=8) *p-- = (unsigned char)(v&0xff); whirlpool_block(c,c->data,1); if (md) { memcpy(md,c->H.c,WHIRLPOOL_DIGEST_LENGTH); memset(c,0,sizeof(*c)); return(1); } return(0); } unsigned char *WHIRLPOOL(const void *inp, size_t bytes,unsigned char *md) { WHIRLPOOL_CTX ctx; static unsigned char m[WHIRLPOOL_DIGEST_LENGTH]; if (md == NULL) md=m; WHIRLPOOL_Init(&ctx); WHIRLPOOL_Update(&ctx,inp,bytes); WHIRLPOOL_Final(md,&ctx); return(md); }