

Vodafone Proprietary classified as C2 - Internal

First MEC Hackathon – Exemplary case study
This case study, based on a PoC realized by Vodafone, Amazon Web Services and Saguna, is written to

inspire developers to work with the hackathon environment. The PoC was about a use case in

automotive called "distracted driver monitoring", and made use of 4G radio, Saguna MEC platform

and an AI/ML application.

The intention of this use case is to provide an end-to-end example (not binding for the competition)

of how a MEC system as the one from Saguna (available for the hackathon) can serve as an edge

computing environment and which other components may round off such an application. Developers

are free to choose any other specific use case related to the general topic contained in the Call for

Developers document.

Thus, please have a look at the present case study, and at the same time feel free to reuse your past

or existing projects that may be related to advanced mobile applications for automotive infotainment

services, e.g. by proposing your own Entertainment and VR/AR applications (called “EVA apps”), as in-

car mobile solutions using ETSI MEC technologies for passengers.

Enjoy the reading!

Case study: “Distracted driver monitoring”

The proof of concept challenge

As part of the broader connected cars trend that is transforming the automotive industry, various
accident prevention solutions are being developed. Among these are driver monitoring solutions,
which are designed to alert distracted drivers who text, talk on the phone, become drowsy or shift
their focus away from the road. These solutions require a camera in the vehicle focused on the driver
and the artificial intelligence that track movements and effectively identify when the driver becomes
distracted. However, car manufacturers have to deal with a large amount of in-vehicle data that
exceeds the ability to process all of that data locally. Installing additional computing power in the
vehicle is expensive and may quickly become obsolete during a typical car’s 20-year lifespan.
Furthermore, sending the data to the cloud for processing has performance issues due to latency. As
a result, current in-vehicle solutions are expensive, hard to upgrade and out of reach for the mass
market.

Overall story
Amazon Web Services, Vodafone and Saguna worked together to explore edge-cloud-computing for

smart-camera services, like driver monitoring, and offloading of computing resources from the car.

Combining Vodafone’s 4G LTE network, Saguna’s ETSI MEC compliant platform and AWS Greengrass’s

machine learning inference capabilities, the idea is that drivers can install a simple camera in their

vehicles that watches the driver and relays video frames to the nearest processing point. In the cellular

network, Saguna’s MEC platform hosts AWS Greengrass to quickly collect and intelligently process

data, and send an alert back to the vehicle if the driver is distracted. This approach can deliver an

economical and reliable solution that can enable car manufacturers and suppliers to ensure the safety

of cars and their drivers. By operating inside the network yet close to the connected car, this low-

latency solution can prevent accidents with real-time alerts while lowering the in-vehicle bill-of-

materials, reducing cost through shared resources, continuing to benefit from technology

improvements and scaling of the service. This can make new services economical and relevant to the

mass market, opening a wide range of possibilities across a broad consumer market (e.g. fleet

management, insurance). See a video explanation here: https://youtu.be/oDNCGIur778

https://youtu.be/oDNCGIur778

Vodafone Proprietary classified as C2 - Internal

Solution architecture
The proof-of-concept solution targets after-market in-car devices, whose video feeds are streamed to

the edge of a 4G LTE network, where Saguna’s Multi-access Edge Computing (MEC) solution directs

the stream to AWS Greengrass for machine learning analysis.

The network infrastructure side

1) The in-car device (the UE) is a Raspberry Pi equipped with Pi Camera. It is connected via

cellular radio and continuously streams video frames to the network.

2) Saguna vEdge, the ETSI MEC platform, filters traffic according to various traffic rules (e.g.

matching the typical 5-tuple flow identifier, matching IMSI/APN) and redirects video streams

to the co-located AWS Greengrass instance. It implements a mechanism called “local

breakout” terminating the session at the MEC Edge Cloud without involving the mobile core

network.

3) AWS Greengrass Core is hosted in the MEC Edge Cloud and the camera device is registered in

the same AWS Greengrass Group. This is implemented as a MEC application that receives

traffic from the radio access network (as per configured traffic rules in the MEC platform) and

enables (through AWS Lambda functions) the driver monitoring application on top of it.

4) The driver monitoring application processes video frames using a neural network to detect

distracting behaviours (talking and texting on the phone in this proof-of-concept).

5) AWS cloud is used to train the machine learning model and send updated models to the AWS

Greengrass instance. It can also receive notifications and results from the edge if they need to

be dispatched to other applications (examples might be IT system of an insurance company,

fleet management system).

The developer side
The driver monitoring application does not follow a traditional client-server approach, but a 3-tier

model, with the MEC Edge Cloud as an intermediate element (see picture below). The machine

learning process is then split into 3 locations: the data source at the in-vehicle device; the inference

and fast reply at the network edge close to the device; the training in the cloud, where large

computation power is available.

 1

 2

 3

 4

 5

Vodafone Proprietary classified as C2 - Internal

The in-vehicle Raspberry Pi video stream application has been built using the AWS IoT SDK, which

establishes a secure communication between the device and the AWS Greengrass instance at the

edge. Video streams are sent in MQTT messages between the Rapsberry Pi and AWS Greengrass over

the wireless network.

At the edge cloud, the MEC platform is configured with the correct traffic rules to redirect video frames

to AWS Greengrass and trigger the driver monitoring application, which uses a convolutional neural

network (MobileNet) to detect driver behaviours.

In the cloud, AWS SageMaker trains the machine learning model using a public dataset of images of

drivers in different situations. The training phase benefits from the heavy compute power in the cloud

and can happen offline. The produced/updated model is sent to the edge, where the fast inference

runs continuously without needing an always-on connection to the cloud.

Working with MEC
Multi-access edge computing brings cloud-computing capabilities into the edge of the telecoms

network.

In above use case, an automotive application has been deployed in a three-tiered way using i) a simple

device platform (Raspberry Pi), ii) a cloud computing environment at the network edge that is also

available in a public cloud (AWS’s Lambda function environment) and iii) the public cloud itself (which

supports the same Lambda function environment).

Thus, working with MEC was easy for the application developers as they faced:

 A common environment both at the network edge and the public cloud

 A MEC platform that takes care of routing traffic between end user devices and the edge

application over a 4G cellular network

 A simple way to deploy the edge application to the MEC platform

Other new, innovative use cases may leverage a number of additional features that will be supported

by an ETSI-compliant MEC platform. To recap:

ETSI MEC defines a platform framework that interfaces with MEC applications and other MEC

platforms. The MEC platform is responsible for multiple functions, including: receiving DNS records

and configuring a DNS proxy/server; hosting MEC Services, such as: Radio Network Information,

Location and Bandwidth Manager. Each application instantiated at the edge can use any subset of the

totality of functions provided by the MEC platform through simple, modern and well defined REST

APIs1. To learn and play with those APIs, visit the ETSI live demo: www.etsi.org/mec-hackathon-1-

berlin/mec-live-demo

1 The complete specification is available here: https://forge.etsi.org/

http://www.etsi.org/mec-hackathon-1-berlin/mec-live-demo
http://www.etsi.org/mec-hackathon-1-berlin/mec-live-demo
https://forge.etsi.org/

