#include "LibItsSecurity_Functions.hh" #include "sha256.hh" #include "sha384.hh" #include "ec_keys.hh" #include #include #include "loggers.hh" #define FIELD_SIZE_256 (256/8) #define SIGNATURE_SIZE_256 (2+FIELD_SIZE_256*2) #define FIELD_SIZE_384 (384/8) #define SIGNATURE_SIZE_384 (2+FIELD_SIZE_284*2) namespace LibItsSecurity__Functions { /** * @desc Produces a 256-bit (32-byte) hash value * @param p_toBeHashedData Data to be used to calculate the hash value * @return The hash value fx_hashWithSha256(in octetstring p_toBeHashedData) return Oct32; */ OCTETSTRING fx__hashWithSha256( const OCTETSTRING& p__toBeHashedData ) { sha256 hash; std::vector tbh(static_cast(p__toBeHashedData), p__toBeHashedData.lengthof() + static_cast(p__toBeHashedData)); std::vector hashData; hash.generate(tbh, hashData); return OCTETSTRING(hashData.size(), hashData.data()); } // End of function fx__hashWithSha256 /** * @desc Produces a 384-bit (48-byte) hash value * @param p_toBeHashedData Data to be used to calculate the hash value * @return The hash value fx_hashWithSha384(in octetstring p_toBeHashedData) return Oct48; */ OCTETSTRING fx__hashWithSha384( const OCTETSTRING& p__toBeHashedData ) { sha384 hash; std::vector tbh(static_cast(p__toBeHashedData), p__toBeHashedData.lengthof() + static_cast(p__toBeHashedData)); std::vector hashData; hash.generate(tbh, hashData); return OCTETSTRING(hashData.size(), hashData.data()); } // End of function fx__hashWithSha384 /** * @desc Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signaturee * @param p_toBeSignedSecuredMessage The data to be signed * @param p_privateKey The private key * @return The signature value fx_signWithEcdsaNistp256WithSha256(in octetstring p_toBeSignedSecuredMessage, in octetstring p_privateKey) return octetstring; */ OCTETSTRING fx__signWithEcdsaNistp256WithSha256( const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey ) { // Calculate the SHA256 of the data sha256 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbs(static_cast(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast(p__toBeSignedSecuredMessage)); hash.generate(tbs, hashData); // Calculate the signature const unsigned char * p = static_cast(p__privateKey); std::vector p_key(p, p + p__privateKey.lengthof()); ec_keys k(ec_elliptic_curves::nist_p_256, p_key); std::vector r_sig; std::vector s_sig; if (k.sign(hashData, r_sig, s_sig) == 0) { OCTETSTRING os(r_sig.size(), r_sig.data()); // loggers::get_instance().log_to_hexa("r_sig= ", os); // loggers::get_instance().log_to_hexa("s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data()); // loggers::get_instance().log_to_hexa("sig= ", os += OCTETSTRING(s_sig.size(), s_sig.data())); os += OCTETSTRING(s_sig.size(), s_sig.data()); return os; } return OCTETSTRING(); } /** * @desc Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signaturee * @param p_toBeSignedSecuredMessage The data to be signed * @param p_privateKey The private key * @return The signature value fx_signWithEcdsaBrainpoolp256WithSha256(in octetstring p_toBeSignedSecuredMessage, in octetstring p_privateKey) return octetstring; */ OCTETSTRING fx__signWithEcdsaBrainpoolp256WithSha256( const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey ) { // Calculate the SHA256 of the data sha256 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbs(static_cast(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast(p__toBeSignedSecuredMessage)); hash.generate(tbs, hashData); // Calculate the signature const unsigned char * p = static_cast(p__privateKey); std::vector p_key(p, p + p__privateKey.lengthof()); ec_keys k(ec_elliptic_curves::brainpool_p_256_r1, p_key); std::vector r_sig; std::vector s_sig; if (k.sign(hashData, r_sig, s_sig) == 0) { OCTETSTRING os(r_sig.size(), r_sig.data()); // loggers::get_instance().log_to_hexa("r_sig= ", os); // loggers::get_instance().log_to_hexa("s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data()); // loggers::get_instance().log_to_hexa("sig= ", os += OCTETSTRING(s_sig.size(), s_sig.data())); os += OCTETSTRING(s_sig.size(), s_sig.data()); return os; } return OCTETSTRING(); } /** * @desc Produces a Elliptic Curve Digital Signature Algorithm (ECDSA) signaturee * @param p_toBeSignedSecuredMessage The data to be signed * @param p_privateKey The private key * @return The signature value fx_signWithEcdsaBrainpoolp384WithSha384(in octetstring p_toBeSignedSecuredMessage, in octetstring p_privateKey) return octetstring; */ OCTETSTRING fx__signWithEcdsaBrainpoolp384WithSha384( const OCTETSTRING& p__toBeSignedSecuredMessage, const OCTETSTRING& p__privateKey ) { // Calculate the SHA384 of the data sha384 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbs(static_cast(p__toBeSignedSecuredMessage), p__toBeSignedSecuredMessage.lengthof() + static_cast(p__toBeSignedSecuredMessage)); hash.generate(tbs, hashData); // Calculate the signature const unsigned char * p = static_cast(p__privateKey); std::vector p_key(p, p + p__privateKey.lengthof()); ec_keys k(ec_elliptic_curves::brainpool_p_384_r1, p_key); std::vector r_sig; std::vector s_sig; if (k.sign(hashData, r_sig, s_sig) == 0) { OCTETSTRING os(r_sig.size(), r_sig.data()); // loggers::get_instance().log_to_hexa("r_sig= ", os); // loggers::get_instance().log_to_hexa("s_sig= ", OCTETSTRING(s_sig.size(), s_sig.data()); // loggers::get_instance().log_to_hexa("sig= ", os += OCTETSTRING(s_sig.size(), s_sig.data())); os += OCTETSTRING(s_sig.size(), s_sig.data()); return os; } return OCTETSTRING(); } /** * @desc Verify the signature of the specified data * @param p_toBeVerifiedData The data to be verified * @param p_signature The signature * @param p_ecdsaNistp256PublicKeyX The public key (x coordinate) * @param p_ecdsaNistp256PublicKeyY The public key (y coordinate) * @return true on success, false otherwise fx_verifyWithEcdsaNistp256WithSha256(in octetstring p_toBeVerifiedData, in octetstring p_signature, in octetstring p_ecdsaNistp256PublicKeyX, in octetstring p_ecdsaNistp256PublicKeyY) return boolean; */ BOOLEAN fx__verifyWithEcdsaNistp256WithSha256( const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaNistp256PublicKeyX, const OCTETSTRING& p__ecdsaNistp256PublicKeyY ) { // Calculate the hash sha256 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbh(static_cast(p__toBeVerifiedData), static_cast(p__toBeVerifiedData) + p__toBeVerifiedData.lengthof()); hash.generate(tbh, hashData); // Check the signature const unsigned char * p = static_cast(p__signature); std::vector signature(p, p + p__signature.lengthof()); p = static_cast(p__ecdsaNistp256PublicKeyX); std::vector pub_key_x(p, p + p__ecdsaNistp256PublicKeyX.lengthof()); p = static_cast(p__ecdsaNistp256PublicKeyY); std::vector pub_key_y(p, p + p__ecdsaNistp256PublicKeyY.lengthof()); ec_keys k(ec_elliptic_curves::nist_p_256, pub_key_x, pub_key_y); if (k.sign_verif(hashData, signature) == 0) { return TRUE; } return FALSE; } /** * @desc Verify the signature of the specified data * @param p_toBeVerifiedData The data to be verified * @param p_signature The signature * @param p_ecdsaBrainpoolp256PublicKeyX The public key (x coordinate) * @param p_ecdsaBrainpoolp256PublicKeyY The public key (y coordinate) * @return true on success, false otherwise fx_verifyWithEcdsaBrainpoolp256WithSha256(in octetstring p_toBeVerifiedData, in octetstring p_signature, in octetstring p_ecdsaBrainpoolp256PublicKeyX, in octetstring p_ecdsaBrainpoolp256PublicKeyY) return boolean; */ BOOLEAN fx__verifyWithEcdsaBrainpoolp256WithSha256( const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyX, const OCTETSTRING& p__ecdsaBrainpoolp256PublicKeyY ) { // Calculate the hash sha256 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbh(static_cast(p__toBeVerifiedData), static_cast(p__toBeVerifiedData) + p__toBeVerifiedData.lengthof()); hash.generate(tbh, hashData); // Check the signature const unsigned char * p = static_cast(p__signature); std::vector signature(p, p + p__signature.lengthof()); p = static_cast(p__ecdsaBrainpoolp256PublicKeyX); std::vector pub_key_x(p, p + p__ecdsaBrainpoolp256PublicKeyX.lengthof()); p = static_cast(p__ecdsaBrainpoolp256PublicKeyY); std::vector pub_key_y(p, p + p__ecdsaBrainpoolp256PublicKeyY.lengthof()); ec_keys k(ec_elliptic_curves::brainpool_p_256_r1, pub_key_x, pub_key_y); if (k.sign_verif(hashData, signature) == 0) { return TRUE; } return FALSE; } /** * @desc Verify the signature of the specified data * @param p_toBeVerifiedData The data to be verified * @param p_signature The signature * @param p_ecdsaBrainpoolp384PublicKeyX The public key (x coordinate) * @param p_ecdsaBrainpoolp384PublicKeyY The public key (y coordinate) * @return true on success, false otherwise fx_verifyWithEcdsaBrainpoolp384WithSha384(in octetstring p_toBeVerifiedData, in octetstring p_signature, in octetstring p_ecdsaBrainpoolp384PublicKeyX, in octetstring p_ecdsaBrainpoolp384PublicKeyY) return boolean; */ BOOLEAN fx__verifyWithEcdsaBrainpoolp384WithSha384( const OCTETSTRING& p__toBeVerifiedData, const OCTETSTRING& p__signature, const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyX, const OCTETSTRING& p__ecdsaBrainpoolp384PublicKeyY ) { // Calculate the hash sha384 hash; std::vector hashData; // TODO Create SHX interface and add generate method with std::vector std::vector tbh(static_cast(p__toBeVerifiedData), static_cast(p__toBeVerifiedData) + p__toBeVerifiedData.lengthof()); hash.generate(tbh, hashData); // Check the signature const unsigned char * p = static_cast(p__signature); std::vector signature(p, p + p__signature.lengthof()); p = static_cast(p__ecdsaBrainpoolp384PublicKeyX); std::vector pub_key_x(p, p + p__ecdsaBrainpoolp384PublicKeyX.lengthof()); p = static_cast(p__ecdsaBrainpoolp384PublicKeyY); std::vector pub_key_y(p, p + p__ecdsaBrainpoolp384PublicKeyY.lengthof()); ec_keys k(ec_elliptic_curves::brainpool_p_384_r1, pub_key_x, pub_key_y); if (k.sign_verif(hashData, signature) == 0) { return TRUE; } return FALSE; } /** * @desc Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm. * This function should not be used by the ATS * @param p_privateKey The new private key value * @param p_publicKeyX The new public key value (x coordinate) * @param p_publicKeyX The new public key value (y coordinate) * @return true on success, false otherwise fx_generateKeyPair_nistp256(out octetstring p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean; */ BOOLEAN fx__generateKeyPair__nistp256( OCTETSTRING& p__privateKey, OCTETSTRING& p__publicKeyX, OCTETSTRING& p__publicKeyY ) { ec_keys k(ec_elliptic_curves::nist_p_256); if (k.generate() != 0) { p__privateKey = OCTETSTRING(); p__publicKeyX = OCTETSTRING(); p__publicKeyY = OCTETSTRING(); return FALSE; } p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data()); p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data()); p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data()); return TRUE; } /** * @desc Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm. * This function should not be used by the ATS * @param p_privateKey The new private key value * @param p_publicKeyX The new public key value (x coordinate) * @param p_publicKeyX The new public key value (y coordinate) * @return true on success, false otherwise fx_generateKeyPair_nistp256(out octetstring p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean; */ BOOLEAN fx__generateKeyPair__brainpoolp256( OCTETSTRING& p__privateKey, OCTETSTRING& p__publicKeyX, OCTETSTRING& p__publicKeyY ) { ec_keys k(ec_elliptic_curves::brainpool_p_256_r1); if (k.generate() != 0) { p__privateKey = OCTETSTRING(); p__publicKeyX = OCTETSTRING(); p__publicKeyY = OCTETSTRING(); return FALSE; } p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data()); p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data()); p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data()); return TRUE; } /** * @desc Produce a new public/private key pair based on Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm. * This function should not be used by the ATS * @param p_privateKey The new private key value * @param p_publicKeyX The new public key value (x coordinate) * @param p_publicKeyX The new public key value (y coordinate) * @return true on success, false otherwise fx_generateKeyPair_nistp256(out octetstring p_privateKey, out octetstring p_publicKeyX, out octetstring p_publicKeyY) return boolean; */ BOOLEAN fx__generateKeyPair__brainpoolp384( OCTETSTRING& p__privateKey, OCTETSTRING& p__publicKeyX, OCTETSTRING& p__publicKeyY ) { ec_keys k(ec_elliptic_curves::brainpool_p_384_r1); if (k.generate() != 0) { p__privateKey = OCTETSTRING(); p__publicKeyX = OCTETSTRING(); p__publicKeyY = OCTETSTRING(); return FALSE; } p__privateKey = OCTETSTRING(k.private_key().size(), k.private_key().data()); p__publicKeyX = OCTETSTRING(k.public_key_x().size(), k.public_key_x().data()); p__publicKeyY = OCTETSTRING(k.public_key_y().size(), k.public_key_y().data()); return TRUE; } // group encryption // group certificatesLoader /* * @desc Load in memory cache the certificates available in the specified directory * @param p_rootDirectory Root directory to access to the certificates identified by the certificate ID * @param p_configId A configuration identifier * @remark This method SHALL be call before any usage of certificates * @return true on success, false otherwise fx_loadCertificates(in charstring p_rootDirectory, in charstring p_configId) return boolean; */ BOOLEAN fx__loadCertificates( const CHARSTRING& p__rootDirectory, const CHARSTRING& p__configId ) { return TRUE; } /* * @desc Unload from memory cache the certificates * @return true on success, false otherwise fx_unloadCertificates() return boolean; */ BOOLEAN fx__unloadCertificates( ) { return TRUE; } /* * @desc Read the specified certificate * @param p_certificateId the certificate identifier * @param p_certificate the expected certificate * @return true on success, false otherwise fx_readCertificate(in charstring p_certificateId, out octetstring p_certificate) return boolean; */ BOOLEAN fx__readCertificate( const CHARSTRING& p__certificateId, OCTETSTRING& p__certificate ) { return TRUE; } /* * @desc Read the specified certificate digest * @param p_certificateId the certificate identifier * @param p_digest the expected certificate * @return true on success, false otherwise fx_readCertificateDigest(in charstring p_certificateId, out HashedId8 p_digest) return boolean; */ BOOLEAN fx__readCertificateDigest( const CHARSTRING& p__certificateId, OCTETSTRING& p__digest ) { return TRUE; } /* * @desc Read the private keys for the specified certificate * @param p_keysId the keys identifier * @param p_signingPrivateKey the signing private key * @return true on success, false otherwise fx_readSigningKey(in charstring p_keysId, out Oct32 p_signingPrivateKey) return boolean; */ BOOLEAN fx__readSigningKey( const CHARSTRING& p__keysId, OCTETSTRING& p__signingPrivateKey ) { return TRUE; } /* * @desc Read the private keys for the specified certificate * @param p_keysId the keys identifier * @param p_encryptPrivateKey the encrypt private key * @return true on success, false otherwise fx_readEncryptingKey(in charstring p_keysId, out Oct32 p_encryptingPrivateKey) return boolean; */ BOOLEAN fx__readEncryptingKey( const CHARSTRING& p__keysId, OCTETSTRING& p__encryptingPrivateKey ) { return TRUE; } // group geodesic /* * @desc Check that given polygon doesn't have neither self-intersections nor holes. * @param p_region Polygonal Region * @return true on success, false otherwise * @verdict Unchanged fx_isValidPolygonalRegion(in PolygonalRegion p_region) return boolean; */ BOOLEAN fx__isValidPolygonalRegion( const IEEE1609dot2BaseTypes::PolygonalRegion& p__region ) { return TRUE; } /* * @desc Check if a polygonal region is inside another one * @param p_parent The main polygonal region * @param p_region The polygonal region to be included * @return true on success, false otherwise * @verdict Unchanged fx_isPolygonalRegionInside(in PolygonalRegion p_parent, in PolygonalRegion p_region) return boolean; */ BOOLEAN fx__isPolygonalRegionInside( const IEEE1609dot2BaseTypes::PolygonalRegion& p__parent, const IEEE1609dot2BaseTypes::PolygonalRegion& p__region ) { return TRUE; } /* * @desc Check that the location is inside a circular region * @param p_region The circular region to consider * @param p_location The device location * @return true on success, false otherwise * @verdict Unchanged fx_isLocationInsideCircularRegion(in CircularRegion p_region, in ThreeDLocation p_location) return boolean; */ BOOLEAN fx__isLocationInsideCircularRegion( const IEEE1609dot2BaseTypes::CircularRegion& p__region, const IEEE1609dot2BaseTypes::ThreeDLocation& p__location ) { return TRUE; } /* * @desc Check that the location is inside a rectangular region * @param p_region The rectangular region to consider * @param p_location The device location * @return true on success, false otherwise * @verdict Unchanged fx_isLocationInsideRectangularRegion(in SequenceOfRectangularRegion p_region, in ThreeDLocation p_location) return boolean; */ BOOLEAN fx__isLocationInsideRectangularRegion( const IEEE1609dot2BaseTypes::SequenceOfRectangularRegion& p__region, const IEEE1609dot2BaseTypes::ThreeDLocation& p__location ) { return TRUE; } /* * @desc Check that the location is inside a polygonal region * @param p_region The polygonal region to consider * @param p_location The device location * @return true on success, false otherwise * @verdict Unchanged fx_isLocationInsidePolygonalRegion(in PolygonalRegion p_region, in ThreeDLocation p_location) return boolean; */ BOOLEAN fx__isLocationInsidePolygonalRegion( const IEEE1609dot2BaseTypes::PolygonalRegion& p__region, const IEEE1609dot2BaseTypes::ThreeDLocation& p__location ) { return TRUE; } /* * @desc Check if the location is inside an identified region * @param p_region The identified region to consider * @param p_location The device location * @return true on success, false otherwise * @verdict Unchanged fx_isLocationInsideIdentifiedRegion(in IdentifiedRegion p_region, in ThreeDLocation p_location) return boolean; */ BOOLEAN fx__isLocationInsideIdentifiedRegion( const IEEE1609dot2BaseTypes::IdentifiedRegion& p__region, const IEEE1609dot2BaseTypes::ThreeDLocation& p__location ) { return TRUE; } /* * @desc Check if the location is inside an undefined region * @param p_region The identified region to consider * @param p_location The device location * @return true on success, false otherwise * @verdict Unchanged fx_isLocationInsideOtherRegion(in octetstring p_region, in ThreeDLocation p_location) return boolean; */ BOOLEAN fx__isLocationInsideOtherRegion( const OCTETSTRING& p_region, const IEEE1609dot2BaseTypes::ThreeDLocation& p_location ) { return TRUE; } /* * @desc Check that p_circular_region_1 circular region is included into p_circular_region_2 circular region * @param p_circular_region_1 Circular region 1 * @param p_circular_region_2 Circular region 2 * @return true on success, false otherwise fx_areCirclesInside(in CircularRegion p_circular_region_1, in CircularRegion p_circular_region_2) return boolean; */ BOOLEAN fx__areCirclesInside( const IEEE1609dot2BaseTypes::CircularRegion& p_circular_region_1, const IEEE1609dot2BaseTypes::CircularRegion& p_circular_region_2 ) { return TRUE; } /* * @desc Check that p_rectanglar_region_1 rectangular region is included into p_rectanglar_region_2 rectangular region * @param p_rectanglar_region_1 Rectangular region 1 * @param p_rectanglar_region_2 Rectangular region 2 * @return true on success, false otherwise fx_areRectanglesInside(in SequenceOfRectangularRegion p_rectanglar_region_1, in SequenceOfRectangularRegion p_rectanglar_region_2) return boolean; */ BOOLEAN fx__areRectanglesInside( const IEEE1609dot2BaseTypes::SequenceOfRectangularRegion& p_rectanglar_region_1, const IEEE1609dot2BaseTypes::SequenceOfRectangularRegion& p_rectanglar_region_2 ) { return TRUE; } /* * @desc Check that p_polygonal_region_1 polygonal region is included into p_polygonal_region_2 polygonal region * @param p_polygonal_region_1 Polygonal region 1 * @param p_polygonal_region_2 Polygonal region 2 * @return true on success, false otherwise fx_arePolygonsInside(in PolygonalRegion p_polygonal_region_1, in PolygonalRegion p_polygonal_region_2) return boolean; */ BOOLEAN fx__arePolygonsInside( const IEEE1609dot2BaseTypes::PolygonalRegion& p_polygonal_region_1, const IEEE1609dot2BaseTypes::PolygonalRegion& p_polygonal_region_2 ) { return TRUE; } /* * @desc Convert a spacial coordinate from DMS to Dms * @param p_degrees The degrees (D) * @param p_minutes The minutes (M) * @param p_seconds The seconds (S) * @param p_latlon The latitude/longitude: (N|S|E|W) * @return The decimal coordinate on success, 0.0, otherwise * @verdict Unchanged fx_dms2dd(in Int p_degrees, in Int p_minutes, in float p_seconds, in Oct1 p_latlon) return float; */ FLOAT fx__dms2dd( const INTEGER& p__degrees, const INTEGER& p__minutes, const FLOAT& p__seconds, const OCTETSTRING& p__latlon ) { return 0.0; } } // end of namespace