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[bookmark: _Toc6314260]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The use of underline (additional text) and strike through (deleted text) highlights the differences between base document and extended documents.
The present document relates to the multi-part series ETSI ES 201 873 covering the Testing and Test Control Notation version 3, as identified below:
Part 1:	"TTCN‑3 Core Language";
Part 4:	"TTCN‑3 Operational Semantics";
Part 5:	"TTCN‑3 Runtime Interface (TRI)";
Part 6:	"TTCN‑3 Control Interface (TCI)";
Part 7:	"Using ASN.1 with TTCN‑3";
Part 8:	"The IDL to TTCN-3 Mapping";
Part 9:	"Using XML schema with TTCN‑3";
Part 10:	"TTCN-3 Documentation Comment Specification";
Part 11:	"Using JSON with TTCN-3".
[bookmark: _Toc6314261]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc6314262]
1	Scope
The present document defines the Configuration and Deployment Support package of TTCN‑3. TTCN‑3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of APIs, etc. TTCN‑3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN‑3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
This package defines the TTCN-3 support for static test configurations.
While the design of TTCN‑3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
[bookmark: _Toc6314263]2	References
[bookmark: _Toc6314264]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_1][1]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][2]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ES201873_5][3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: REF_ISOIEC9646_1][5]	ISO/IEC 9646-1: "Information technology - Open Systems Interconnection -Conformance testing methodology and framework; Part 1: General concepts".
[bookmark: _Toc6314265]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES201873_7][i.1]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.2]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.3]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.4]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[bookmark: _Toc6314266]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc6314267]3.1	Terms
For the purposes of the present document, the terms given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.
[bookmark: _Toc6314268]3.2	Symbols
Void.
[bookmark: _Toc6314269]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4], ISO/IEC 9646-1 [5] and the following apply:
MTC	Main Test Component
PTC	Parallel Test Component
[bookmark: _Toc6314270]4	Package conformance and compatibility
The package presented in the present document is identified by the package tag:
	"TTCN-3:2009 Static Test Configurations" - to be used with modules complying with the present document.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document, in ETSI ES 201 873‑1 [1] and in ETSI ES 201 873‑4 [2].
The package presented in the present document is compatible to:
ETSI ES 201 873-1 [1] version 4.9.1;
ETSI ES 201 873-4 [2] version 4.6.1;
ETSI ES 201 873-5 [3] version 4.8.1;
ETSI ES 201 873-6 [4] version 4.9.1;
ETSI ES 201 873-7 [i.1];
ETSI ES 201 873-8 [i.2];
ETSI ES 201 873-9 [i.3];
ETSI ES 201 873-10 [i.4].
If later versions of those parts are available and should be used instead, the compatibility to the package presented in the present document has to be checked individually.
[bookmark: _Toc6314271]5	Package Concepts for the Core Language
[bookmark: _Toc6314272]5.0	General
This package defines the TTCN-3 means to define static test configurations. A static test configuration is a test configuration with a lifetime that is not bound to a single test case. The test components of a static test configuration may be used by several test cases. This package realizes the following concepts:
A special configuration function is introduced which can only be called in the control part of a TTCN-3 module to create static test configurations. The configuration function returns a handle of the predefined type configuration to access an existing static test configuration.
A static test configuration consists of static test components, a test system interface, static connections and static mappings. These constituents have the following semantics:
A static test component is a special kind of test component that can only be created during the creation of a static test configuration and can only be destroyed during the destruction of a static test configuration. By definition, the MTC of a static test configuration is a static test component.
The test system interface of a static test configuration plays the same role as the test system interface of a test configuration created by a test case.
A static connection is a connection between static test components. It can only be established during the creation of a static test configuration and only be destroyed during the destruction of a static test configuration.
A static mapping is a mapping of a port of a static test component to a port of the test system interface of a static test configuration. Such a mapping can only be established during the creation of a static test configuration and only be destroyed during the destruction of a static test configuration.
A static test configuration can be used by several test cases. For this the test case is started on a previously created static test configuration. This means:
The body of the test case is executed on the MTC of the static test configuration.
The MTC may start behaviour on other static test components of the static test configuration.
Static test components may create, start, stop and kill normal and alive test components. The lifetime of these components is bound to the actual test case that is executed on the static test configuration. In case that a normal and alive test component is not destroyed explicitly by another test component, it is implicitly destroyed when the test case ends.
During test case execution non-static connections and non-static mappings may be established. The lifetime of non-static connections and non-static mappings is bound to the actual test case that is executed on the static test configuration. In case that a non-static connection or a non-static mapping is not destroyed explicitly by another test component, it is implicitly destroyed when the test case ends.
Component timers and variables of static test components are not reset or reininitialized when a test case is started on a static test configuration. They remain in the same state as when they were left after the creation of the static test configuration or after the termination of a previous test case. This allows to transfer information from one test case to another.
Ports of static test components are not emptied or restarted when a test case is started on a static test configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status messages, during the test campaign. In addition, all port operations (i.e. clear, start, stop and halt) are disallowed for ports of static test components. All ports of a static test component remain started during the whole lifetime of a static test configuration.
In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means all activated defaults are deactiviated, all local verdicts and the global verdict are set to none.
[bookmark: _Toc6314273]5.1	Static configurations
[bookmark: _Toc6314274]5.1.1	The special configuration type: configuration
The special configuration type configuration is a handle for static test configurations. The special value null is available to indicate an undefined configuration reference, e.g. for the initialization of variables to handle a static test configuration.
Values of type configuration shall be the result of configuration functions, they can be checked for equality, e.g. to check if two variables store the same value, and they can be used in execute statements for starting a test case on an existing static test configuration and in kill configuration statements to destroy an existing static test configuration.
Each successful execution of a configuration function results in a different configuration value which is only equal to itself.
Restrictions
The following restrictions apply to usages of the configuration type:
The configuration type cannot be subtyped or constrained.
The configuration type is not a data type, therefore, the anytype does not include the configuration type.
Module parameters shall not be of type configuration.
Signature parameters shall not be of type configuration.
Templates shall not be of type configuration.
Templates shall not be of a structured type that contains fields or elements of type configuration on any level of nesting.
External functions are not allowed to contain parameters or return values of type configuration.
EXAMPLES:
	var configuration myStaticConfig := null;	// Declaration and initialization of a
												// configuration variable.

	myStaticConfig := aStaticConfig();			// Assigns a value to the previously declared 
												// configuration variable. It is assumed that 
												//aStaticConfig() is a configuration function.

	myStaticConfig.kill							// Kills the static test configuration stored in
												// variable myStaticConfig.

[bookmark: _Toc6314275]5.1.2	The configuration function
A configuration function allows the start of a static test configuration.
Syntactical Structure
configuration ConfigurationIdentifier
"(" [ { ( FormalValuePar | FormalTemplatePar) [","] } ] ")"
runs on ComponentType
[ system ComponentType ] 
StatementBlock

Semantic Description
A configuration function allows the start of a static test configuration. A configuration function has to be defined in the definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a configuration function returns a value of type configuration if the start of the configuration was successful, or null if the start of the configuration was not successful.
The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test configuration. The types of MTC and test system interface shall be referenced in a runs on and a system clause. The system clause is optional and can be omitted, if the test system has exactly the same ports as the MTC and these ports are mapped one to one to each other.
The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of a test configuration only behaviour on the MTC shall be executed and only static test components, static connections and static mappings shall be created or established. Communication with the SUT or with static PTCs is not allowed.
NOTE:	The configuration function only returns a reference to a test configuration and no verdict. However, communication with the SUT might have to be checked. For this purpose, initial communication, e.g. for registration or coordination purposes, could be defined in form of a test case.
A static test configuration is successfully started if the behaviour of the corresponding configuration function has been executed till its end or if a return statement in the corresponding configuration function is reached. In case of a successful start, a reference to the newly created configuration is returned. The usage of a stop or a kill statement allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, the value null is returned.
Restrictions
1. The rules for formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of ETSI ES 201 873‑4 [2].
Configuration functions shall only be invoked in the module control part.
For the behaviour definition in the body of the configuration function and all functions directly or indirectly from the configuration function, the following restrictions shall hold:
Only static test components, static connections and static mappings shall be created or established. All created test components, connections and mappings during the execution of a configuration function are static.
Once created or established static test components, static connections and static mappings shall not be destroyed.
It is not allowed to start behaviour on newly created static test components.
Communication, timer and port operations are not allowed.
EXAMPLES:
// The following configuration function can be used to start a simple static test configuration
// which only consists of one MTC.

	configuration simpleStaticConfig () runs on MyMTCtype{}


// The following configuration function starts a more complex static configuration.
// Configuration information is stored in MTC component variables. Further non-static
// connections and mappings may be established by the test cases that are executed
// on this configuration.

	configuration aComplexStaticConfig (in integer NoOfPTCs) runs on MyMTCtype system MySystemType {
		var integer i;

		if (NoOfPTCs < 0) {
			log ("Negative number of PTCs");
			kill;								// unsuccessful termination
		}
		else if (NoOfPTCs > MaxNoOfPTCs) {		// MaxNoOfPTCs is a constant
			log ("Number of PTCs is too high");
			kill;								// unsuccessful termination
		}
		else {
			for (i := 1, i <= NoOfPTCs, i := i + 1) {
				PTC[i] := PtcType.create static;	// creation of static PTCs,
													// Array PTC[] is a component variable
				connect (mtc:SyncPort, PTC[i]:SyncPort) static; // static connection
			}
			map(mtc:PCO, system:PCO1) static;	// static mapping of MTC.
			map(PTC[1]:PCO, system:PCO2);		// some static mappings of PTCs,
			map(PTC[2]:PCO, system:PCO3);		// further non-static mappings may be
												// established during test runs
		}
		return;									// successful termination
	}

[bookmark: _Toc6314276]5.1.3	Starting a static test configuration
A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case of a successful start, a reference to the newly created static test configuration is returned. In case of an unsuccessful start, the special value null is returned.
EXAMPLES:
control {
	var configuration myStaticConfig := null;	// Declaration and initialization of a
												// configuration variable.

	myStaticConfig := aStaticConfig();			// Assigns a value to the previously declared 
												// configuration variable. It is assumed that 
												// aStaticConfig() is a configuration function.

	if (myStaticConfig == null) {
		stop;									// Stop test campaign due to an unsuccessful start
	}
	else {
		execute(MyTestCase(),myStaticConfig)	// Successful start, continuation of test campaign
		...
	}
}

[bookmark: _Toc6314277]5.1.4	Destruction of static test configurations
A static test configuration can be destroyed by executing a kill configuration operation.
Syntactical Structure
ConfigurationReference.kill

Semantic Description
The execution of a kill configuration operation causes the destruction of a static test configuration. The destruction is similar to stopping a test case by killing the MTC. This means, resources of all static PTCs shall be released and the PTCs shall be removed. The only difference is that no test verdict is calculated and returned. After executing the kill configuration operation, it is not possible to execute a test case on the killed static test configuration.
Executing the kill configuration operation with the special value null shall have no effect, executing a kill configuration operation with a reference to a non-existing static test configuration shall cause a runtime error.
Restrictions
1. The kill configuration operation shall only be executed in the control part of a TTCN-3 module.
EXAMPLES:
control {
	var configuration myStaticConfig := null;	// Declaration and initialization of a
												// configuration variable.

	myStaticConfig := aStaticConfig();			// Assigns a value to the previously declared 
												// configuration variable. It is assumed that 
												// aStaticConfig() is a configuration function.

	myStaticConfig.kill							// Destruction of the previously started static
												// test configuration.

[bookmark: _Toc6314278]5.1.5	Creation of static test components
All create operations invoked directly or indirectly from configuration functions create static test components. The creation of static test components can be indicated by the additional optional keyword static in the create operation. The extension of the create operation in clause 21.2.1 of ETSI ES 201 873‑4 [2] required for the creation of static test components is described in the following clauses.
Syntactical Structure
ComponentType "." create [ "(" (Name | "-") ["," HostId] ")" ] [ alive | static ]
Semantic Description
The create operation in combination with the keyword static shall only be used to create static test components. Static test components can only be created by executing a configuration function and by functions directly or indirectly invoked by configuration functions. The keyword static in a create operation shall not be used in combination with the keyword alive.
NOTE 1:	During the lifetime of a static test configuration, a static component behaves like an alive component.
Static test components are created in the same manner as normal test components that are not declared as alive components. Further details on this can be found in clause 21.2.1 of ETSI ES 201 873‑4 [2].
NOTE 2:	Static test components can only be created directly or indirectly by a configuration function. This may be checkable at runtime and therefore the keyword static may not be required, but for having an explicit specification of static test configurations and for keeping the feature of static test configurations extendible, the keyword static has been introduced.
Restrictions
1. The create operation in combination with the keyword static shall only be invoked in configuration functions and in function that may be directly or indirectly called by such a configuration function.
The keyword static in a create operation shall not be used in combination with the keyword alive.
EXAMPLES:
	// This example declares variables of type MyComponentType, which are used to store the 
	// references of newly created static component instances of type MyComponentType.
	// An associated name is allocated to some of the created component instances.
	 :
	var MyComponentType MyNewComponent;
	var MyComponentType MyNewestComponent;
	 :
	MyNewComponent := MyComponentType.create static;
	MyNewestComponent := MyComponentType.create("Newest") static;

[bookmark: _Toc6314279]5.1.6	Establishment of static connections and static mappings
The map and connect operations called directly or indirectly from configuration functions establish static connections and static mappings. This can be indicated by the additional optional keyword static in connect and the map operations. The extension of the connect and map operation in clause 21.1.1 of ETSI ES 201 873‑4 [2] required for the establishment of static connections and mapping is described in the following clauses.
Syntactical Structure
connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" [ static ]

map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" 
    [ param "(" [ { ActualPar [","] }+ ] ")" ] [ static ]

Semantic Description
The connect and map the operation in combination with the keyword static shall only be used to establish static connections and static mappings. Static connections and static mappings can only be established by executing the creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of configuration type.
Static connections and static mappings are established in the same manner as normal connections and mappings. Further details on this can be found in clause 21.1.1 of ETSI ES 201 873‑4 [2].
NOTE:	Static connections and mappings can only be established directly or indirectly by a creator function of a configuration type. This may be checkable at runtime and therefore the keyword static may not be required, but for having an explicit specification of static test configurations and for keeping the feature of static test configurations extendible, the keyword static has been introduced.
Restrictions
1. The connect and map operation in combination with the keyword static shall only be used in configuration functions and in functions that may be directly or indirectly called by a configuration function.
1. Static connections and static mappings shall only be established to connect ports of static test components and to map ports of a static component to the ports of the test system interface of a configuration type.
EXAMPLES:
	// The following code fragment may be part of a creator function of a configuration type.
	// It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
	// in the corresponding port type and component type definitions 
	 :
	var MyComponentType  MyNewPTC;
	MyNewPTC := MyComponentType.create static;
	 :
	connect(MyNewPTC:Port1, mtc:Port3) static;
	map(MyNewPTC:Port2, system:PCO1) static;
	 :

[bookmark: _Toc6314280]5.1.7	Test case definitions for static test configuration
Test cases that are executed on a static test configuration have to be defined in a special manner. Such test cases shall reference the configuration function that starts a static configuration on which the test case can be executed. The type of the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be specified in the test case header. The extension of the test case definition in clause 16.3 of ETSI ES 201 873‑4 [2] required for the execution of a test case on a static test configuration is described in the following clauses.
Syntactical Structure
testcase TestcaseIdentifier
"(" [ { ( FormalValuePar | FormalTemplatePar) [","] } ] ")"
( runs on ComponentType [ system ComponentType ] | execute on ConfigurationType )
StatementBlock

Semantic Description
A test case definition that includes an execute on clause will be executed on previously created static test configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined in the referenced configuration type. A test case definition that includes an execute on clause shall not have a runs on or a system clause.
Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the same rules as described in clause 16.3 of ETSI ES 201 873‑4 [2].
Restrictions
1. A test case definition that includes an execute on clause shall not have a runs on or a system clause.
EXAMPLES:
	configuration aConfiguration () runs on MyMTCtype system MySystemType {
		
		PeerComponent := MyPTCType.create static; 	// creation of a static PTC
													// PeerComponent is a component variable

		connect(mtc:syncPort, PeerComponent:syncPort);		// static connection

		map (mtc:PCO1, system:PCO1)				// static mapping of MTC
		map (PeerComponent:PCO2, system:PCO2);	// static mapping of Peer Component

		return				// successful start of test configuration
	}

	testcase MyTestCase () execute on aConfiguration {

		default := activate(UnexpectedReceptions()); // activate a default

		PeerComponent.start (PTCbehaviour());		// starting PTC behaviour
		SyncPort.send (Ready);						// synchronization with PTC
		SyncPort.receive(Ready);					// PTC ready

		PCO1.send (stimulus);						// test starts

		...											// test behaviour

	}

[bookmark: _Toc6314281]5.1.8	Executing test cases on static test configurations
This clause only describes the syntax extensions of the execute statement to allow the execution of test cases with an execute on clause on static test configurations and the semantics for executing such test cases. The semantics of the execute statement for test cases without execute on clause remains unchanged.
Syntactical Structure
execute "(" TestcaseRef "(" [ { TemplateInstance [","] } ] ")"
            [ "," (TimerValue | "-") 
            [ "," (HostId | "-")
            [ "," ConfigurationRef ] ] ] ")"

Semantic Description
A test case definition that includes an execute on clause shall be executed on previously started static test configuration of a given configuration function. The reference of the previously started static test configuration shall be referenced in the execute statement.
Trying to execute a test case on a non-existing or unfitting static test configuration shall cause a run time error. Unfitting test configuration means that the referenced static test configuration has not been created by the configuration function referenced in the test case header.
If the execution of a test case on a static test configuration causes an error verdict, all following usages of this static test configuration in execute statements shall cause a runtime error.
NOTE:	It is allowed to kill the possibly erroneous static test configuration and to start a new one by invoking the configuration function again.
A test case that shall be started on a fitting static test configuration can rely on the following things:
All static test components, static connections and static mappings created or established by the referenced configuration function shall exist.
No static test component is running.
No non-static test components, non-static connections and non-static mappings shall exist.
Component timers and variables of static test components shall not be reset or reininitialized when a test case is started on a static test configuration. They remain in the same state as when they were left after the creation of the static test configuration or after the termination of a previous test case, except for running timers which can change their state to timed out. This allows to transfer information from one test case to another. If a timer of a static component is running when a test case terminates, it can still time out even before the next test case starts. However, this can only be observed during the execution of a testcase.
Ports of static test components shall not emptied or restarted when a test case is started on a static test configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status messages, during the test campaign. Messages, calls, replies, exceptions and call-timeouts can still be enqueued at ports of static test components after the termination of a testcase, but they can only be observed and processed during a following testcase.
In contrast to component timers, variables and ports, the verdict and the default handling shall be reset. This means all activated defaults are deactivated, all local verdicts and the global verdict are set to none.
Executing a test case on a static test configuration means that the body of the test case is executed on the MTC of the static test configuration. During test execution, all static PTCs behave like alive test components. This means, static PTCs may be stopped and started several times. During test case execution, non-static normal and alive components may be created, started, killed and stopped. In addition, non-static connections and mappings may be established and destroyed.
A test case that is executed on a static test configuration shall end when the behaviour of the MTC ends. In this case, the final test case verdict is returned. The final test case verdict shall be calculated based on the local verdicts of all static and non-static test components. Furthermore, all test components (static and non-static) shall be stopped, all non-static test components, non-static connections and all non-static mappings shall be discarded.
Restrictions
All restrictions mentioned in clause 26.1 of the core language document [1] apply.
EXAMPLES:
	var verdict MyVerdict									// local variable

	var configuration MyConfiguration := aConfiguration();	// starting a static test configuration

	MyVerdict := execute(MyTestCase (),MyConfiguration);	// execution of a test case on a static
															// test configuration

	if (MyVerdict :== pass) {
		MyVerdict := execute MyTestCase (), 10.0, MyConfiguration);	// executing the same test case
																	// with time guard
	}
	
	...		// further test behaviour
	stop;

[bookmark: _Toc6314282]5.1.9	Further restrictions
Static test components, static connections and static mappings have a special semantics. Therefore, situations shall cause a runtime error:
Applying a kill test component operation to a static test component.
Applying port operations (clear, start, stop and halt) to a port owned by a static test component.
Applying a disconnect operation to a static connection.
Applying unmap operation to a static mapping.
[bookmark: _Toc6314283]5.1.10	Logging the status of static configurations
The log statement can be used to log the status of static configurations. Table 17 "TTCN 3 language elements that can be logged" of ETSI ES 201 873-1 [1] is to be extended as follows:
[bookmark: tab_LoggingEkements]Table 1: TTCN‑3 language elements that can be logged
	Used in a log statement
	What is logged
	Comment

	…
	…
	…

	configuration reference
	actual state
	Configurations states shall be logged according to note 9.

	NOTE ..: …
NOTE 9:	Configuration states that can be logged are: Started and Killed.



[bookmark: _Toc6314284]5.2	Ports with translation capability
[bookmark: _Toc6314285]5.2.0	General
This clause describes an extension of a message port type definition adding translation capability into it.
Translation feature is a set of rules that allows to convert messages and/or addresses of one type into messages and/or addresses of different type during sending or receiving.
It can be used e.g. in situations where the test behaviour is defined on one set of data types but the system under test (or connected component) actually communicates using a different set of data types, i.e. if the test system works on a different layer of the protocol stack than the system under test.
To allow flexible adaptation to the system under test, the user shall have the means to control this translation in the abstract test suite.
Syntactical Structure
	type port PortTypeIdmessage
		[ map to { OuterPortType [ "," ] }+ ]
		[ connect to { OuterPortType [ "," ] }+ ] "{"
	{
		( in { InnerInType [ from { OuterInType with InFunction "(" ")" [ "," ] }+ ] [ "," ] }+ |
		 out { InnerOutType [ to { OuterOutType with OutFunction "(" ")" [ "," ]}+ ] [ "," ] }+ |
		 inout { InOutType [ "," ] }+ |
		address AddrType [ to { OuterAddrTypewith AddrOutFunction "(" ")" [ "," ] }+ ]
		[ from { OuterAddrTypewith AddrInFunction"("")"[","]}+ ] |
		map param "(" { FormalValuePar [ "," ] }+ ")"|
		unmap param "(" { FormalValuePar [ "," ] }+ ")" |
		VarInstance ) ";"
	}+
	"}"

NOTE:	Please note that the same OuterInType may appear in more than one in message specifications for different InnerInType-s. In each such clause the InFunction is different.
Semantic Description
PortTypeId is name of the type being defined.
Port in translation mode
Translation behaviour
Test System Interface
Standard port behaviour
OutFunction is implicitly invoked
Outer in message (of type OuterInType)
SUT

InFunction is implicitly invoked
Inner out message (of type InnerOutType)
Inner in message (of type InnerInType)
IN
IN
OUT
OUT
Outer out message (of type OuterOutType)
Inner queue
Outer queue

Figure 1: Illustration of ports with translation capability
OuterPortType references the outer message port type this port is mapped to. If the referenced port is a mapped port, it shall not contain direct or indirect reference to the PortTypeId in the list of its OuterPortTypes.
InnerInType references a type that can be received over such a port.
OuterInType references a type that is actually received and which shall be translated to InnerInType.
InFunction references a function which shall be used to translate OuterInType to InnerInType.
InnerOutType references a type that can be sent over such a port.
OuterOutType references a type that is actually sent which has been translated from InnerOutType.
OutFunction references a function which shall be used to translate InnerOutType to OuterOutType.
InOutType references a type that can be sent and received by the port.
AddrType is the address type bound to the port type being defined.
OuterAddrType is the address type into which the AddrType is translated.
AddrOutFunction references a function which shall be used to translate the AddrType to theOuterAddrType.
AddrInFunction references a function which shall be used to translate the OuterAddrType to theAddrType.
VarInstance is a declaration of a port variable.
[bookmark: _Toc6314286]5.2.1	Translation capability in port type declaration
If a port type declaration includes translation capability, it shall always contain at least one map or connect clause. These clauses define one or more port types for which translation mechanism is defined.
If a port type is referenced in the map clause, the following applies:
All types from the in message list of the OuterPortType shall be referenced either as InnerInType, OuterInType or InOutType in the port type with translation capability.
All InOutTypes shall be present either in the in and out lists (at the same time) or in the inout message list of the OuterPortType.
All InnerOutTypes shall be referenced in the out message list of the OuterPortType or if such a reference does not exist, the OuterPortType shall contain at least one reference to any of the OuterOutTypes associated with the InnerOutType in its out message list.
NOTE 1:	If these conditions are met, it is always safe to map TSI ports of OuterOutType to instances of the port type with translation capability.
If a port type is referenced in the connect clause, the following applies:
All types from the out message list of the OuterPortType shall be referenced either as InnerInType, OuterInType or InOutType in the port type with translation capability.
All InOutTypes shall be present either in the in and out lists (at the same time) or in the inout message list of the OuterPortType.
All InnerOutTypes shall be referenced in the in message list of the OuterPortType or if such a reference does not exist, the OuterPortType shall contain at least one reference to any of the OuterOutTypes associated with the InnerOutType in its in message list.
NOTE 2:	If these conditions are met, it is always safe to connect ports with translation capability to ports of OuterOutType.
Port types with translation capability can contain variable declarations. These variables are created and initialized when a port instance is created and have the same lifetime as the port instance itself. Every port instance has its own copy of these variables. Port variables can be accessed only from InFunctions and OutFunctions. They are not visible outside of the translation procedure. The variables can be used e.g. for buffering data between individual calls of InFunctions and OutFunctions(e.g. in case of fragmented messages).
Restrictions
In addition to the general static rules of TTCN-3 restrictions specified in clause 6.2.9 of ETSI ES 201 873-1 [1], the following restrictions apply:
1. If the OuterPortType is a port type with translation capability, it shall neither directly nor indirectly reference PortTypeId in its map or connect clause (i.e. port types with translation capability cannot reference each other).
1. All OuterAddrTypes shall be used as an address type at least in one of the OuterPortTypes.
1. All InFunction, OutFunction and AddrFunction identifiers shall be references to a translation function.
EXAMPLE:
	type port TransportPort
	{
		inout TransportMessage;
	}

	type port DataPort map to TransportPort
	{
		in DataMessage from TransportMessage with transportToData();
		out DataMessage to TransportMessage with dataToTransport();
	}

[bookmark: _Toc6314287]5.2.2	Mapping and connecting ports
Ports with translation capability can work in two different modes: normal and translation mode. In normal mode, the port behaves as a standard message port according to the rules specified in ETSI ES 201 873-1 [1]. In translation mode, the port uses rules described in the following clauses of the present document to convert messages and addresses when communicating with linked ports.
The translation mode is activated in these cases:
A map operation is applied to a component port and TSI port and the component port type contains a reference to the TSI port type in its map clause.
A port type of one operands of a connect operation contains a reference to the port type of the other operand in its connect clause.
In all other cases, normal mode is activated.
EXAMPLE:
	type port TransportPort {
		...
	}

	type port DataPort map to TransportPort {
		...
	}

	type component SystemComponent{
		port DataPort dataPort;
		port TransportPort transportPort;
	}

	type component TestComponent{
		port DataPort dataPort;
	}

	testcase TC runs on TestComponent system SystemComponent
	{
		if (PX_TRANSPORT_USED){ 
			// activate translation mode (TransportPort is implicitly referenced via transportPort
			// in the map operation)
			map(mtc:dataPort, system:transportPort);
		}
		else{ 
			// activate normal mode (TransportPort is not referenced in the map operation)
			map(mtc:dataPort, system:dataPort);
		}
	}

[bookmark: _Toc6314288]5.2.3	Translation functions
Translation functions are used by ports working in translation mode for converting incoming and outgoing messages and addresses from one type to another.
Syntactical Structure
	function FunctionIdentifier"("in FormalValuePar ","out FormalValuePar ")"
	[port PortTypeId]
	StatementBlock

Semantic Description
Translation functions have always two parameters. The first one is always an in parameter and it is used to pass in a value that shall be translated by the function. The second one is always an out parameter and it shall be used to pass the result of the translation to the translation procedure (see clauses 5.2.5, 5.2.6 and 5.2.7) in case of successful translation. 
Unlike standard functions described in clause 16.1 of ETSI ES 201 873-1 [1], translation functions can contain a port clause. If the port clause is present, all variables defined in the referenced port type become visible in the function body.
Restrictions
1. Translation functions shall never return a value.
NOTE:	The setstate operation is used to inform the test system about the success of translation.
1. Translation functions shall not contain a runs on clause.
1. Translation function containing a port clause can be referenced only in the port type referenced in this port clause.
1. The type of the in parameter of a translation function referenced as an InFunction in an in clause shall be the OuterInType immediately preceding the InFunction reference and the type of its out parameter shall be the InnerInType.
1. The type of the in parameter of a translation function referenced as an OutFunction in an out clause shall be the InnerOutType and the type of its out parameter shall be the OuterOutType immediately preceding the OutFunction reference.
1. The type of the in parameter of a translation function referenced as an AddrOutFunction in a port address declaration shall be the AddrType and the type of its out parameter shall be the OuterAddrType that immediately precedes the AddrFunction reference.
1. The type of the in parameter of a translation function referenced as an AddrInFunction in a port address declaration shall be the OuterAddrType that immediately precedes the AddrFunction reference and the type of its out parameter shall be the AddrType.
1. Translation functions and any behaviour invoked directly or indirectly from the translation function shall not contain any blocking operations.
1. Invoking a function with a port clause explicitly shall cause an error.
1. Translation functions and any behaviour invoked directly or indirectly form the translation function shall not contain the following port operations: start (port), stop (port), halt, connect, disconnect, map and unmap.
1. The rules for functions called from special places defined in clause 16.1.4 of ETSI ES 201 873-1 [1] are valid for receiving translation functions (i.e. the functions referenced in the OutFunction part of a translation port type definition). The only exception to this rule is the send operation which is allowed in receiving translation functions. When executing the send operation initiated from receiving translation function, the TE temporarily stores sent messages and places them on an outgoing message port after snapshot evaluation is finished.
EXAMPLE:
	type port DataPort map to TransportPort
	{
		in DataMessage from TransportMessage with transportToData();
		out DataMessage to TransportMessage with dataToTransport();
		var octetstring vp_remainings
	}

	function transportToData(inTransportMessage p_msg, outDataMessage p_res) port DataPort {
		...
		port.setstate(0, "Translated");
	}

	function dataToTransport(inDataMessage p_msg, outTransportMessage p_res) port DataPort {
		...
		port.setstate(0, "Translated");
	}

[bookmark: _Toc6314289]5.2.4	Translation state
In addition to port state dimensions defined ETSI ES 201 873-1 [1], all ports working in translation mode have an additional port state dimension called translation state. The translation state always contains the result of the last executed translation function performed by the port.
There are five possible translation states:
unset is the default state before invoking a translation error. If a translation function ends with this state, an error is generated;
not translated means that the translation function has not been successful;
fragmented indicates the translation function did not finish translation, because the input data did not contain a complete message (i.e. more fragments are needed to finish translation);
translated means that the translation function successfully performed translation and there are no non‑translated data left;
partially translated is used when the translation function successfully performed translation, but there are additional data which has not been translated yet (i.e. the input data contained more than one message);
discarded is used when the translation function finished successfully, by discarding the message.
Translation state is set implicitly to unset whenever a translation function is called to translate a sent or received message. The translation state can be changed by a setstate operation.
Syntactical Structure
	port.setstate"("SingleExpression { "," ( FreeText | TemplateInstance ) } ")"
	
Semantic Description
The setstate operation can be used only inside a function that is called during a translation procedure to translate a sent or received a message. It changes the translation state of the related port.
The optional parameters allow to provide information that explains the reasons for setting a port translation state. This information is composed to a string and might be used for logging purposes.
Restrictions
1. The value passed to the setstate operation in the first parameter shall be of the integer type and shall have one of the following values:
0 (meaning translated)
1 (meaning not translated)
2 (meaning fragmented)
3 (meaning partially translated) 
4 (meaning discarded)
NOTE 1:	Numeric parameter values 0, 1 and 2 are the same as results of the predefined decvalue function.
NOTE 2:	Clause B.2.1 of the present document includes the type definition translation state and the constant definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED, DISCARDED.
Calling the setstate operation with an integer not listed in a) in the first parameter shall lead to an error.
Calling the setstate operation outside of a translation function or in a translation function translating an address shall cause a runtime error.
For FreeText and TemplateInstance, the same rules and restrictions apply as for the parameters of the log statement. See clause 19.11 of ETSI ES 201 873-1 [1] for more details.
NOTE 3:	The unset state cannot be set by the setstate operation, it is reserved for TE internal use only.
[bookmark: clause_translationPort_Send][bookmark: _Toc6314290]5.2.5	Sending
When a message is to be sent over a port, working in translation mode, the following shall apply:
If no OutFunction is specified for the given InnerOutType, it is simply sent over the port transparently.
If an OutFunction is specified for the InnerOutType, the translation procedure first sets the translation state to Unset. Then the OutFunction is automatically invoked to translate the InnerOutType to the OuterOutType. When the function execution is finished, then depending on the current translation state one of the following actions is taken:
The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation function).
If the state is not translated, the translation procedure tries to translate the message using the next OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual order in the port type definition. If there is no such a function, an error is generated.
If the state is fragmented, the translation procedure ends but no data is sent to the connected or mapped port (the port will wait for the next fragment to complete translation). The to clause of the following send operation shall be the same as the to clause of the current send operation or missing if the current send operation does not contain any to clause.
If the state is translated, the translation procedure sends the translated message (retrieved from the out parameter of the OutFunction) to the port it is mapped or connected to.
If the state is partially translated, the sent message of theInnerOutType contains several messages (or message fragments) of theOuterOutType. In this case, the translation procedure sends the translated message to the mapped or connected port. The translation function is then called again, with the same in parameter value, to enable sending of the remaining messages.
If the state is discarded, the translation procedure ends, with no data sent to the connected or mapped port (the message was intentionally discarded).
NOTE:	In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port variables.
[bookmark: clause_translationPort_Receive][bookmark: _Toc6314291]5.2.6	Receiving
Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer queue is used to keep not translated messages that are either enqueued or sent to the port working in translation mode. The inner message queue contains already translated messages. Receiving operations access this inner queue. In case of successful receiving (see clause 22.2.2 of ETSI ES 201 873-1 [1]), the successfully received message is removed from the inner queue. Messages stored in the outer queue can be removed from it only by the translation procedure as described below.
The TTCN‑3 Executable (TE, see ETSI ES 201 873-6 [4]) shall control the translation process and the normal decoding algorithm (see note 1) in co-operation, as specified below. But yet, the normal decoding algorithm itself is not changed.
decode (TRI message, decoding hypothesis: B)
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Port in translation mode
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InFunction
          (in B, out A)

Figure 2: Illustration of the interworking of decoding and translation procedure during receiving
NOTE 1:	In this clause the "normal decoding algorithm" refers to the process that the TE invokes decoding the received bitstring as specified in clauses 7.3.2 and C.5.4 of ETSI ES 201 873-6 [4].
The translation procedure for receiving operations is invoked by the snapshot mechanism. This procedure iterates through all in clauses (InnerInType-s) defined in the port type definition. The in clauses are iterated according to their textual order. During this iteration, the following shall apply:
If no InFunction is specified for the given InnerInType, the translation procedure checks, if the top item of the outer queue is of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the decoding is successful). If the result of the check is positive, the message is moved from the outer queue into the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and iteration ends.
Otherwise (if the InFunction is present for the InnerInType), then the translation procedure checks if the top item of the outer queue is of the OuterInType, by invoking the normal decoding algorithm, as described above. If the check is successful, the translation procedure automatically executes the InFunction: first sets the translation state to Unset and passes the message of the OuterInType to it, in the first parameter. When the function execution is finished, the translation procedure checks the translation state of the port:
The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation function).
If the state is not translated, the iteration shall continue with the next InFunction for the same OuterInType. If there is no more such InFunction, the translation procedure shall continue with the next OuterInType. If there is no more OuterInType-s for the given InnerInType, the iteration process shall continue with the next InnerInType. The order is determined by the textual order in the port type definition.
If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to process the next message in the outer queue. The next message shall have the same address as the current one (including a missing address). If there is no such message, the iteration shall continue with the next InnerInType.
If the state is translated, the top item of the outer queue is removed and the translated message (retrieved from the out parameter of the InFunction) is inserted into the inner queue. This ends the whole iteration.
If the state is partially translated, the received message of the OuterInType contains several messages (or message fragments) of the InnerInType. In this case, the translated message (retrieved from the out parameter of the InFunction) is inserted into the inner queue. Unlike in the translated case, the top message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to enable translation of the remaining messages embedded in the outer message in subsequent receive calls. 
If the state is discarded, the top item of the outer queue is removed. No new message is inserted into the inner queue. The iteration shall be restarted to process the next message in the outer queue.
NOTE 2:	In the fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port variables.
If the iteration has processed all in clauses without any success (no transparently relayed message was successfully moved from the outer to inner queue and all InFunction calls ended with the not translated state), the iteration process returns.
In case the iteration produces a successful result, the translation procedure might restart the iteration in order to translate the remaining messages in the outer queue (if there are any), or it might for performance consideration postpone this translation to the moment when the next snapshot is taken. For the same performance reasons, the snapshot mechanism is not required to start the translation procedure in case the inner queue already contains some messages.
[bookmark: clause_translationPort_Address][bookmark: _Toc6314292]5.2.7	Address
When an address type associated with a mapped port working in the translation mode contains a to or from clause and one of the OuterAddrType-s is the same as the address type of the mapped TSI port, the translation procedure is applied to all addresses used by sending or receiving calls of the port.
In case of sending a message, the translation procedure automatically invokes the AddrOutFunction passing the address value defined in the to clause to it, in its first parameter. In case of receiving a message, the translation procedure automatically invokes the AddrInFunction passing the received address value to it, in its first parameter. When the function execution is over, the translation procedure retrieves the translated address from the out parameter of the translation function and the control is returned to the calling sending or receiving procedure to finish the operation using the translated address value.
NOTE:	Unlike translation functions used for translating sent or received messages, the translation functions for addresses do not use translation states.
EXAMPLE:
	type port TransportPort
	{
		...
		address TransportAddress;
	}

	type port DataPort map to TransportPort
	{
		...
		address DataAddress to TransportAddress with toTransportAddress()
			from TransportAddress with fromTransportAddress;
	}

	function toTransportAddress(DataAddress p_addr, out TransportAddress p_translated) { ...}
	function fromTransportAddress(TransportAddress p_addr, out DataAddress p_translated) { ... }

[bookmark: _Toc6314293]5.2.8	Clear, start, stop and halt operation
The clear and start operations clean messages both from inner and outer message queues. In addition to that, all port variables are reset in the following way: if a variable declaration contains an assignment, the assignment operation will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or start operation.
The halt operation affects the outer queue only. The translation procedure can still insert translated messages into the inner queue of a halted port, provided that there are available messages in the outer queue.
Since the stop port operation requires all communication operations to cease before the port is stopped, all unfinished translation operations shall be completely performed before the working of the port is suspended.
[bookmark: _Toc6314294]5.2.9	The outer port reference
If the port clause of a translation function is present, it is possible to reference the mapped or connected outer port using the port keyword.
Semantic Description
The port keyword is used in expressions and port operations as a reference to the mapped or connected outer port.
Restrictions
1. The outer port reference shall be present only in translation functions that contain a port clause.
1. The port type referenced in the port clause of the translation function shall contain an OuterPortType reference.
NOTE:	Translation functions can use only a limited set of port operations (see clause 5.2.3 for more details). These restrictions are valid for the outer port reference as well.
EXAMPLE:
	// The example shows a way how to support service messages (in this case a simple handshake
	// procedure) that are required for correct communication with the target, but not directly
	// related to the translated content.
 
	type record HelloMessage {…}
	type record DataRequest {…}
	type record HelloMessageReply {…}
	type record DataReply {…}
	type union TransportLayerReply {
		HelloMessageReply helloReply,
		DataReply dataReply
	}
	type port TransportLayerPort message {
		out HelloMessage, DataRequest;
		in TransportLayerReply;
	}
	type port DataLayerPort message map to TransportLayerPort {
		in charstring from  TransportLayerReply with ft_replyToString();
		out charstring to DataRequest with ft_stringToRequest();
		var ETransportLayerStatus vp_status := handshakeNotStarted;
		var charstring vp_storedMsg;
	}
	type component MyComp {
		port DataLayerPort p;
	}
	type component System {
		port TransportLayerPort p;
	}

	type enumerated ETransportLayerStatus { handshakeNotStarted, handshakeStarted, handshakeDone }

	function f_createDataRequest(charstring p_msg) return DataRequest {…}

	function f_extractPayloadFromReply (DataReply p_msg) return charstring {…}

	function ft_stringToRequest (in charstring p_input, out DataRequest p_output) 
		port DataLayerPort {
		if (vp_state == handshakeNotStarted) { // handshake required
			port.send(TransportLayerMessageHelloMessage:{…}); // send the handshake message
			vp_state := handshakeStarted; // change the translation port state
			vp_storedMsg := p_input;
			port.setstate(2); // notify the TE that translation hasn’t been finished yet
		} else if (vp_state == handshakeDone) { 
			// handshake done, transform the input payload to a standard message
			p_output = f_createDataRequest(p_input);
			port.setstate(0);
		} else { // unexpected state: handshake not initialized yet
			port.setstate(1); 
		}
	}
	function ft_replyToString (in TransportLayerReply v_input, out charstring v_output)
		port DataLayerPort {
		if (vp_state == handshakeStarted) { // handshake reply: finish handshake
				if (ischosen(v_input.helloReply) {
					vp_state := handshakeDone; // change the translation port state
					port.send(f_createDataRequest(vp_storedMsg)); // send the stored data request
					port.setstate(2); // notify the TE that the reply is not ready yet
				} else { // unexpected message
					port.setstate(1); 
				}
		} else if (vp_state == handshakeDone) { // handshake done; data reply expected
				if (ischosen(v_input.dataReply) {
					v_output := extractPayloadFromReply(v_input.dataReply);
					port.setstate(0); // notify the TE about successful translation
				} else { // unexpected message
					port.setstate(1); 
				}
		} else { // unexpected state: handshake not initialized yet
			port.setstate(1); 
		}
	}
	testcase TC_TEST_01() runs on MyComp system System {
		map(self:p, system:p);
		p.send("Test"); // starts the handshake procedure
		p.receive(charstring:?); // finishes the handshake procedure, then dispatches the request
				// and receives a reply
		p.send("Test"); // dispatches the request (handshake already done)
		p.receive(charstring:?); // receives the reply
	}
[bookmark: _Toc6314295]5.3	Parallel Control Components
5.3.0	General
This clause describes an extension of capabilities of control behaviour definitions, allowing coordinated parallel execution of test cases.
When the main control function is started, a main control component (MCC) is implicitly instantiated which will execute the control function behaviour, similar to the MTC in a testcase that is implicitly created when a testcase is executed.
Inside the behaviour definition being executed by a control component it is allowed to dynamically create additional parallel control components (PCCs) and start them with other control behaviour similar to how a test component inside test case behaviour is allowed to create and start  PTCs. All restrictions applying to control behaviour in general apply also to control behaviour executed on PCCs. 
The restriction that in every configuration there shall be one (and only one) MTC is amended to that in every test case configuration shall be exactly one MTC. Additionally, the new restriction is added that in every test system configuration shall be exactly one MCC in case that the test system is started by executing a control function.
NOTE1: The feature of PCCs has multiple possible applications from coordinated parallel execution of independent test cases to co-execution of a test case with its mirror test case simulating the system under test for test case validation.
NOTE2: Since the test cases are running in parallel in the same test environment, the values for module parameters are the same for all test cases and cannot be configured per test case independently.
At any point in time, every component of the set of currently existing components inside the test system shall have a globally unique id. Each MTC and PTC has a test case local id. The globally unique id of the MTC or any PTC existing in the scope of a running test case are a pairing of the global id of the control component that is executing the test case and the test case local id of the component. So, in parallelly running test cases, a component in one test case might have the same local id as a component in the other testcase. In test cases executed sequentially by the same control component, the test case local ids can be the same as in a previous test case executed by the same control component, since these do not exist at the same point in time. 

Examples
EXAMPLE 1: 
testcase T() runs on MtcType system SystemType { … }
testcase TMirror() runs on MtcMirrorType system SystemMirrorType { … }
function @control executeT(float maxTime) {
	execute(T(), maxTime);
}
function @control executeTMirror() {
	execute(TMirror());
}
control {
	var PccType mirror := PccType.create;
	var PccType tc := PccType.create;
	mirror.start(executeTMirror());
	tc.start(executeT(200.0));
	alt {
	[] tc.done { mirror.stop }
	[] mirror.done { tc.stop }
	}
}
5.3.1	Component Operations
The component operations create, start, call, stop, kill, running, alive, done, killed shall be allowed to be used also in control behaviour with the same semantics and the same restrictions as for test components inside test behaviour with the following differences:
When the MCC terminates, all running PCCs are killed implicitly which will in turn stop all currently executed test cases.
The usages of the any component and all component operations inside control behaviour reference only the created and started PCCs, not the PTCs that are running inside test cases started on these PCCs. Control hehaviour has no way of referencing components created for an executed test case.
The usages of the any component and all component operations when used inside test case behaviour reference only the set of PTCs started by the behaviours associated with the test`case behaviour that is using these operations. One test case can not reference the components of another test case.
Restrictions
a) The use of the operations any component and all component when used inside control behaviour are only allowed inside the control behaviour running on the MCC.
b) The behaviour definitions used with the start or call operation when used inside control behaviour shall be control behaviour definitions.
5.3.2	Port Operations
The port operations map, unmap, send, receive, trigger, call, getcall, reply, getreply, raise, catch, start, halt, clear shall be allowed for the ports of control components with the same semantics and restrictions as for ports of test components.
NOTE:	Control components are allowed to communicate with the SUT. This communication is intended to be used for setting up the testing environment and it is not a part of the actual tests.
5.3.3	Alt and Interleave Statements
alt statements and interleave statements used in control behaviour shall be allowed to use all port, timer and component operations allowed inside control behaviour. Default alternatives started during control behaviour shall also be allowed to use these operations. The semantics of alt statements and interleave statements as well as the activate and deactivate operations are the same as for test case behaviour.
5.3.4	Test Case Execution
Control components are allowed to use the execute operation to execute test cases. As for the MCC, the execute operation inside PCC behaviour will block until either the executed test case has terminated or the given timeout has occurred and test execution has been stopped. Thus, there can still be only at most one test case executed per control component. If a PCC is stopped while executing a test case, test case execution will be stopped before the PCC terminates.
Restrictions
a) The types of parameters of test cases executed by control behaviour shall be data types.
5.3.5	MTC Reference and Clause
The mtc operation inside control behaviour shall reference the MCC. Likewise, the type of the mtc clause of control behaviour definitions shall be the type of the MCC and thus mtc compatibility restrictions apply in reference to the MCC inside control behaviour.
5.3.5	Changes to the Test Control Inferface TCI
[bookmark: _Toc39133112] In section 7.1.1.2, Table 2 shall be replaced with the following table:	
Table 2: Correlation between TTCN‑3 test case, test component and
port operations and TCI operation invocations
	TTCN‑3 Operation Name
	TCI Operation Name
	TCI Interface Name

	Create
	tciCreateTestComponentReq
	TCI‑CH Provided

	
	tciCreateTestComponent
	TCI‑CH Required

	start (a component)
	tciStartTestComponentReq
	TCI‑CH Provided

	
	tciStartTestComponent
	TCI‑CH Required

	stop (a component)
	tciStopTestComponentReq
	TCI‑CH Provided

	
	tciStopTestComponent
	TCI‑CH Required

	Kill
	tciKillTestComponentReq
	TCI‑CH Provided

	
	tciKillTestComponent
	TCI‑CH Required

	Connect
	tciConnectReq
	TCI‑CH Provided

	
	tciConnect
	TCI‑CH Required

	Disconnect
	tciDisconnectReq
	TCI‑CH Provided

	
	tciDisconnect
	TCI‑CH Required

	Map
	tciMapReq (see note 1)
	TCI‑CH Provided

	
	tciMapParamReq (see note 2)
	

	
	tciMap (see note 1)
	TCI‑CH Required

	
	tciMapParam (see note 2)
	

	Unmap
	tciUnmapReq (see note 1)
	TCI‑CH Provided

	
	tciUnmapParamReq (see note 2)
	

	
	tciUnmap (see note 1)
	TCI‑CH Required

	
	tciUnmapParam (see note 2)
	

	Running
	tciTestComponentRunningReq
	TCI‑CH Provided 

	
	tciTestComponentRunning
	TCI‑CH Required

	Alive
	tciTestComponentAliveReq
	TCI‑CH Provided 

	
	tciTestComponentAlive
	TCI‑CH Required

	Done
	tciTestComponentDoneReq
	TCI‑CH Provided 

	
	tciTestComponentDone
	TCI‑CH Required

	Killed
	tciTestComponentKilledReq
	TCI‑CH Provided 

	
	tciTestComponentKilled
	TCI‑CH Required

	Mtc
	tciGetMTCReq, tciGetParallelMTCReq
	TCI‑CH Provided 

	
	tciGetMTC, tciGetParallelMTC
	TCI‑CH Required

	Execute
	tciTestCaseExecuteReq
	TCI‑CH Provided 

	
	tciTestCaseExecute
	TCI‑CH Required

	NOTE 1:	For statement without configuration parameter.
NOTE 2:	For statement with configuration parameter.



The Following sections shall be added
7.3.3.1.25	tciGetParallelMTC
	Signature
	TriComponentIdType tciGetParallelMTC(in TriComponentIdType component)

	In Parameters
	component
	Identifier of the control component executing the test case for which the MTC shall be determined.

	Return Value
	A TriComponentIdType value of the MTC associated with the given parallel control component if the MTC executes on the local TE, the distinct value null otherwise.

	Constraint
	This operation can be called by the CH at the appropriate local TE when at a remote TE a provided tciGetParallelMTCReq has been called.

	Effect
	The local TE determines whether the MTC of the given component is executing on the local TE. If the MTC executes on the local TE the component id of the MTC is being returned. If the MTC is not executed on the local TE the distinct value null will be returned. The operation will have no effect on the execution of the MTC. After the operation returns, the CH will communicate the value back to the remote TE.



7.3.3.2.33	tciGetParallelMTCReq
	Signature
	TriComponentIdType tciGetParallelMTCReq(in TriComponentIdType component)

	In Parameters
	component
	Identifier of the control component executing the test case for which the MTC shall be determined.

	Return Value
	A TriComponentIdType value of the MTC.

	Constraint
	This operation shall be called by the TE when it executes a TTCN‑3 mtc operation.

	Effect
	The CH determines the component id of the MTC.



In the following section: 
[bookmark: _Toc39133474]In 8.5.3.1	TCI‑CH provided
Add the following methods to TciCHProvided:

	public void 	tciGetParallelMTCReq(TriComponentId comp) ;


[bookmark: _Toc39133475]In 8.5.3.2	TCI‑CH required
Add the following methods to TciCHRequired:

	public void		tciGetParallelMTC(TriComponentId comp) ;


[bookmark: _Toc39133493]In 9.4.3.1	TCI‑CH provided
Add the following declaration:
void           tciGetParallelMTCReq(TriComponentId component)

[bookmark: _Toc39133494]In 9.4.3.2	TCI‑CH required
Add the following declaration:
void           tciGetParallelMTC(TriComponentId component)

[bookmark: _Toc39133568]In 10.6.3.1	TciChRequired
Add the following declaration:

//This operation can be called by the CH at the appropriate local TE when at a remote TE a //provided tciGetParallelMTCReq has been called
virtual const TriComponentId * tciGetParallelMTC (const TriComponentId *component) const =0;

[bookmark: _Toc39133569]In 10.6.3.2	TciChProvided
Add the following declaration:

//Called by the TE when it executes a TTCN-3 mtc on a parallel control component operation
virtual const TriComponentId * tciGetParallelMTCReq (const TriComponentId *component) const =0;

[bookmark: _Toc39133726]In 12.5.3.1	TCI-CH provided
Add the following declaration to ITriCHProvided:
	ITriComponentId TciGetParallelMTC (ITriComponentId component);

[bookmark: _Toc39133727]In 12.5.3.2	TCI-CH required
Add the following declaration to ITriCHRequired:
[bookmark: _Toc39133732]	ITriComponentId TciGetParallelMtc(ITriComponentId comp);

In Annex A (normative)
IDL Specification of TCI

Add the following declaration to TCI_CD_Required;
	TriComponentIdType tciGetParallelMTC (
		   in TriComponentIdType comp
           );

Add the following declaration to TCI_CD_Provided;
	TriComponentIdType tciGetParallelMTCReq (
			in TriComponentIdType comp
			);
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