Newer
Older
#include "security_services.hh"
#include "EtsiTs103097Codec_ToBeSignedData.hh"
#include "EtsiTs103097Codec_Data.hh"
#include "EtsiTs103097Codec_Certificate.hh"
#include "sha256.hh"
#include "sha384.hh"
#include "ec_keys.hh"
#include "Params.hh"
#include "loggers.hh"
#include "converter.hh"
security_services * security_services::instance = nullptr;
security_services::security_services() : _setup_done{false}, _ec_keys_enc(nullptr), _security_cache(new security_cache), _security_db(nullptr), _last_generation_time(0), _unknown_certificate(), _latitude(0), _longitude(0), _elevation(0) {
loggers::get_instance().log(">>> security_services::security_services");
} // End of ctor
int security_services::setup(Params& p_params) { // FIXME Rename this method
loggers::get_instance().log(">>> security_services::setup");
if (_setup_done) {
loggers::get_instance().warning("security_services::setup: Already done");
return 0;
}
_setup_done = true;
_security_db.reset(new security_db(p_params[Params::sec_db_path]));
if (_security_db.get() == nullptr) { // Memory allocation issue
loggers::get_instance().warning("security_services::setup: _security_db pointer is NULL");
// Setup encryption instance
// std::string certificate_id = p_params[Params::certificate] + "_AT";
// OCTETSTRING os;
// _security_db.get()->get_private_enc_key(certificate_id, os);
// std::vector<unsigned char> pri_enc_key(static_cast<const unsigned char*>(os), os.lengthof() + static_cast<const unsigned char*>(os));
Params::const_iterator it = p_params.find(Params::cypher);
if (it == p_params.cend()) {
_ec_keys_enc.reset(new ec_keys(ec_elliptic_curves::nist_p_256));
} else if (it->second.compare("NISTP-256")) {
_ec_keys_enc.reset(new ec_keys(ec_elliptic_curves::nist_p_256));
} else if (it->second.compare("BP-256")) {
_ec_keys_enc.reset(new ec_keys(ec_elliptic_curves::brainpool_p_256_r1));
} else {
loggers::get_instance().warning("security_services::setup: Failed to encode ToBeSignedData");
return -1;
}
int security_services::store_certificate(const CHARSTRING& p_cert_id, const OCTETSTRING& p_cert, const OCTETSTRING& p_private_key, const OCTETSTRING& p_public_key_x, const OCTETSTRING& p_public_key_y, const OCTETSTRING& p_hashid8, const OCTETSTRING& p_issuer, const OCTETSTRING& p_private_enc_key, const OCTETSTRING& p_public_enc_key_x, const OCTETSTRING& p_public_enc_key_y) {
loggers::get_instance().log_msg(">>> security_services::store_certificate: ", p_cert_id);
// Sanity checks
if (_security_db.get() == nullptr) { // Setup not called
loggers::get_instance().warning("security_services::store_certificate: Not initialised");
return _security_db.get()->store_certificate(p_cert_id, p_cert, p_private_key, p_public_key_x, p_public_key_y, p_hashid8, p_issuer, p_private_enc_key, p_public_enc_key_x, p_public_enc_key_y);
int security_services::verify_and_extract_gn_payload(const OCTETSTRING& p_secured_gn_payload, const bool p_verify, OCTETSTRING& p_unsecured_gn_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::verify_and_extract_gn_payload: ", p_secured_gn_payload);
// Sanity checks
if (p_secured_gn_payload.lengthof() == 0) {
return -1;
}
// Decode the secured message (OER encoding)
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data;
EtsiTs103097Codec_Data codec;
codec.decode(p_secured_gn_payload, ieee_1609dot2_data, &p_params);
loggers::get_instance().warning("security_services::verify_and_extract_gn_payload: Unbound value, discard it");
return -1;
}
if (p_verify && ((unsigned int)(int)ieee_1609dot2_data.protocolVersion() != security_services::ProtocolVersion)) {
loggers::get_instance().warning("security_services::verify_and_extract_gn_payload: Wrong version protocol, discard it");
return -1;
return process_ieee_1609_dot2_content(ieee_1609dot2_data.content(), p_verify, p_unsecured_gn_payload, p_params);
} // End of method verify_and_extract_gn_payload
int security_services::process_ieee_1609_dot2_content(const IEEE1609dot2::Ieee1609Dot2Content& p_ieee_1609_dot2_content, const bool p_verify, OCTETSTRING& p_unsecured_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_content: ", p_ieee_1609_dot2_content);
if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_unsecuredData)) { // Unsecured packet, End of recursivity
p_unsecured_payload = p_ieee_1609_dot2_content.unsecuredData();
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_signedData)) {
const IEEE1609dot2::SignedData& signedData = p_ieee_1609_dot2_content.signedData();
if (process_ieee_1609_dot2_signed_data(signedData, p_verify, p_unsecured_payload, p_params) != 0) {
return -1;
}
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_encryptedData)) {
const IEEE1609dot2::EncryptedData& encrypted_data = p_ieee_1609_dot2_content.encryptedData();
OCTETSTRING signed_payload;
if (security_services::process_ieee_1609_dot2_encrypted_data(encrypted_data, p_verify, signed_payload, p_params) != 0) {
return -1;
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_content: Decrypted payload: ", signed_payload);
if (verify_and_extract_gn_payload(signed_payload, p_verify, p_unsecured_payload, p_params) != 0) {
return -1;
}
} else if (p_ieee_1609_dot2_content.ischosen(IEEE1609dot2::Ieee1609Dot2Content::ALT_signedCertificateRequest)) {
loggers::get_instance().log("security_services::process_ieee_1609_dot2_content: Set Certificate re-transmission flag and reset timer");
return 0;
} else { // Shall never be reached
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_content: Undefined IEEE 1609.2 Content, discard it");
loggers::get_instance().log_msg("<<< security_services::process_ieee_1609_dot2_content: ", p_unsecured_payload);
return 0;
} // End of method process_ieee_1609_dot2_content
int security_services::process_ieee_1609_dot2_signed_data(const IEEE1609dot2::SignedData& p_signed_data, const bool p_verify, OCTETSTRING& p_unsecured_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_signed_data: ", p_signed_data);
// Check the headerInfo content
const IEEE1609dot2::HeaderInfo& header_info = p_signed_data.tbsData().headerInfo();
if (!header_info.generationTime().is_present()) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: HeaderInfo::GenerationTime field is missing");
if (p_verify) {
return -1;
}
} else {
const OPTIONAL<INTEGER>& v = dynamic_cast<const OPTIONAL<INTEGER>& >(header_info.generationTime());
unsigned long long gt = ((INTEGER&)(*v.get_opt_value())).get_long_long_val();
// Get current time timestamp
unsigned long long ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count() - 1072911600000L; // TODO Add method such as its_tme() & its_time_mod() beacuse it is used also in LibItsCommon_externals
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: generation time check %ld / %ld", header_info.generationTime(), ms);
if (abs((double)gt - (double)ms) >= 5.0) { // TODO Use a params for generation_time_epsilon
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Invalid generation time, discard it");
return -1;
}
}
// Check and extract unsecured payload
if (p_signed_data.tbsData().payload().data().is_present()) {
// Check protocol version
const OPTIONAL<IEEE1609dot2::Ieee1609Dot2Data>& v = dynamic_cast<const OPTIONAL<IEEE1609dot2::Ieee1609Dot2Data>& >(p_signed_data.tbsData().payload().data());
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: SignedDataPayload.data = ", v);
const IEEE1609dot2::Ieee1609Dot2Data& ieee_1609dot2_data = static_cast<const IEEE1609dot2::Ieee1609Dot2Data&>(*v.get_opt_value());
if (p_verify && ((unsigned int)(int)ieee_1609dot2_data.protocolVersion() != security_services::ProtocolVersion)) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Wrong version protocol, discard it");
return -1;
}
if (process_ieee_1609_dot2_content(ieee_1609dot2_data.content(), p_verify, p_unsecured_payload, p_params) != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to process SignedData, discard it");
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
return -1;
}
} else if (p_signed_data.tbsData().payload().extDataHash().is_present()) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported extDataHash, discard it");
return -1;
} else { // Shall not be reached
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported SignedDataPayload, discard it");
return -1;
}
// Encode the ToBeSignedData
EtsiTs103097Codec_ToBeSignedData tbs_data_codec;
OCTETSTRING os;
tbs_data_codec.encode(p_signed_data.tbsData(), os);
if (os.lengthof() == 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to encode ToBeSignedData");
return -1;
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: encoded tbs_data = ", os);
// Calculate the hash according to the hashId
OCTETSTRING hashed_data;
int result = -1;
if (p_signed_data.hashId() == IEEE1609dot2BaseTypes::HashAlgorithm::sha256) {
result = hash_sha256(os, hashed_data);
} else {
result = hash_sha384(os, hashed_data);
}
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: hashed_data = ", hashed_data);
if (result != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to create hash");
return -1;
}
// Retrieve certificate identifier
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: signer = ", p_signed_data.signer());
std::string certificate_id;
result = -1;
if (p_signed_data.signer().ischosen(IEEE1609dot2::SignerIdentifier::ALT_digest)) {
// Retrieve the certificate identifier from digest
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Retrieve the certificate identifier from digest");
result = _security_db.get()->get_certificate_id(p_signed_data.signer().digest(), certificate_id);
if (result == -1) {
// Check in the cache
if (_security_cache.get()->get_certificate_id(p_signed_data.signer().digest(), certificate_id) == -1) {
// Unknown certificate, request it
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Unknown certificate, request it");
const OCTETSTRING& os = p_signed_data.signer().digest();
_unknown_certificate.resize(3);
const unsigned char* p = static_cast<const unsigned char*>(os) + os.lengthof() - 3;
for (int i = 0; i < 3; i++) {
_unknown_certificate[i] = *(p + i);
} // End of 'for' statement
loggers::get_instance().log_to_hexa("security_services::process_ieee_1609_dot2_signed_data: HashedId3: ", _unknown_certificate.data(), _unknown_certificate.size());
}
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: Set Certificate re-transmission flag and reset timer");
} else if (p_signed_data.signer().ischosen(IEEE1609dot2::SignerIdentifier::ALT_certificate) && (p_signed_data.signer().certificate().size_of() != 0)) {
// Extract the certificates
for (int i = 0; i < p_signed_data.signer().certificate().size_of(); i++) {
IEEE1609dot2::CertificateBase cert = p_signed_data.signer().certificate()[i];
if (cert.issuer().ischosen(IEEE1609dot2::IssuerIdentifier::ALT_sha256AndDigest)) {
result = _security_db.get()->get_certificate_id(cert.issuer().sha256AndDigest(), certificate_id);
if (_security_cache.get()->get_certificate_id(cert.issuer().sha256AndDigest(), certificate_id) == -1) {
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: Store new certificate in cache: ", cert);
const std::vector<unsigned char> v(static_cast<const unsigned char*>(cert.issuer().sha256AndDigest()), static_cast<const unsigned char*>(cert.issuer().sha256AndDigest()) + cert.issuer().sha256AndDigest().lengthof());
certificate_id = converter::get_instance().bytes_to_hexa(v);
// Add it into the cache
OCTETSTRING public_key_x, public_key_y;
if (cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaNistP256)) {
public_key_x = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().uncompressedP256().x();
public_key_y = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaNistP256().uncompressedP256().y();
} else if (cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaBrainpoolP256r1)) {
public_key_x = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().uncompressedP256().x();
public_key_y = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP256r1().uncompressedP256().y();
} else {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported VerificationKey");
return -1;
}
// Add encryption keys
OCTETSTRING public_enc_key_x, public_enc_key_y;
if (extract_encryption_keys(cert, public_enc_key_x, public_enc_key_y) == -1) {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported EncryptionKey");
return -1;
}
// Encode certificate
EtsiTs103097Codec_Certificate codec;
OCTETSTRING enc_cert;
codec.encode(cert, enc_cert);
OCTETSTRING hash_cert;
hash_sha256(enc_cert, hash_cert);
// And store it into the cache
_security_cache.get()->store_certificate(
CHARSTRING(certificate_id.c_str()),
enc_cert,
int2oct(0, 32), // No way to get the private key here
public_key_x,
public_key_y,
cert.issuer().sha256AndDigest(),
int2oct(0, 32), // Encryption private not used
public_enc_key_x,
public_enc_key_y
);
}
}
} else if (cert.issuer().ischosen(IEEE1609dot2::IssuerIdentifier::ALT_sha384AndDigest)) {
result = _security_db.get()->get_certificate_id(cert.issuer().sha384AndDigest(), certificate_id);
if (_security_cache.get()->get_certificate_id(cert.issuer().sha384AndDigest(), certificate_id) == -1) {
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: Store new certificate in cache: ", cert);
const std::vector<unsigned char> v(static_cast<const unsigned char*>(cert.issuer().sha384AndDigest()), static_cast<const unsigned char*>(cert.issuer().sha384AndDigest()) + cert.issuer().sha384AndDigest().lengthof());
certificate_id = converter::get_instance().bytes_to_hexa(v);
// Add it into the cache
OCTETSTRING public_key_x, public_key_y;
if (cert.toBeSigned().verifyKeyIndicator().verificationKey().ischosen(IEEE1609dot2BaseTypes::PublicVerificationKey::ALT_ecdsaBrainpoolP384r1)) {
public_key_x = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().uncompressedP384().x();
public_key_y = cert.toBeSigned().verifyKeyIndicator().verificationKey().ecdsaBrainpoolP384r1().uncompressedP384().y();
} else {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported VerificationKey");
return -1;
}
// Add encryption keys
OCTETSTRING public_enc_key_x, public_enc_key_y;
if (extract_encryption_keys(cert, public_enc_key_x, public_enc_key_y) == -1) {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported EncryptionKey");
return -1;
}
// Encode certificate
EtsiTs103097Codec_Certificate codec;
OCTETSTRING enc_cert;
codec.encode(cert, enc_cert);
OCTETSTRING hash_cert;
hash_sha384(enc_cert, hash_cert);
// And store it into the cache
_security_cache.get()->store_certificate(
CHARSTRING(certificate_id.c_str()),
enc_cert,
int2oct(0, 48), // No way to get the private key here
public_key_x,
public_key_y,
hash_cert,
cert.issuer().sha384AndDigest(),
int2oct(0, 32), // Encryption private not used
public_enc_key_x,
public_enc_key_y
} else {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported certificate issuer");
return -1;
} // End of 'for' statement
IEEE1609dot2::CertificateBase cert = p_signed_data.signer().certificate()[0];
} else {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Unsupported SignerIdentifier");
return -1;
}
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Certificate not found for the specified signer, it will be requested");
loggers::get_instance().log("security_services::process_ieee_1609_dot2_signed_data: certificate id = '%s'", certificate_id.c_str());
// Verify the signature of the ToBeSignedData
loggers::get_instance().log_msg("security_services::process_ieee_1609_dot2_signed_data: signature = ", p_signed_data.signature__());
result = -1;
if (p_signed_data.signature__().ischosen(IEEE1609dot2BaseTypes::Signature::ALT_ecdsaNistP256Signature)) {
result = verify_sign_ecdsa_nistp256(hashed_data, p_signed_data.signature__(), certificate_id, p_params);
} else {
// TODO
loggers::get_instance().error("security_services::process_ieee_1609_dot2_content: TODO");
}
if (result != 0) {
loggers::get_instance().warning("security_services::process_ieee_1609_dot2_signed_data: Failed to verify signature");
return -1;
}
loggers::get_instance().log_msg("<<< security_services::process_ieee_1609_dot2_signed_data: ", p_unsecured_payload);
return 0;
} // End of method process_ieee_1609_dot2_signed_data
int security_services::process_ieee_1609_dot2_encrypted_data(const IEEE1609dot2::EncryptedData& p_encrypted_data, const bool p_verify, OCTETSTRING& p_unsecured_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::process_ieee_1609_dot2_encrypted_data: ", p_encrypted_data);
//loggers::get_instance().log_msg("<<< security_services::process_ieee_1609_dot2_encrypted_data: ", p_unsecured_payload);
} // End of method process_ieee_1609_dot2_encrypted_data
int security_services::secure_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_secured_gn_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::secure_gn_payload: ", p_unsecured_gn_payload);
OCTETSTRING signed_payload;
if (sign_gn_payload(p_unsecured_gn_payload, signed_payload, p_params) != 0) {
p_secured_gn_payload = p_unsecured_gn_payload;
loggers::get_instance().warning("security_services::secure_gn_payload: Failed to signed payload");
return -1;
}
Params::const_iterator it = p_params.find(Params::encrypted_mode);
if (it != p_params.cend()) {
if (encrypt_gn_payload(signed_payload, p_secured_gn_payload, p_params) != 0) {
p_secured_gn_payload = signed_payload;
loggers::get_instance().warning("security_services::secure_gn_payload: Failed to encrypt payload");
return -1;
}
} else { // No encryption required
loggers::get_instance().log("security_services::secure_gn_payload: Encryption mode not set");
p_secured_gn_payload = signed_payload;
}
return 0;
}
int security_services::sign_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_signed_gn_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_gn_payload: ", p_unsecured_gn_payload);
// Set unsecured data
IEEE1609dot2::Ieee1609Dot2Content unsecured_data_content;
unsecured_data_content.unsecuredData() = p_unsecured_gn_payload;
IEEE1609dot2::Ieee1609Dot2Data unsecured_data(ProtocolVersion, unsecured_data_content);
// Set hash algorithm
IEEE1609dot2BaseTypes::HashAlgorithm hashId(IEEE1609dot2BaseTypes::HashAlgorithm::sha256);
if (p_params[Params::hash].compare("SHA-384") == 0) {
hashId = IEEE1609dot2BaseTypes::HashAlgorithm::sha384;
}
// Set SignedDataPayload
IEEE1609dot2::SignedDataPayload payload;
payload.data() = unsecured_data;
payload.extDataHash().set_to_omit();
IEEE1609dot2::HeaderInfo header_info;
header_info.psid() = converter::get_instance().string_to_int(p_params[Params::its_aid]);
header_info.expiryTime().set_to_omit();
header_info.generationLocation().set_to_omit();
header_info.p2pcdLearningRequest().set_to_omit();
header_info.missingCrlIdentifier().set_to_omit();
header_info.encryptionKey().set_to_omit();
Params::const_iterator it = p_params.find(Params::payload_type);
if (it != p_params.cend()) {
loggers::get_instance().log("security_services::sign_gn_payload: Payload type: %s", it->second.c_str());
OPTIONAL<IEEE1609dot2BaseTypes::ThreeDLocation> location(IEEE1609dot2BaseTypes::ThreeDLocation(_latitude, _longitude, _elevation));
loggers::get_instance().log_msg("security_services::sign_gn_payload: generationLocation: ", location);
loggers::get_instance().log_msg("security_services::sign_gn_payload: generationLocation: ", header_info.generationLocation());
} else if (it->second.compare("2") == 0) { // CAM
// Noting to do
} else {
// Noting to do
}
loggers::get_instance().log("security_services::sign_gn_payload: Payload type not set");
// Noting to do
}
unsigned long long ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count() - 1072911600000L; // TODO Add method such as its_tme() & its_time_mod() beacuse it is used also in LibItsCommon_externals
INTEGER i;
i.set_long_long_val((unsigned int)ms);
header_info.generationTime() = OPTIONAL<INTEGER>(i);
// Check if a certificate shall be requested
if (_unknown_certificate.size() == 3) { // HashedId3
IEEE1609dot2BaseTypes::SequenceOfHashedId3 s;
s[0] = OCTETSTRING(_unknown_certificate.size(), _unknown_certificate.data());
header_info.inlineP2pcdRequest() = OPTIONAL<IEEE1609dot2BaseTypes::SequenceOfHashedId3>(s);
_unknown_certificate.clear();
} else {
header_info.inlineP2pcdRequest().set_to_omit();
}
header_info.requestedCertificate().set_to_omit();
IEEE1609dot2::ToBeSignedData tbs_data;
tbs_data.payload() = payload;
tbs_data.headerInfo() = header_info;
loggers::get_instance().log_msg("security_services::sign_gn_payload: tbs_data = ", tbs_data);
// Sign the ToBeSignedData data structure
IEEE1609dot2BaseTypes::Signature signature;
if (sign_tbs_data(tbs_data, hashId, signature, p_params) != 0) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to secure payload");
return -1;
}
IEEE1609dot2::SignerIdentifier signer;
loggers::get_instance().log("security_services::sign_gn_payload: ms = %d - _last_generation_time = %d - ms - _last_generation_time = %d", (unsigned int)ms, _last_generation_time, (unsigned int)(ms - _last_generation_time));
std::string certificate_id = p_params[Params::certificate] + "_AT";
loggers::get_instance().log("security_services::sign_gn_payload: certificate_id = %s", certificate_id.c_str());
if ((unsigned int)(ms - _last_generation_time) >= 1000 * 0.95) { // Need to add certificate
IEEE1609dot2::CertificateBase cert;
if (_security_db->get_certificate(certificate_id, cert) != 0) {
loggers::get_instance().warning("security_services:sign_gn_payload: Failed to secure payload");
return -1;
}
IEEE1609dot2::SequenceOfCertificate sequenceOfCertificate;
sequenceOfCertificate[0] = cert;
signer.certificate() = sequenceOfCertificate;
// Reset send certificate timer
_last_generation_time = ms;
} else {
if (_security_db->get_hashed_id(certificate_id, digest) != 0) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to secure payload");
return -1;
}
signer.digest() = digest;
}
IEEE1609dot2::SignedData signed_data(
hashId,
tbs_data,
signer,
signature
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: signed_data = ", signed_data);
IEEE1609dot2::Ieee1609Dot2Content ieee_dot2_content;
ieee_dot2_content.signedData() = signed_data;
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data(
security_services::ProtocolVersion,
ieee_dot2_content
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: ieee_1609dot2_data = ", ieee_1609dot2_data);
codec.encode(ieee_1609dot2_data, p_signed_gn_payload);
if (!p_signed_gn_payload.is_bound()) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to encode Ieee1609Dot2Data");
return -1;
}
return 0;
}
int security_services::encrypt_gn_payload(const OCTETSTRING& p_unsecured_gn_payload, OCTETSTRING& p_enc_gn_payload, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::encrypt_gn_payload: ", p_unsecured_gn_payload);
// Sanity checks
if (_ec_keys_enc.get() == nullptr) {
loggers::get_instance().warning("security_services::encrypt_gn_payload: Encryption not initialised");
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
// AES-128 encryption of the data
std::vector<unsigned char> message(static_cast<const unsigned char*>(p_unsecured_gn_payload), p_unsecured_gn_payload.lengthof() + static_cast<const unsigned char*>(p_unsecured_gn_payload));
std::vector<unsigned char> enc_message;
_ec_keys_enc.get()->encrypt(encryption_algotithm::aes_128_ccm, message, enc_message);
// _ec_keys_enc object contains the key, the none and the tag
OCTETSTRING nonce = OCTETSTRING(_ec_keys_enc.get()->nonce().size(), _ec_keys_enc.get()->nonce().data());
OCTETSTRING tag = OCTETSTRING(_ec_keys_enc.get()->tag().size(), _ec_keys_enc.get()->tag().data());
OCTETSTRING enc_payload = OCTETSTRING(enc_message.size(), enc_message.data());
IEEE1609dot2::AesCcmCiphertext aes_128_ccm(nonce, enc_payload + tag); // Add tag at the end of the ciphered text
// Build SymmetricCiphertext
IEEE1609dot2::SymmetricCiphertext cipher_text;
cipher_text.aes128ccm() = aes_128_ccm;
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: aes_128_ccm = ", cipher_text);
// Build the recipient_id
std::string certificate_id = p_params[Params::certificate] + "_AT";
OCTETSTRING recipient_id;
_security_db.get()->get_hashed_id(certificate_id, recipient_id); // SHA-256 of the certificate which contain the encryption private/public keys
// TODO Encryt the AES-128 key
OCTETSTRING public_enc_key_x;
OCTETSTRING public_enc_key_y;
_security_db.get()->get_public_enc_keys(certificate_id, public_enc_key_x, public_enc_key_y);
// TODO
//int unused = 0;
//std::vector<unsigned char> x, y;
//_ec_keys_enc.get()->generate_ephemeral_key(encryption_algotithm::aes_128_ccm, public_enc_key_x, public_enc_key_y, unused);
OCTETSTRING encrypt_aes_128_key; // TODO
OCTETSTRING encrypt_aes_128_tag; // TODO
// Build the encryption keys
IEEE1609dot2BaseTypes::EccP256CurvePoint eccP256CurvePoint;
eccP256CurvePoint.uncompressedP256().x() = public_enc_key_x;
eccP256CurvePoint.uncompressedP256().y() = public_enc_key_y;
IEEE1609dot2BaseTypes::EciesP256EncryptedKey ecies_key(
eccP256CurvePoint,
encrypt_aes_128_key,
encrypt_aes_128_tag
);
// Build the encryption data
IEEE1609dot2::EncryptedDataEncryptionKey enc_data_key;
Params::const_iterator it = p_params.find(Params::cypher);
if (it == p_params.cend()) {
enc_data_key.eciesNistP256() = ecies_key;
} else if (it->second.compare("NISTP-256")) {
enc_data_key.eciesNistP256() = ecies_key;
} else if (it->second.compare("BP-256")) {
enc_data_key.eciesBrainpoolP256r1() = ecies_key;
}
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: enc_data_key = ", enc_data_key);
// Finalise the encryption
IEEE1609dot2::PKRecipientInfo cert_recipient_info(recipient_id, enc_data_key);
IEEE1609dot2::RecipientInfo recipient_info;
recipient_info.certRecipInfo() = cert_recipient_info;
IEEE1609dot2::SequenceOfRecipientInfo recipients;
recipients[0] = recipient_info;
IEEE1609dot2::EncryptedData encrypted_data(recipients, cipher_text);
// Encode it
loggers::get_instance().log_msg("security_services::encrypt_gn_payload: encrypted_data = ", encrypted_data);
IEEE1609dot2::Ieee1609Dot2Content ieee_dot2_content;
ieee_dot2_content.encryptedData() = encrypted_data;
IEEE1609dot2::Ieee1609Dot2Data ieee_1609dot2_data(
security_services::ProtocolVersion,
ieee_dot2_content
);
loggers::get_instance().log_msg("security_services::sign_gn_payload: ieee_1609dot2_data = ", ieee_1609dot2_data);
EtsiTs103097Codec_Data codec;
codec.encode(ieee_1609dot2_data, p_enc_gn_payload);
if (!p_enc_gn_payload.is_bound()) {
loggers::get_instance().warning("security_services::sign_gn_payload: Failed to encode Ieee1609Dot2Data");
return -1;
}
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
return 0;
}
int security_services::sign_tbs_data(const IEEE1609dot2::ToBeSignedData& p_tbs_data, const IEEE1609dot2BaseTypes::HashAlgorithm& p_hashAlgorithm, IEEE1609dot2BaseTypes::Signature& p_signature, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_tbs_data: ", p_tbs_data);
// Encode the ToBeSignedData
EtsiTs103097Codec_ToBeSignedData tbs_data_codec;
OCTETSTRING os;
tbs_data_codec.encode(p_tbs_data, os);
if (os.lengthof() == 0) {
loggers::get_instance().warning("security_services::sign_tbs_data: Failed to encode ToBeSignedData");
return -1;
}
loggers::get_instance().log_msg("security_services::sign_tbs_data: encoded tbs_data = ", os);
// Hash ToBeSignedData
OCTETSTRING hashed_data;
int result = -1;
if (p_hashAlgorithm == IEEE1609dot2BaseTypes::HashAlgorithm::sha256) {
result = hash_sha256(os, hashed_data);
} else {
result = hash_sha384(os, hashed_data);
}
loggers::get_instance().log_msg("security_services::sign_tbs_data: encoded hashed_data = ", hashed_data);
if (result != 0) {
loggers::get_instance().warning("security_services::sign_tbs_data: Failed to create hash");
return -1;
}
// Sign ToBeSignedData
result = -1;
loggers::get_instance().log("security_services::sign_tbs_data: encoded Params::signature = '%s'", p_params[Params::signature].c_str());
loggers::get_instance().log("security_services::sign_tbs_data: encoded Params::certificate = '%s'", p_params[Params::certificate].c_str());
if (p_params[Params::signature].compare("NISTP-256") == 0) {
result = sign_ecdsa_nistp256(hashed_data, p_signature, p_params);
} else if (p_params[Params::signature].compare("BP-256") == 0) {
//result = sign_ecdsa_brainpoolp256(hashed_data, p_signature, p_params);
loggers::get_instance().error("security_services::sign_tbs_data: TODO");
result = -1;
} else if (p_params[Params::signature].compare("BP-384") == 0) {
//result = sign_ecdsa_brainpoolp256(hashed_data, p_signature, p_params);
loggers::get_instance().error("security_services::sign_tbs_data: TODO");
result = -1;
} else {
loggers::get_instance().error("security_services::sign_tbs_data: Unsupported signature algorithm");
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
if (result != 0) {
loggers::get_instance().warning("security_services::sign_tbs_data: Failed to sign payload");
return -1;
}
return 0;
}
int security_services::hash_sha256(const OCTETSTRING& p_data, OCTETSTRING& p_hash_data) {
loggers::get_instance().log_msg(">>> security_services::hash_sha256: ", p_data);
sha256 hash;
std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p_data), p_data.lengthof() + static_cast<const unsigned char *>(p_data));
std::vector<unsigned char> hashData;
hash.generate(tbh, hashData);
p_hash_data = OCTETSTRING(hashData.size(), hashData.data());
return 0;
}
int security_services::hash_sha384(const OCTETSTRING& p_data, OCTETSTRING& p_hash_data) {
loggers::get_instance().log_msg(">>> security_services::hash_sha384: ", p_data);
sha384 hash;
std::vector<unsigned char> tbh(static_cast<const unsigned char *>(p_data), p_data.lengthof() + static_cast<const unsigned char *>(p_data));
std::vector<unsigned char> hashData;
hash.generate(tbh, hashData);
p_hash_data = OCTETSTRING(hashData.size(), hashData.data());
return 0;
}
int security_services::sign_ecdsa_nistp256(const OCTETSTRING& p_hash, IEEE1609dot2BaseTypes::Signature& p_signature, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::sign_ecdsa_nistp256: ", p_hash);
std::string certificate_id = p_params[Params::certificate] + "_AT"; // FIXME Specified strictly the naming of the certificate files
loggers::get_instance().log("security_services::sign_ecdsa_nistp256: encoded certificate_id = '%s'", certificate_id.c_str());
if (_security_db->get_private_key(certificate_id, pkey) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to get private key");
return -1;
}
std::vector<unsigned char> private_key(static_cast<const unsigned char *>(pkey), static_cast<const unsigned char *>(pkey) + pkey.lengthof());
OCTETSTRING public_key_x;
OCTETSTRING public_key_y;
if (_security_db->get_public_keys(certificate_id, public_key_x, public_key_y) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to get public keys");
return -1;
}
std::vector<unsigned char> hashed_data(static_cast<const unsigned char *>(p_hash), static_cast<const unsigned char *>(p_hash) + p_hash.lengthof());
ec_keys k(ec_elliptic_curves::nist_p_256, private_key);
std::vector<unsigned char> r_sig;
std::vector<unsigned char> s_sig;
if (k.sign(hashed_data, r_sig, s_sig) != 0) {
loggers::get_instance().warning("security_services::sign_ecdsa_nistp256: Failed to sign payload");
return -1;
}
IEEE1609dot2BaseTypes::EccP256CurvePoint ep;
ep.x__only() = OCTETSTRING(r_sig.size(), r_sig.data());
p_signature.ecdsaNistP256Signature() = IEEE1609dot2BaseTypes::EcdsaP256Signature(
ep,
);
loggers::get_instance().log_msg("security_services::sign_ecdsa_nistp256: signature = ", p_signature);
return 0;
}
int security_services::verify_sign_ecdsa_nistp256(const OCTETSTRING& p_hash, const IEEE1609dot2BaseTypes::Signature& p_signature, const std::string& p_certificate_id, Params& p_params) {
loggers::get_instance().log_msg(">>> security_services::verify_sign_ecdsa_nistp256: ", p_hash);
OCTETSTRING public_key_x;
OCTETSTRING public_key_y;
if (_security_db->get_public_keys(p_certificate_id, public_key_x, public_key_y) != 0) {
loggers::get_instance().warning("security_services::verify_sign_ecdsa_nistp256: Failed to get public keys");
return -1;
}
std::vector<unsigned char> hashData(static_cast<const unsigned char *>(p_hash), static_cast<const unsigned char *>(p_hash) + p_hash.lengthof());
OCTETSTRING os;
if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_x__only)) {
os = p_signature.ecdsaNistP256Signature().rSig().x__only() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__0)) {
os = p_signature.ecdsaNistP256Signature().rSig().compressed__y__0() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_compressed__y__1)) {
os = p_signature.ecdsaNistP256Signature().rSig().compressed__y__1() + p_signature.ecdsaNistP256Signature().sSig();
} else if (p_signature.ecdsaNistP256Signature().rSig().ischosen(IEEE1609dot2BaseTypes::EccP256CurvePoint::ALT_uncompressedP256)) {
os = p_signature.ecdsaNistP256Signature().rSig().uncompressedP256().x() + p_signature.ecdsaNistP256Signature().rSig().uncompressedP256().y() + p_signature.ecdsaNistP256Signature().sSig();
} else {
loggers::get_instance().warning("security_services::verify_sign_ecdsa_nistp256: Invalid curve point");
return -1;
}
std::vector<unsigned char> signature(static_cast<const unsigned char *>(os), static_cast<const unsigned char *>(os) + os.lengthof());
std::vector<unsigned char> key_x(static_cast<const unsigned char *>(public_key_x), static_cast<const unsigned char *>(public_key_x) + public_key_x.lengthof());
std::vector<unsigned char> key_y(static_cast<const unsigned char *>(public_key_y), static_cast<const unsigned char *>(public_key_y) + public_key_y.lengthof());
ec_keys k(ec_elliptic_curves::nist_p_256, key_x, key_y);
if (k.sign_verif(hashData, signature) == 0) {
return 0;
}
int security_services::extract_encryption_keys(const IEEE1609dot2::CertificateBase& p_cert, OCTETSTRING& p_public_enc_key_x, OCTETSTRING& p_public_enc_key_y) {
if (p_cert.toBeSigned().encryptionKey().ispresent()) {
const IEEE1609dot2BaseTypes::PublicEncryptionKey& p = static_cast<const IEEE1609dot2BaseTypes::PublicEncryptionKey&>(p_cert.toBeSigned().encryptionKey());
if (p.publicKey().ischosen(IEEE1609dot2BaseTypes::BasePublicEncryptionKey::ALT_eciesNistP256)) {
p_public_enc_key_x = p.publicKey().eciesNistP256().uncompressedP256().x();
p_public_enc_key_y = p.publicKey().eciesNistP256().uncompressedP256().y();
} else if (p.publicKey().ischosen(IEEE1609dot2BaseTypes::BasePublicEncryptionKey::ALT_eciesBrainpoolP256r1)) {
p_public_enc_key_x = p.publicKey().eciesBrainpoolP256r1().uncompressedP256().x();
p_public_enc_key_y = p.publicKey().eciesBrainpoolP256r1().uncompressedP256().y();
} else {
loggers::get_instance().error("security_services::process_ieee_1609_dot2_signed_data: Unsupported EncryptionKey");
return -1;
}
}
return 0;
} // End of method extract_encryption_keys
int security_services::read_certificate(const CHARSTRING& p_certificate_id, OCTETSTRING& p_certificate) const {
return _security_db.get()->get_certificate(std::string(static_cast<const char*>(p_certificate_id)), p_certificate);
}
int security_services::read_certificate_digest(const CHARSTRING& p_certificate_id, OCTETSTRING& p_digest) const {
return _security_db.get()->get_hashed_id(std::string(static_cast<const char*>(p_certificate_id)), p_digest);
}
int security_services::read_certificate_from_digest(const OCTETSTRING& p_digest, CHARSTRING& p_certificate_id) const {
std::string certificate_id;
if (_security_db.get()->get_certificate_id(p_digest, certificate_id) != -1) {
p_certificate_id = CHARSTRING(certificate_id.c_str());
return 0;
}
return -1;
}
int security_services::read_private_key(const CHARSTRING& p_certificate_id, OCTETSTRING& p_private_key) const {
return _security_db.get()->get_private_key(std::string(static_cast<const char*>(p_certificate_id)), p_private_key);
}