eng_rsax.c 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/* crypto/engine/eng_rsax.c */
/* Copyright (c) 2010-2010 Intel Corp.
 *   Author: Vinodh.Gopal@intel.com
 *           Jim Guilford
 *           Erdinc.Ozturk@intel.com
 *           Maxim.Perminov@intel.com
 *           Ying.Huang@intel.com
 *
 * More information about algorithm used can be found at:
 *   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
 */
/* ====================================================================
 * Copyright (c) 1999-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 */

#include <openssl/opensslconf.h>

#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/buffer.h>
#include <openssl/engine.h>
#ifndef OPENSSL_NO_RSA
#include <openssl/rsa.h>
#endif
#include <openssl/bn.h>
#include <openssl/err.h>

/* RSAX is available **ONLY* on x86_64 CPUs */
#undef COMPILE_RSAX

#if (defined(__x86_64) || defined(__x86_64__) || \
     defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
#define COMPILE_RSAX
static ENGINE *ENGINE_rsax (void);
#endif

void ENGINE_load_rsax (void)
	{
/* On non-x86 CPUs it just returns. */
#ifdef COMPILE_RSAX
	ENGINE *toadd = ENGINE_rsax();
	if(!toadd) return;
	ENGINE_add(toadd);
	ENGINE_free(toadd);
	ERR_clear_error();
#endif
	}

#ifdef COMPILE_RSAX
#define E_RSAX_LIB_NAME "rsax engine"

static int e_rsax_destroy(ENGINE *e);
static int e_rsax_init(ENGINE *e);
static int e_rsax_finish(ENGINE *e);
static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));

#ifndef OPENSSL_NO_RSA
/* RSA stuff */
static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
static int e_rsax_rsa_finish(RSA *r);
#endif

static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
	{0, NULL, NULL, 0}
	};

#ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD e_rsax_rsa =
	{
	"Intel RSA-X method",
	NULL,
	NULL,
	NULL,
	NULL,
	e_rsax_rsa_mod_exp,
	NULL,
	NULL,
	e_rsax_rsa_finish,
	RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE,
	NULL,
	NULL,
	NULL
	};
#endif

/* Constants used when creating the ENGINE */
static const char *engine_e_rsax_id = "rsax";
static const char *engine_e_rsax_name = "RSAX engine support";

/* This internal function is used by ENGINE_rsax() */
static int bind_helper(ENGINE *e)
	{
#ifndef OPENSSL_NO_RSA
	const RSA_METHOD *meth1;
#endif
	if(!ENGINE_set_id(e, engine_e_rsax_id) ||
			!ENGINE_set_name(e, engine_e_rsax_name) ||
#ifndef OPENSSL_NO_RSA
			!ENGINE_set_RSA(e, &e_rsax_rsa) ||
#endif
			!ENGINE_set_destroy_function(e, e_rsax_destroy) ||
			!ENGINE_set_init_function(e, e_rsax_init) ||
			!ENGINE_set_finish_function(e, e_rsax_finish) ||
			!ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
			!ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
		return 0;

#ifndef OPENSSL_NO_RSA
	meth1 = RSA_PKCS1_SSLeay();
	e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
	e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
	e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
	e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
	e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
#endif
	return 1;
	}

static ENGINE *ENGINE_rsax(void)
	{
	ENGINE *ret = ENGINE_new();
	if(!ret)
		return NULL;
	if(!bind_helper(ret))
		{
		ENGINE_free(ret);
		return NULL;
		}
	return ret;
	}

#ifndef OPENSSL_NO_RSA
/* Used to attach our own key-data to an RSA structure */
static int rsax_ex_data_idx = -1;
#endif

static int e_rsax_destroy(ENGINE *e)
	{
	return 1;
	}

/* (de)initialisation functions. */
static int e_rsax_init(ENGINE *e)
	{
#ifndef OPENSSL_NO_RSA
	if (rsax_ex_data_idx == -1)
		rsax_ex_data_idx = RSA_get_ex_new_index(0,
			NULL,
			NULL, NULL, NULL);
#endif
	if (rsax_ex_data_idx  == -1)
		return 0;
	return 1;
	}

static int e_rsax_finish(ENGINE *e)
	{
	return 1;
	}

static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
	{
	int to_return = 1;

	switch(cmd)
		{
	/* The command isn't understood by this engine */
	default:
		to_return = 0;
		break;
		}

	return to_return;
	}


#ifndef OPENSSL_NO_RSA

#ifdef _WIN32
typedef unsigned __int64 UINT64;
#else
typedef unsigned long long UINT64;
#endif
typedef unsigned short UINT16;

/* Table t is interleaved in the following manner:
 * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ...
 * A particular 512-bit value is stored in t[][index] rather than the more
 * normal t[index][]; i.e. the qwords of a particular entry in t are not
 * adjacent in memory
 */

/* Init BIGNUM b from the interleaved UINT64 array */
static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array);

/* Extract array elements from BIGNUM b
 * To set the whole array from b, call with n=8
 */
static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array);

struct mod_ctx_512 {
    UINT64 t[8][8];
    UINT64 m[8];
    UINT64 m1[8]; /* 2^278 % m */
    UINT64 m2[8]; /* 2^640 % m */
    UINT64 k1[2]; /* (- 1/m) % 2^128 */
};

static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);

void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
		 UINT64 *g,      /* 512 bits, 8 qwords */
		 UINT64 *exp,    /* 512 bits, 8 qwords */
		 struct mod_ctx_512 *data);

typedef struct st_e_rsax_mod_ctx
{
  UINT64 type;
  union {
    struct mod_ctx_512 b512;
  } ctx;

} E_RSAX_MOD_CTX;

static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m)
{
	E_RSAX_MOD_CTX *hptr;

        if (idx < 0 || idx > 2)
           return NULL;

	hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
	if (!hptr) {
	    hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX));
	    if (!hptr) return NULL;
            hptr[2].type = hptr[1].type= hptr[0].type = 0;
	    RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
        }

        if (hptr[idx].type == (UINT64)BN_num_bits(m))
            return hptr+idx;

        if (BN_num_bits(m) == 512) {
  	    UINT64 _m[8];
	    bn_extract_to_array_512(m, 8, _m);
	    memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
	    mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
	}

        hptr[idx].type = BN_num_bits(m);
	return hptr+idx;
}

static int e_rsax_rsa_finish(RSA *rsa)
	{
	E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
	if(hptr)
		{
		OPENSSL_free(hptr);
		RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
		}
	if (rsa->_method_mod_n)
		BN_MONT_CTX_free(rsa->_method_mod_n);
	if (rsa->_method_mod_p)
		BN_MONT_CTX_free(rsa->_method_mod_p);
	if (rsa->_method_mod_q)
		BN_MONT_CTX_free(rsa->_method_mod_q);
	return 1;
	}


static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx )
{
	if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
	   if (BN_num_bits(m) == 512) {
  		UINT64 _r[8];
   	  	UINT64 _g[8];
		UINT64 _e[8];

		/* Init the arrays from the BIGNUMs */
		bn_extract_to_array_512(g, 8, _g);
		bn_extract_to_array_512(e, 8, _e);

		mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
		/* Return the result in the BIGNUM */
		interleaved_array_to_bn_512(r, _r);
                return 1;
           }
        }

	return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
}

/* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
 * exponentiation routine precalculations and a structure to hold the
 * necessary values.  These files are meant to live in crypto/rsa/ in
 * the target openssl.
 */

/*
 * Local method: extracts a piece from a BIGNUM, to fit it into
 * an array. Call with n=8 to extract an entire 512-bit BIGNUM
 */
static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array)
{
	int i;
	UINT64 tmp;
	unsigned char bn_buff[64];
	memset(bn_buff, 0, 64);
	if (BN_num_bytes(b) > 64) {
		printf ("Can't support this byte size\n");
		return 0; }
	if (BN_num_bytes(b)!=0) {
		if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) {
			printf ("Error's in bn2bin\n");
			/* We have to error, here */
			return 0; } }
	while (n-- > 0) {
		array[n] = 0;
		for (i=7; i>=0; i--) {
			tmp = bn_buff[63-(n*8+i)];
			array[n] |= tmp << (8*i); } }
	return 1;
}

/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array)
{
	unsigned char tmp[64];
	int n=8;
	int i;
	while (n-- > 0) {
		for (i = 7; i>=0; i--) {
			tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } }
	BN_bin2bn(tmp, 64, b);
        return 0;
}


/* The main 512bit precompute call */
static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
 {
    BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;

    /* We need a BN_CTX for the modulo functions */
    BN_CTX* ctx;
    /* Some tmps */
    UINT64 _t[8];
    int i, j, ret = 0;

    /* Init _m with m */
    BN_init(&_m);
    interleaved_array_to_bn_512(&_m, m);
    memset(_t, 0, 64);

    /* Inits */
    BN_init(&two_768);
    BN_init(&two_640);
    BN_init(&two_128);
    BN_init(&two_512);
    BN_init(&tmp);
    BN_init(&tmp2);

    /* Create our context */
    if ((ctx=BN_CTX_new()) == NULL) { goto err; }
	BN_CTX_start(ctx);

    /*
     * For production, if you care, these only need to be set once,
     * and may be made constants.
     */
    BN_lshift(&two_768, BN_value_one(), 768);
    BN_lshift(&two_640, BN_value_one(), 640);
    BN_lshift(&two_128, BN_value_one(), 128);
    BN_lshift(&two_512, BN_value_one(), 512);

    if (0 == (m[7] & 0x8000000000000000)) {
        exit(1);
    }
    if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
        exit(1);
    }

    /* Precompute m1 */
    BN_mod(&tmp, &two_768, &_m, ctx);
    if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
	    goto err; }

    /* Precompute m2 */
    BN_mod(&tmp, &two_640, &_m, ctx);
    if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
	    goto err;
    }

    /*
     * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
     * be non-negative.
     */
    BN_mod_inverse(&tmp, &_m, &two_128, ctx);
    if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); }
    if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
	    goto err; }

    /* Precompute t */
    for (i=0; i<8; i++) {
        BN_zero(&tmp);
        if (i & 1) { BN_add(&tmp, &two_512, &tmp); }
        if (i & 2) { BN_add(&tmp, &two_512, &tmp); }
        if (i & 4) { BN_add(&tmp, &two_640, &tmp); }

        BN_nnmod(&tmp2, &tmp, &_m, ctx);
        if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
	        goto err; }
        for (j=0; j<8; j++) data->t[j][i] = _t[j]; }

    /* Precompute m */
    for (i=0; i<8; i++) {
        data->m[i] = m[i]; }

    ret = 1;

err:
    /* Cleanup */
	if (ctx != NULL) {
		BN_CTX_end(ctx); BN_CTX_free(ctx); }
    BN_free(&two_768);
    BN_free(&two_640);
    BN_free(&two_128);
    BN_free(&two_512);
    BN_free(&tmp);
    BN_free(&tmp2);
    BN_free(&_m);

    return ret;
}


static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
	{
	BIGNUM *r1,*m1,*vrfy;
	BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
	BIGNUM *dmp1,*dmq1,*c,*pr1;
	int ret=0;

	BN_CTX_start(ctx);
	r1 = BN_CTX_get(ctx);
	m1 = BN_CTX_get(ctx);
	vrfy = BN_CTX_get(ctx);

	{
		BIGNUM local_p, local_q;
		BIGNUM *p = NULL, *q = NULL;
		int error = 0;

		/* Make sure BN_mod_inverse in Montgomery
		 * intialization uses the BN_FLG_CONSTTIME flag
		 * (unless RSA_FLAG_NO_CONSTTIME is set)
		 */
		if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
			{
			BN_init(&local_p);
			p = &local_p;
			BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

			BN_init(&local_q);
			q = &local_q;
			BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
			}
		else
			{
			p = rsa->p;
			q = rsa->q;
			}

		if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
			{
			if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
				error = 1;
			if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
				error = 1;
			}

		/* clean up */
		if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
			{
			BN_free(&local_p);
			BN_free(&local_q);
			}
		if ( error )
			goto err;
	}

	if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
		if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
			goto err;

	/* compute I mod q */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		c = &local_c;
		BN_with_flags(c, I, BN_FLG_CONSTTIME);
		if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
		}
	else
		{
		if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
		}

	/* compute r1^dmq1 mod q */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		dmq1 = &local_dmq1;
		BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
		}
	else
		dmq1 = rsa->dmq1;

	if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
		rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err;

	/* compute I mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		c = &local_c;
		BN_with_flags(c, I, BN_FLG_CONSTTIME);
		if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
		}
	else
		{
		if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
		}

	/* compute r1^dmp1 mod p */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		dmp1 = &local_dmp1;
		BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
		}
	else
		dmp1 = rsa->dmp1;

	if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
		rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err;

	if (!BN_sub(r0,r0,m1)) goto err;
	/* This will help stop the size of r0 increasing, which does
	 * affect the multiply if it optimised for a power of 2 size */
	if (BN_is_negative(r0))
		if (!BN_add(r0,r0,rsa->p)) goto err;

	if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err;

	/* Turn BN_FLG_CONSTTIME flag on before division operation */
	if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
		{
		pr1 = &local_r1;
		BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
		}
	else
		pr1 = r1;
	if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err;

	/* If p < q it is occasionally possible for the correction of
         * adding 'p' if r0 is negative above to leave the result still
	 * negative. This can break the private key operations: the following
	 * second correction should *always* correct this rare occurrence.
	 * This will *never* happen with OpenSSL generated keys because
         * they ensure p > q [steve]
         */
	if (BN_is_negative(r0))
		if (!BN_add(r0,r0,rsa->p)) goto err;
	if (!BN_mul(r1,r0,rsa->q,ctx)) goto err;
	if (!BN_add(r0,r1,m1)) goto err;

	if (rsa->e && rsa->n)
		{
		if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) ))
                    goto err;

		/* If 'I' was greater than (or equal to) rsa->n, the operation
		 * will be equivalent to using 'I mod n'. However, the result of
		 * the verify will *always* be less than 'n' so we don't check
		 * for absolute equality, just congruency. */
		if (!BN_sub(vrfy, vrfy, I)) goto err;
		if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err;
		if (BN_is_negative(vrfy))
			if (!BN_add(vrfy, vrfy, rsa->n)) goto err;
		if (!BN_is_zero(vrfy))
			{
			/* 'I' and 'vrfy' aren't congruent mod n. Don't leak
			 * miscalculated CRT output, just do a raw (slower)
			 * mod_exp and return that instead. */

			BIGNUM local_d;
			BIGNUM *d = NULL;

			if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
				{
				d = &local_d;
				BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
				}
			else
				d = rsa->d;
			if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx,
						   rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err;
			}
		}
	ret=1;

err:
	BN_CTX_end(ctx);

	return ret;
	}
#endif /* !OPENSSL_NO_RSA */
#endif /* !COMPILE_RSAX */