ETSI ES 201 873-1 V4.14.1 (2022-05)
9

ETSI ES 201 873-1 V4.14.1 (2022-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN‑3 Core Language

ETSI STANDARD
[image: ETSI_BG_final_new]

[bookmark: _Toc102406264]16	Functions, methods, altsteps and testcases
[bookmark: _Toc102406265]16.0	General
In TTCN‑3, functions, methods, altsteps and testcases are used to specify and structure test behaviour, define default behaviour and to structure computation in a module, etc. as described in the following clauses.
[bookmark: _Toc102406266]16.1	Functions
[bookmark: _Toc102406267]16.1.0	General
Functions are used in TTCN‑3 to express test behaviour, to organize test execution or to structure computation in a module, for example, to calculate a single value, to initialize a set of variables or to check some condition.
Syntactical Structure
function [@deterministic | @control] (FunctionIdentifier | control)
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[extends Type]
[runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[return [TemplateModifier] Type [ArrayDef]]
StatementBlock

Semantic Description
Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the remaining behaviour.
Functions may return a value or a template. Value return is denoted by the return keyword followed by a type expression. Template return is denoted by the return keywords followed by a TemplateModifier and a type expression. Execution of a return statement in the body of the function causes evaluation of the return value or template, the function to terminate and to return the result to the location of the call of the function.
The behaviour of a function can be defined by using statements and operations described in clauses Error: Reference source not found to Error: Reference source not found.
Functions may be parameterized.
A Function with an extends clause is called a method (see clause 16.1.X).
Functions may have an mtc clause. If a function has an mtc clause, the type referenced by this clause shall be mtc-compatible (see clause Error: Reference source not found) with the type of the mtc component reference. If the mtc clause is not present, the type of the mtc component reference is unknown in the scope of this function.
Functions may have a system clause. If a function has a system clause, the type referenced by this clause shall be system-compatible (see clause Error: Reference source not found) with the type of the system component reference. If the system clause is not present, the type of the system component reference is unknown in the scope of this function.
Using the @deterministic modifier, a function can be declared to be deterministic. Deterministic functions are safe to be used when called from specific places where non-determinism could lead to unexpected side effects (see clause Error: Reference source not found).
NOTE 0:	The determination of determinism of a function is a semi-decidable problem and as such can and will not be exhaustively checked. As such, the annotation deterministic is mainly used for informational purposes and for allowing certain functions to be used during snapshot evaluation. Principally, a function can be seen as deterministic if it does not violate any of the restrictions from clause Error: Reference source not found which does not mean that violation of these restriction automatically leads to non-determinism.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Error: Reference source not found, the following restrictions apply:
1. A function without runs on clause shall never invoke a function or altstep or activate an altstep as default with a runs on clause locally.
a) Functions started by using the start test component operation shall always have a runs on clause (see clause Error: Reference source not found) and are considered to be invoked in the component to be started, i.e. not locally. However, the start test component operation may be invoked within behaviour without a runs on clause.
NOTE 1:	The restrictions concerning the runs on clause are only related to functions and altsteps and not to test cases.
1. Functions called directly or indirectly from a module control function shall have no mtc or system clause.
NOTE 2:	Nevertheless, functions called directly or indirectly from the module control function are allowed to execute test cases.
a) The rules for formal parameter lists shall be followed as defined in clause 5.4.
b) For return TemplateModifier statements the restrictions specified in clause Error: Reference source not found shall apply.
c) Template return can be restricted to the matching mechanisms specific value and omit, see clause Error: Reference source not found.
d) A return statement in a value returning function shall always have a value expression compatible to the type specified in the function header return clause.
e) A return statement in a template returning function shall always have a template reference (including calling a value or template returning function)or template instance compatible to the type specified in the function header return clause. If the return clause has a template restriction, this restriction shall be adhered to by the returned template.
f) If the function header includes a return clause, the function, when terminating, shall do so by executing a return statement. The function will cause a test case error if it terminates (i.e. reaches the end of the function body) without executing a return statement.
g) If a function references the names of definitions that are defined inside a component type definition, the component type shall be referenced using the runs on keywords in the function header. The one exception to this rule is if all the necessary component-wide information is passed in the function as parameters.
h) The additional restrictions in clause 16.1.5 shall apply to all explicit control functions.The list of statements and operations that are allowed to be used by control functions is provided by table Error: Reference source not found.
Examples
EXAMPLE 1:	Function with return:
	// Definition of f_myFunction which has no parameters
	function f_myFunction() return integer
	{

		return 7; 	// returns the integer value 7 when the function terminates
	}

EXAMPLE 2:	Function with template return:
	// Definition of functions which may return matching symbols or templates
	function f_myFunction2() return template integer
	{
	:
		return ?; 	// returns the matching mechanism AnyValue
	}
	function f_myFunction3() return template octetstring
	{
	:
		return 'FF??FF'O; 	// returns an octetstring with AnyValue inside it
	}

EXAMPLE 3:	Function with runs on clause:
	function f_myFunction3() runs on MyPTCType {
									// f_myFunction3 does not return a value, but
		var integer v_myVar := 5;	// does make use of the port operation
		pCO1.send(v_myVar);			// send and therefore requires a runs on
								// clause to resolve the port identifiers
	}								// by referencing a component type

EXAMPLE 4:	Parameterized function:
	function f_myFunction2(inout integer p_myPar1) {
									// f_myFunction2 does not return a value
		p_myPar1 := 10 * p_myPar1;	// but changes the value of p_myPar1 which
	}								// is passed in by reference

EXAMPLE 5:	Function without return statement:
	function f_myFunction5(inout integer p_myPar1) return integer {
		if (p_myPar1 > 5) {
 p_myPar1 := 5;
 return p_myPar1;
 }
 // in case of p_myPar1 <= 5, f_myFunction5 does not terminate in a return statement
 // and will cause a test case error
 }

EXAMPLE 6:	Function with system and mtc:
 type component MtcType { ... }
 type component SystemType { ... }

 function f_myFunction6() runs on MyPtcType mtc MtcType system SystemType {
		var MtcType v_mtc := mtc;
		var SystemType v_system := system;
		f_myFunction3(); // allowed, f_myFunction3() has no mtc and system clause
		f_myFunction6(); // allowed, f_myFunction6() has compatible mtc and system clause
 }
	function f_myFunction7() runs on MyPtcType system SystemType {
		var MtcType v_mtc := mtc; // not allowed, mtc type unknown
		f_myFunction6(); // possible runtime error, no mtc clause of f_myFunction7
	}
	function MyFunction8() runs on MyPtcType mtc MtcType {
		var SystemType v_system := system; // not allowed, system type unknown
		f_myFunction6(); // possible runtime error, no system clause of f_myFunction8
	}

[bookmark: _Toc102406270]16.1.3	External functions
A function may be defined within a module or be declared as being defined externally (i.e. external).
Syntactical Structure
external function [@deterministic | @control] ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[extends Type]
[return [TemplateModifier] Type]

Semantic Description
For an external function only the function interface has to be provided in the TTCN‑3 module. The realization of the external function is outside the scope of the present document.
Using the @deterministic modifier, an external function can be declared to be deterministic. Deterministic functions are safe to be used when called from specific places where non-determinism could lead to unexpected side effects (see clause Error: Reference source not found).
The @control modifier is used in the same way as described in the clause 16.1.5.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Error: Reference source not found, the following restrictions apply:
1. Restrictions on invoking functions from specific places are described in clause Error: Reference source not found.
NOTE:	External functions should only exchange information with the test system via return values and parameter passing. Side-effects that change the status of the test system and may influence the test outcome should be avoided. Such side-effects can occur if an external function contains default handling, configuration, communication or timer operations.
Examples
	external function fx_myFunction4() return integer;	// External function without parameters
														// which returns an integer value

	external function fx_initTestDevices();	// An external function which only has an
											// effect outside the TTCN‑3 module

16.1.5	Methods
A method is a function or an external function with an extends clause. The type specified by the extends clause is called the receiver type.
A method definition binds behaviour to a receiver type. The method name is local to the receiver type and shall be unique within the receiver type (but does not have to be globally unique). Methods of embedded fields can become promoted methods (see clause 6.2.1.4). Methods bound to a receiver type do not affect compatibility rules.
During method invocation the receiver value is passed as the implicit inout parameter this.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Error: Reference source not found, and the restrictions on invoking functions given in clause 16.1.1, the following restrictions apply:
1. A method and its receiver type shall be defined in the same module.
Examples

module M1 {
	type integer A;
	type integer B;

	function method1() extends A {}
	function method1() extends B {}

	private function method2() extends B { log("receiver value:", this) }
}

module M2 {
	import from M1 all;

	function method1() extends M1.A {} // ERROR: method not in same module as receiver type.

	type M1.A C;

	function F() {
		var A a := 1;
		var B b := 2;
		var C c := 3;

 a := c; // a and c are compatible.
		a.method1(); // regular method invocation.
		b.method2(); // ERROR: method2 is not visible in module M2.
		c.method1(); // ERROR: no methods bound to type C
	}
}

A.1.5.0	General
TTCN‑3 terminal symbols and reserved words are listed in tables A.2, A.3 and A.5.
Table A.1: List of TTCN‑3 special terminal symbols
	Begin/end block symbols
	{ }

	Begin/end list symbols
	()

	Element specifier symbols
	[]

	Range symbol
	..

	Line and block comments
	/* */ //

	Statement separator symbol
	;

	Arithmetic operator symbols
	+ / - *

	Concatenation operator symbol
	&

	Relational operator symbols
	!= == >= <= < >

	Shift operator symbols
	<< >>

	Rotate operator symbols
	<@ @>

	String enclosure symbols
	" '

	Wildcard/matching symbols
	? *

	Assignment symbol
	:=

	Communication operation assignment
	->

	Bitstring, hexstring and Octetstring values
	B H O

	Float exponent
	E

	List element separator symbol
	,

	Field reference
	.

	Decoded field reference
	=>

The predefined function identifiers defined in table Error: Reference source not found and described in annex C shall also be treated as reserved words.
Table A.2: List of TTCN‑3 terminals which are reserved words
	action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
decmatch
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external
	fail
false
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave
isbound
ischosen
ispresent
isvalue

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc
	noblock
none
not
not_a_number
not4b
nowait
null

octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record
recursive
rem
repeat
reply
return
running
runs
	select
self
send
sender
set
setencode
setverdict
signature
start
stop
subset
superset
system

template
testcase
this
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

The TTCN‑3 terminals listed in table A.3 shall not be used as identifiers in a TTCN‑3 module. These terminals shall be written in all lowercase letters.
Additionally, there are special TTCN-3 terminals consisting of an @-symbol, directly followed by an identifier. These terminals shall also be written in all lowercase letters.
NOTE:	These terminals can be used in combination with the @-symbol, which results in a specific semantics for the annotated language element. They can also be used like any other identifier without any special meaning.
Table A.3: List of TTCN‑3 terminals which are modifiers
	@abstract
@control

	@decoded
@default
@deterministic
@fuzzy
	@index
@lazy
@local
	@nocase
@nodefault

Table A.4: List of TTCN‑3 terminals which are reserved words in extension packages
	apply
assert
at

configuration
conjunct
cont

delta
disjunct
duration

finished

	history

implies
inv

mode

notinv
now

onentry
onexit

	par
prev

realtime

seq
setstate
static
stepsize
stream

	
timestamp

until

values

wait

The TTCN‑3 terminals listed in table A.4 are used as keywords inside the TTCN-3 extension packages. These terminals shall not be used as identifiers in a TTCN‑3 module..
These terminals shall be written in all lowercase letters.
[bookmark: _Toc102406409]A.1.6	TTCN-3 syntax BNF productions
[bookmark: _Toc102406416]A.1.6.1.4	Function definitions
1FunctionDef ::= FunctionKeyword [DeterministicModifier | ControlModifier]
					 IdentifierOrControl
 "(" [FunctionFormalParList] ")" [ReceiverSpec] [RunsOnSpec] [MtcSpec]
 [SystemSpec] [ReturnType] StatementBlock
2FunctionKeyword ::= "function"
3FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
4FunctionFormalPar ::= FormalValuePar |
 FormalTemplatePar
5ReturnType ::= ReturnKeyword [TemplateModifier] Type [ArrayDef]
6ReturnKeyword ::= "return"
7RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
8RunsKeyword ::= "runs"
9OnKeyword ::= "on"
10ReceiverSpec ::= Extends
11MtcSpec ::= MTCKeyword ComponentType
12MTCKeyword ::= "mtc"
13StatementBlock ::= "{" [FunctionDefOrStatementList] "}"
14FunctionDefOrStatementList ::= {(FunctionBodyDef | FunctionStatement) [SemiColon]}+
[bookmark: TFunctionBodyDef]15FunctionBodyDef ::= (FunctionLocalDef | FunctionLocalInst) [WithStatement]
16FunctionLocalInst ::= VarInstance | TimerInstance
17FunctionLocalDef ::= ConstDef | TemplateDef
18FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 SetLocalVerdict |
 SUTStatements |
 TestcaseOperation
19FunctionInstance ::= FunctionRef ["(" [ActualParList] ")"]
/* STATIC SEMANTICS – the part is only optional if the FunctionRef uses the ControlKeyword and the referenced control function has no formal parameters */
20FunctionRef ::= [Identifier Dot] (Identifier | PreDefFunctionIdentifier | ControlKeyword)
21PreDefFunctionIdentifier ::= Identifier [CaseInsenModifier]

/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 function identifiers from Annex C of ES 201 873-1. CaseInsenModifier shall be present only if Identifier is "regexp". */
/* STATIC SEMANTICS – if a value parameter is used, an in-line template shall evaluate to a value */

[bookmark: _Toc102406422]A.1.6.1.10	External function definitions
22ExtFunctionDef ::= ExtKeyword FunctionKeyword [DeterministicModifier | ControlModifier]
 Identifier "(" [FunctionFormalParList] ")" [ReceiverSpec] [ReturnType]
23ExtKeyword ::= "external"

ETSI
image1.jpeg

