ETSI ES 203 790 V1.2.1 (2020-05)
2

ETSI ES 203 790 V1.2.1 (2020-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions: Object-Oriented Features

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-203790-OOFv1.2.1
Keywords
language, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	Package conformance and compatibility	7
5	Package Concepts for the Core Language	8
5.0	General	8
5.1	Classes and Objects	8
5.1.0	General	8
5.1.1	Classes	8
5.1.1.0	General	8
5.1.1.1	Scope rules	9
5.1.1.2	Abstract classes	9
5.1.1.3	External classes	10
5.1.1.4	Final Classes	10
5.1.1.5	Constructors	11
5.1.1.6	Constructor invocation	12
5.1.1.7	Destructors	13
5.1.1.8	Methods	13
5.1.1.9	Method invocation	14
5.1.1.10	Visibility	14
5.1.1.11	Built-in classes	14
5.1.1.12	Nested classes	14
5.1.2	Objects	15
5.1.2.0	General	15
5.1.2.1	Ownership	15
5.1.2.2	Object References	15
5.1.2.3	Null reference	16
5.1.2.4	Select class-statement	16
5.1.2.5	Of-operator (Dynamic Class Discrimination)	16
5.1.2.6	Casting	17
5.2	Exception handling	17
5.2.0	General	17
5.2.1	Extension to ETSI ES 201 873-1, clause 16.1.0 (Functions)	17
5.2.2	Extension to ETSI ES 201 873-1, clause 16.1.3 (External Functions)	18
5.2.3	Extension to ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places)	18
5.2.4	Extension to ETSI ES 201 873-1, clause 16.2 (Altsteps)	18
5.2.5	Extension to ETSI ES 201 873-1, clause 16.3 (Test cases)	19
5.2.6	Extension to ETSI ES 201 873-1, clause 18 (Overview of program statements and operations)	19
5.2.7	Extension to ETSI ES 201 873-1, clause 19 (Basic program statements)	21
6	TRI Extensions for the Package	24
6.1	Extensions to clause 5.3 of ETSI ES 201 873-5 Data interface	24
6.2	Extensions to clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous operations	25
6.3	Extensions to clause 6 of ETSI ES 201 873-5 JavaTM language mapping	26
6.4	Extensions to clause 7 of ETSI ES 201 873-5 ANSI C language mapping	28
6.5	Extensions to clause 8 of ETSI ES 201 873-5 C++ language mapping	28
6.6	Extensions to clause 9 of ETSI ES 201 873-5 C# language mapping	29
7	TCI Extensions for the Package	30
7.1	Extensions to clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 data types and values	30
7.2	Extensions to clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 data types and values	30
7.3	Extensions to clause 7.2.2.2.0 of ETSI ES 201 873-6 Basic rules	31
7.4	Extensions to clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 values	32
7.5	Extensions to clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided	33
7.6	Extensions to clause 8 of ETSI ES 201 873-6 JavaTM language mapping	35
7.7	Extensions to clause 9 of ETSI ES 201 873-6 ANSI C language mapping	37
7.8	Extensions to clause 10 of ETSI ES 201 873-6 C++ language mapping	39
7.9	Extensions to clause 11 of ETSI ES 201 873-6 W3C XML mapping	41
7.10	Extensions to clause 12 of ETSI ES 201 873-6 C# language mapping	42
8	XTRI Extensions for the Package (optional)	44
8.1	Changes to clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous operations	44
8.2	Extensions to clause 6 of ETSI ES 201 873-5 JavaTM language mapping	46
8.3	Extensions to clause 7 of ETSI ES 201 873-5 ANSI C language mapping	46
8.4	Extensions to clause 8 of ETSI ES 201 873-5 C++ language mapping	47
8.5	Extensions to clause 9 of ETSI ES 201 873-5 C# language mapping	47
Annex A (normative):	BNF and static semantics	48
A.1	Extensions to TTCN-3 terminals	48
A.2	Modified TTCN-3 syntax BNF productions	49
A.3	Additional TTCN-3 syntax BNF productions	50
Annex B (normative):	Standard Collections	52
B.1	The TTCN3_standard_collections module	52
B.1.0	General	52
B.1.1	The Collection class	53
B.1.2	The List class	53
B.1.3	The LinkedList class	53
B.1.4	The Queue class	54
B.1.5	The PriorityQueue class	54
B.1.6	The Stack class	55
B.1.7	The RingBuffer class	55
B.1.8	The HashMap class	56
B.1.9	The Set class	57
B.1.10	The Exception class	57
B.1.11	The Iterator class	57
History	58

[bookmark: _Toc39053551]Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc39053552]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The use of underline (additional text) and strike through (deleted text) highlights the differences between base document and extended documents.
The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control Notation version 3, as identified in ETSI ES 201 873-1 [1].
[bookmark: _Toc39053553]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

[bookmark: _Toc39053554]1	Scope
The present document defines the support for object-oriented features in TTCN-3. TTCN-3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
[bookmark: _Toc39053555]2	References
[bookmark: _Toc39053556]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_1][1]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][2]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ES201873_5][3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: _Toc39053557]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES201873_7][i.1]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.2]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.3]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.4]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[bookmark: _Toc39053558]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc39053559]3.1	Terms
For the purposes of the present document, the terms given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3] and ETSI ES 201 873-6 [4] apply.
[bookmark: _Toc39053560]3.2	Symbols
Void.
[bookmark: _Toc39053561]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3] and ETSI ES 201 873-6 [4] apply.
[bookmark: _Toc39053562]4	Package conformance and compatibility
The package presented in the present document is identified by the package tag:
	"TTCN-3:2018 Object-Oriented features" - to be used with modules complying with the present document.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document and in ETSI ES 201 873‑1 [1] and ETSI ES 201 873‑4 [2].
The package presented in the present document is compatible to:
ETSI ES 201 873-1 [1], version 4.10.1;
ETSI ES 201 873-4 [2], version 4.6.1;
ETSI ES 201 873-5 [3], version 4.8.1;
ETSI ES 201 873-6 [4], version 4.9.1;
ETSI ES 201 873-7 [i.1];
ETSI ES 201 873-8 [i.2];
ETSI ES 201 873-9 [i.3];
ETSI ES 201 873-10 [i.4].
If later versions of those parts are available and should be used instead, the compatibility to the package presented in the present document has to be checked individually.
[bookmark: _Toc39053563]5	Package Concepts for the Core Language
[bookmark: _Toc39053564]5.0	General
This package defines objec-oriented features for TTCN-3, i.e. it extends the TTCN-3 core language (ETSI ES 201 873‑1 [1]) with well-known concepts from object-oriented programming and modelling languages. This package realizes the following concepts:
classes (i.e. class definition, scope rules, abstract and external classes, refinement, constructors, destructors, methods, visibility, and built-in classes);
objects (i.e. ownership, object references, select class-statement, dynamic class discrimitation and casting); and
exception handling (i.e. ability to define exception handling for functions, external functions, altsteps and test cases).
[bookmark: _Toc39053565]5.1	Classes and Objects
[bookmark: _Toc39053566]5.1.0	General
This clause introduces the concepts of class types and their values, called objects as well as the operations allowed to be applied to these objects.
[bookmark: _Toc39053567]5.1.1	Classes
[bookmark: _Toc39053568]5.1.1.0	General
Syntactical Structure
[public | private]
type [external] class [@final |@abstract]
Identifier [extends ClassType]
[runsOnSpec] [systemSpec] [mtcSpec]
"{" {ClassMember} "}"
[finally StatementBlock]

Semantic Description
A class is a type where the values are called objects. A class can declare fields (variables, constants, templates, timers, classes) and methods as its members. Each member name inside the class shall be unique, there is no overloading. The private and protected fields and methods are only accessible by the methods of the class, while the public members of the class can be accessed also from behaviour not defined in the class. The private members of the class can be accessed directly only by members of the class itself. All members which are neither private nor public are protected and can also be accessed by members of subclasses.
All fields may be declared without initializer, even const and template fields.
A class can extend another class. The extended class is called the superclass, while the extending class is called the subclass. The resulting type of a class definition is the set of object instances of the class itself and all instances of its direct or indirect subclasses. A subclass is a subtype of its direct and indirect superclasses and its object instances are type compatible with them. If a class does not explicitly extend another class type, it implicitly extends the root class type object. Thus, all classes are directly or indirectly extensions of the object class.
A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create objects of that class and all methods of this class. If a class does not have one of these clauses, it inherits it from its superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may declare each of these clauses with a more specific component type than the one inherited. The function members of classes shall not have runs on, system or mtc classes but inherit them from their surrounding class or its superclasses.
Restrictions
Templates are not allowed for class types.
Passing of object references to the create operation of a component type or a function started on another component is not allowed.
No subtyping definition is allowed for class types via the normal subtype definition.
No local/global constants or module parameters of class type or containing class type fields or elements are allowed.
Class type cannot be the contained value of an anytype value.
The functions of a class shall not have a runs on, mtc or system clause.
The runs on type of a class shall be runs on compatible with the runs on type of the behaviour creating a class.
The runs on type of a class shall be runs on compatible with the runs on type of the superclass.
The mtc and system type of a class shall be mtc and system compatible with the mtc and system types of the superclass, respectively.
[bookmark: _Toc39053569]5.1.1.1	Scope rules
Class constitutes a scope unit. For the uniqueness of identifiers, the rules specified in clause 5.2.2 of ETSI ES 201 873‑1 [1] apply with the following exceptions:
1. Identifiers from the higher scope can be reused for member declarations. A reference to a reused identifier without a prefix occurring inside a class scope shall be resolved as a reference to the class member. In order to refer to the declaration on the higher scope, the identifier shall be preceded with a module name and a dot (".").
1. Identifiers of member declarations can be reused inside methods for formal parameter and local declarations. A reference to a reused identifier without a prefix occurring inside a class method shall be resolved as a reference to the formal parameter or local declaration. In order to refer to the member declaration, the identifier shall be preceded with the this keyword and a dot.
1. Reusing identifiers of members of the component type specified in the runs on clause of the class for members and inside methods for formal parameters and local declarations is not allowed.
EXAMPLE:
module ClassModule {
	const integer a := 1;
	
	type class MyClass() {
		const integer a := 2;
		function doSomething (integer a := 3) {
			log(a); // logs 3 (for the default value)
			log(this.a); // logs 2
			log(ClassModule.a); // logs 1
		}
		function doSomethingElse () {
			log(a); // logs 2
			log(this.a); // also logs 2
			log(ClassModule.a); // logs 1
		}
	}

}

[bookmark: _Toc39053570]5.1.1.2	Abstract classes
A class can be declared as @abstract. In that case, it is allowed that it also declares abstract member functions who shall be defined by all non-abstract subclasses. An abstract method function has no function body but can be called in all concrete instances of subclasses of the abstract class declaring it. Other members of the abstract class or its subclasses may use the abstract functions as if it was concrete where at runtime the concrete overriding definition will be used.
NOTE 1:	Abstract classes are only useful as superclasses of concrete classes.
Restrictions
1. Abstract classes cannot be explicitly instantiated.
1. If a class that is not declared abstract extends an abstract class, all methods that have no implementation in the superclass shall be implemented in this class.
NOTE 2:	Variables of an abstract class type can only contain references to instances of non-abstract subclasses.
[bookmark: _Toc39053571]5.1.1.3	External classes
A class may also be declared as external. In that case, it may declare external member functions without a function body. It is allowed to omit the external keyword from these function declarations. External classes can extend non‑external classes but classes not declared as external shall not extend from external classes. External classes may also define other members like normal classes. When instantiating an external class, the external object being created is provided by the platform adapter and the external method calls to the external object are delegated via the platform adapter to the corresponding method of the external object.
NOTE 1:	External classes are a way to use object-oriented library functionality in TTCN-3 while still remaining abstract and independent of actual implementation. Libraries for common constructs like stacks, collections, tables can be defined or automatic import mechanisms could be provided.
If an object of an external class is instantiated, it implicitly creates an external object and the internal object has a handle to the external one. The reference to the external object is called a handle. When an external method is invoked on the internal object, the call is delegated to the handle.
NOTE 2:	External objects are possibly shared between different parts of the test system. Therefore, racing conditions and deadlocks have to be avoided by the external implementation.
Restrictions
1. Void
1. Void
1. Void
1. An internal class shall not extend an external class
EXAMPLE:
type class @abstract Collection {
 function @abstract size() return integer;
 // internal default implementation
 function isEmpty() return boolean {
 return size() == 0
 }
}

type external class Stack extends Collection {
 function push(integer v);
 function pop() return integer;
 function isEmpty() return boolean; // external implementation overrides internal
 function size() return integer; // external implementation of abstract function}

[bookmark: _Toc39053572]5.1.1.4	Final Classes
If a class shall not be subclassed, it may be declared as @final. Final classes cannot be abstract.
[bookmark: _Toc39053573]5.1.1.5	Constructors
Syntactic Structure
create "(" { FormalParameter , }* ")"
[external "(" { FormalParameter , }* ")"]
[":" ClassType "(" { ActualParameter , }+ ")"]
[StatementBlock]

Semantic Description
A class may define a constructor called create.
If no constructor is defined inside a class body, an implicit default constructor is provided where the formal parameters of the constructor are the parameters of the (implicit or explicit) constructor of the direct superclass and one additional formal in parameter for each declared var field of the class itself and also all const or template fields with no initializer in their order of declaration with the same type as in the declaration.
The constructor is invoked on a type reference to the class and the result of this invocation is a new instance object of the constructor's specific class. If a class is extending another class with a constructor with at least one parameter without default, that constructor shall be invoked by adding a super-constructor clause to the constructor declaration. The super-constructor clause consist of a reference to the class being extended and an actual parameter list. An implicit constructor will automatically pass the required actual parameters to the constructor of its superclass.
In the constructor, it is allowed to refer to the object being constructed as this to reference the fields of the object to be created in case that the names of the formal parameters clash with the names of those fields. They are explicitly allowed to have the same names as class members.
When an object is created via the invocation of a constructor, the fields of each class body in the class hierarchy that have initializers are initialized before the execution of that class body’s constructor body. The fields of a superclass that have initializers are initialized before the fields of the subclass. Also, the constructor of the superclass is executed before the constructor body of the subclass. Thus, it is ensured that all initialization of the superclass hierarchy as well as local fields with initializers is finished before the execution of a constructor body.
Since the members of a class body can appear in any order and forward references are allowed between them, a field with an initializer which is referenced by the initializer of another field, is initialized first.
As the underlying external constructor of external classes might need additional parameters, these can be provided via the additional external formal parameter list. If no internal constructor needs to be defined, the constructor may be defined without external formal parameter list and no body. In that case, the formal parameter list defines the formal parameters passed to the external constructor.
Restrictions
1. All formal parameters of the constructor shall be in parameters.
1. The constructor body shall not assign anything to variables that are not local to the constructor body or accessible fields of the class the constructor belongs to.
1. The constructor body shall not use blocking operations.
1. The initialization of a member field shall not invoke any member function in the object being initialized.
1. The constructor body shall not invoke any member function in the object being initialized.
1. A member constant or template shall be initialized exactly once, either by its initialization part or by at most one constructor body.
1. Direct or indirect cyclic initialization is not allowed. That is the initializer of a field shall not use the same field directly or indirectly.
1. The initializer of a field shall not use a field that does not have an initializer.
EXAMPLE 1:
type class MyClass {
	var integer a;
	const float b;
 const float c := 7;
 template float myTemplate := ?;
	// implicit constructor:
 // only using variable fields and non-variable fields with no initializer
	//create(integer a, float b) { // no parameter for c and myTemplate
	//	this.a := a;
	//	this.b := b
	//}
}

type class MyClass2 extends MyClass {
	template integer t;
	// explicit constructor
	create(template integer t) : MyClass(2, 0.5) {
		this.t := t;
	}
}

type class MyClass3 extends MyClass {
	var float f;
 // implicit constructor:
 // create(integer a, float b, float f) : MyClass(a, b) {
 // this.f := f;
 // }
}

EXAMPLE 2:
For each initialization statement it is marked with its initialization order in the comment.
type class MySuperClass {
	var integer a := 5; // 1
	const float b;
	create(integer a, float b) {
		this.a := a; // 3
		this.b := b; // 4
	}
}

type class MySubClass extends MySuperClass {
	var template integer t := ?; // 2
	create(template integer t) : MySuperClass(2, 0.5) {
		this.t := t; // 5
	}
}

[bookmark: _Toc39053574]5.1.1.6	Constructor invocation
Syntactic Structure

ClassReference "." create [ActualParList] [external ActualParList]

Semantic Description
To instantiate on object, the constructor of the class is invoked. The result of that operation is a reference to a newly constructed of the given concrete class.
If the constructor is a constructor of an external class that has an external formal parameter list, an additional external actual parameter list is given following the external keyword. If the constructor is to be invoked with a parameter list with no actual parameters, then the whole actual parameter list may be omitted.
If the constructor of an external class is invoked, first the external object is created using the given external formal parameters, then the internal constructor is evaluated to initialize the internal part of the object.
EXAMPLE:
type class Named {
 var charstring name;
}

type external class Address extends Named {
	create(charstring name)
 external (charstring host, int portNr)
 : Named(name){}
}

type external class UnnamedAddress {
 create (charstring host, int portNr);
}

var Address v_addr := Address.create(“Connection 1”) external (“127.0.0.1”, 555);
var UnnamedAddress := UnnamedAddress.create(“127.0.0.1”, 555);
var Stack v_stack := Stack.create; // only implicit external constructor without parameters

[bookmark: _Toc39053575]5.1.1.7	Destructors
Syntactic Structure
finally StatementBlock
Semantic Description
A destructor may be provided using a finally declaration following the class body. This destructor will be invoked automatically at the latest before the system deallocates an object instance (which is tool specific and out of the scope of the present document) or when the owning component is terminates. The StatementBlock has access to all members accessible to the class. The StatementBlock is semantically a function body of a function without return clause.
When deallocating the object instance, the destructor of the associated class is invoked first, followed by the destructor of all parent classes in the reverse order of superclass hierarchy.
[bookmark: _Toc39053576]5.1.1.8	Methods
A method is a function defined inside the class body. It has the same properties and restrictions as any normal function, but it is invoked in an object which can be referred to by the this object reference. A method invocation can access the class's own fields and also the inherited protected fields and methods of its superclasses.
A method inherited from a superclass can be overridden by the subclass by redefining a function of the same name and with the same formal parameter list. When a method is called in an object, the version of the most specific class of the super class hierarchy of the concrete class that defines the method in its body will be invoked. The overridden method can be invoked from the overriding class by using the keyword super as the object reference of the invocation. If a method shall not be overridden by any subclass, it can be declared as @final.
Public methods, if not overridden by the subclass, are inherited from the superclasses. If a public method is declared in a class, it can be invoked also in all objects of its direct or indirect subclasses.
If a public method is overridden, the overriding method shall have the same formal parameters in the same order as the overridden method. Public methods shall be overridden only by public methods. Protected methods may be overridden by public or protected methods.
The return type of an overriding function shall be the same as the return type of the overridden function with the same template restrictions and modifiers.
Methods shall have no runs on, system or mtc clause directly attached to them. However, they inherit these clauses from their surrounding class.
[bookmark: _Toc39053577]5.1.1.9	Method invocation
Syntactical Structure
[(ObjectInstance | "super") "."] Identifier "(" FunctionActualParList ")"

A method invocation is a function call associated with a certain object defined in the class of that object.
Methods are invoked using the dotted notation on an object reference. Inside the scope of a class, methods of the same class or any visible inherited methods can be invoked without the ObjectInstance prefix if the object the method shall be invoked in is the same object as the one invoking it. The usual restrictions on actual parameters, as well as runs on, mtc and system types apply also on method invocations. All other restrictions that apply to called functions also apply to method invocation.
The super keyword shall only be used from inside a class member definition to access one of the accessible methods inherited from the super class of the member's containing class.
[bookmark: _Toc39053578]5.1.1.10	Visibility
Fields can be declared as private or protected. Methods can be declared as private, public or protected. If no visibility is given then the default modifier protected is assumed.
Private member functions are not visible and can be present in multiple classes of the same hierarchy with different parameter lists and return values.
Public member functions can be called from any behaviour running on the object's owner component.
Restrictions
1. A field of any visibility cannot be overridden by a subclass.
1. A public member function can only be overridden by another public member function.
1. Private members can only be accessed directly from inside their surrounding class's scope.
[bookmark: _Toc39053579]5.1.1.11	Built-in classes
The abstract special built-in class called object is the superclass for all classes that do not explicitly extend another class.
The pseudo definition of that class is:
type class @abstract @builtin object {
 // This function will return a tool-specific descriptive string by default
 // but can be overridden by subclasses
 		public function toString() return universal charstring;
}

NOTE:	The @builtin is only added for illustrative purposes and not part of the TTCN-3 language.
[bookmark: _Toc39053580]5.1.1.12	Nested classes
A class type definition may occur also as a member of another class type definition body. Such a class is called a nested class while the surrounding class is called the containing class.
Members defined in the body of a nested class may access all named entities that are accessible in the scope of the containing class with the same restrictions.
If a nested class does not have a runs on clause it inherits the runs on type from its enclosing class.
If a nested class does not have a system clause it inherits the system type from its enclosing class.
If a nested class does not have an mtc clause it inherits the mtc type from its enclosing class.
The type of the nested class may be referenced with the dotted notation applied to a type reference of the enclosing class.
The constructor of a nested class may be invoked on a reference composed of an instance of the containing class followed by a dot and nested class identifier. Inside the scope of the containing class, the identifier of the nested class may be used without dotted notation for the use of calling its constructor.
Restrictions
1. The members of a nested class shall not have the same name as one of the members of a (directly or indirectly) containing class.
1. Referencing the name of a nested class in a null reference via dotted notation shall cause an error.
EXAMPLE:
type record of charstring Strings;

type class @abstract StringIterator {
 function @abstract hasNext() return boolean;
 function @abstract next() return charstring;
}

type class StringList {
 var Strings v_strings;

 type class Iterator extends StringIterator {
 var integer v_pos := 0;

 public function hasNext() return boolean {
 return v_pos < lengthof(v_strings);
 }

 public function next() return charstring {
 v_pos := v_pos + 1;
 return v_strings[v_pos-1];
 }
 }

 function iterator() return Iterator {
 return Iterator.create();
 }
}
var StringList v_list := StringList.create();
var StringList.Iterator v_iterator := v_list.Iterator.create();
v_list := null;
v_iterator := v_list.Iterator.create(); // error

[bookmark: _Toc39053581]5.1.2	Objects
[bookmark: _Toc39053582]5.1.2.0	General
Objects are the instances of classes. Each instance comprises an instance of the data of the fields of the class (including all superclasses) and allows invocation of its public methods by other behaviour and protected or private methods by behaviour defined by the object's class itself.
[bookmark: _Toc39053583]5.1.2.1	Ownership
Each object is owned by the component on which it was created. The owning component of an object can be referenced via the self component reference. Methods of objects can only be invoked by behaviour that also runs on the owning component. An object is created on a component if its constructor was invoked by a behaviour running on that component.
[bookmark: _Toc39053584]5.1.2.2	Object References
Objects are always passed by reference (even though their formal parameters can still be in, inout or out, dependent on the usage of that parameter). A variable of a class type contains only a reference to the object instance and the object is not copied when used as an actual parameter or assigned to a variable, but only the reference to the object. Therefore, multiple variables can contain a reference to the same object simultaneously.
Restrictions
1. Object References shall not be passed as actual parameter or part of an actual parameter to either the create operation of a component type or a function started on a component. If a structured type contains a field of a class type, this type is not seen as a data type and its values cannot be used for sending and receiving or as an argument to any expression other than the equality/inequality operator.
NOTE:	Since objects cannot be shared by different component contexts and for each component at most one behaviour is running, no parallel conflicting access to any of the objects fields or methods is possible.
[bookmark: _Toc39053585]5.1.2.3	Null reference
An object variable that is not initialized with an object instance contains the special value null. An object variable or parameter may be compared with the special value null with the equality and inequality operators or can be assigned the special value null explicitly.
[bookmark: _Toc39053586]5.1.2.4	Select class-statement
Syntactical Stucture
select class "(" Object ")"
"{" { case "(" ClassReference ")" StatementBlock }+ [ElseCase] "}"

Semantic Description
The class of an object can be discriminated for via the 'select class' statement that is similar to a select union statement insofar that it allows only superclasses and known subclasses of the object reference's class in the context. If more than one case contains a superclass of the actual class of the given object instance, the first of these cases will be chosen by the select class statement.
In case that the Object is not an instance of any of the ClassReferences in the different cases, the statement block in the ElseCase, if present, will be executed.
EXAMPLE:
type class A {}
type class B extends A {}
…
var A v_a := B.create();
select class (v_a) {
	case (B) { … } // will be chosen
	case (A) { … } // will not be chosen
}

Restrictions
1. If a class from one case is a superclass of a class from another case, then the case of the subclass shall be precede the case of the superclass.
[bookmark: _Toc39053587]5.1.2.5	Of-operator (Dynamic Class Discrimination)
Syntactical Structure
Object of ClassReference

Semantic Description
To check whether an object is an instance is of a certain class, the of operator may be used.
It yields a Boolean value which is true if and only if the most specific class of the object referenced on the left-hand side is either equal to or a subclass derived from the class type reference on the right-hand side.
[bookmark: _Toc39053588]5.1.2.6	Casting
Syntactical Structure
ObjectReference "=>" (ClassIdentifier | " (" ClassReference ")")

Semantic Description
An object reference can be cast to another class of the object's known class's set of direct or indirect superclasses and direct or indirect subclasses. This operation yields an object reference to the same object but can be used as being of the type being cast to. If the referenced class to be cast to is an expression that is not a simple identifier, the expression shall be written in parenthesis.
Restrictions
1. If the class the object is being cast to is not in the set of superclasses or the concrete class of the object, the cast operation shall result in an error.
[bookmark: _Toc39053589]5.2	Exception handling
[bookmark: _Toc39053590]5.2.0	General
This clause introduces exception handling into TTCN-3. It provides means to define exception handling for functions, external functions, altsteps and test cases.
[bookmark: _Toc39053591]5.2.1	Extension to ETSI ES 201 873-1, clause 16.1.0 (Functions)
Clause 16.1.0		General
The syntax of functions is extended with an optional exception clause.
Syntactical Structure
function [@deterministic | @control] FunctionIdentifier
"(" { (FormalValuePar | FormalTemplatePar) [","] } ")"
 [runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[return [template] Type]
[exception "(" {Type [","]}+ ")"]
StatementBlock

Clause 16.1.0		General
The semantic description part is extended.
Functions may have an exception list. The exception list declares, what exception types may be raised during the execution of the function either directly or indirectly.
NOTE 1:	The exception list can be used to communicate to the callers of the function what exceptions to prepare for and by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 2:	The exception list might not be exhaustive. With activated altsteps it might not be possible to precisely know what exceptions might be raised within a function directly or indirectly.
If the statement block of a function has a finally block,the finally block is always executed before control returns to the location of the call of the function.
[bookmark: _Toc39053592]5.2.2	Extension to ETSI ES 201 873-1, clause 16.1.3 (External Functions)
Clause 16.1.3		General
The syntax of external functions is extended with the optional exception clause.
Syntactical Structure
external function [@deterministic | @control] ExtFunctionIdentifier
"(" { (FormalValuePar | FormalTemplatePar) [","] } ")"
 [return [template [Restriction]] Type] [exception "(" {Type [","]}+ ")"]

Clause 16.1.3		General
The semantic description part is extended.
External functions may have an exception list. The exception list declares, what exception types may be raised during the execution of the external function.
NOTE 0:	The exception list can be used by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 1:	The exception list might not be exhaustive. It might not be possible to precisely know what exceptions might be raised within an external function directly or indirectly.
[bookmark: _Toc39053593]5.2.3	Extension to ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places)
Clause 16.1.4		General
The list of restrictions is extended to avoid side effects.
n)	Raising an exception with the raise exception statement.
[bookmark: _Toc39053594]5.2.4	Extension to ETSI ES 201 873-1, clause 16.2 (Altsteps)
Clause 16.2.0		General
The syntax of altstep is extended with the optional exception, catch and finally clauses.
Syntactical Structure
altstep [@control] [interleave] AltstepIdentifier
"(" { (FormalValuePar | FormalTemplatePar) [","] } ")"
 [runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[exception "(" {Type [","]}+ ")"]
"{"
		{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
		AltGuardList
"}"
{ CatchBlock }
[FinallyBlock]

Clause 16.2.0		General
The semantic description part is extended.
Altsteps may have an exception list. The exception list declares, what exception types may be raised during the execution of the altstep either directly or indirectly.
NOTE 0:	The exception list can be used to communicate to the callers of the altstep what exceptions to prepare for and by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 1:	The exception list might not be exhaustive. With activated altsteps it might not be possible to precisely know what exceptions might be raised within an altstep directly or indirectly.
Altsteps may have a finally block. If present the finally block is always executed before control returns to the location of the call of the altstep every time the altstep is invoked, regardless of whether implicitly as an activated default or explicitly from another alt statement.
[bookmark: _Toc39053595]5.2.5	Extension to ETSI ES 201 873-1, clause 16.3 (Test cases)
Clause 16.3	Test cases
The semantic description part is extended.
The StatementBlock of Test cases may have a finally block. If present the finally block is always executed before the test case terminates.
Exceptions raised directly or indirectly within the test case and not handled latest by the catch clauses of the StatementBlock of the testcase results in the testcase finishing with a dynamic error. In this situation the dynamic error has to reference not handling the exception as the reason of error.
NOTE 0:	The reason for the dynamic error is not the raising of the exception, but the lack of handling within the testcase.
[bookmark: _Toc39053596]5.2.6	Extension to ETSI ES 201 873-1, clause 18 (Overview of program statements and operations)
The list of statements in table 15 of ETSI ES 201 873-1 needs to be extended with a raise exception statement as shown below.
	Statement
	Associated keyword or symbol
	Can be directly or indirectly invoked by module control, but not by test components
	Can be invoked by functions, test cases and altsteps running on test components
	Can be directly or indirectly invoked from specific places (see note 1)

	Expressions
	(…)
	Yes
	Yes
	Yes

	Basic program statements

	Assignments
	:=
	Yes
	Yes
	Yes (see note 4)

	If-else
	if (…) {…} else {…}
	Yes
	Yes
	Yes

	Select case
	select case (…) { case (…) {…} case else {…}}
	Yes
	Yes
	Yes

	For loop
	for (…) {…}
	Yes
	Yes
	Yes

	While loop
	while (…) {…}
	Yes
	Yes
	Yes

	Do while loop
	do {…} while (…)
	Yes
	Yes
	Yes

	Label and Goto
	label / goto
	Yes
	Yes
	Yes

	Stop execution
	stop
	Yes
	Yes
	

	Returning control
	return
	
	Yes (see note 5)
	Yes

	Leaving a loop, alt, altstep or interleave
	break
	Yes
	Yes
	Yes

	Next iteration of a loop
	continue
	Yes
	Yes
	Yes

	Raise exception
	raise
	Yes
	Yes
	Yes

	Logging
	log
	Yes
	Yes
	Yes

	Statements and operations for alternative behaviours

	Alternative behaviour
	alt {…}
	Yes (see note 2)
	Yes
	

	Re-evaluation of alternative behaviour
	repeat
	Yes
	Yes
	

	Interleaved behaviour
	interleave {…}
	Yes (see note 2)
	Yes
	

	Activate a default
	activate
	Yes
	Yes
	

	Deactivate a default
	deactivate
	Yes
	Yes
	

	Configuration operations

	Create parallel test component
	create
	
	Yes
	

	Connect component port to component port
	connect
	
	Yes
	

	Disconnect two component ports
	disconnect
	
	Yes
	

	Map port to test interface
	map
	
	Yes
	

	Unmap port from test system interface
	unmap
	
	Yes
	

	Get MTC component reference value
	mtc
	
	Yes
	Yes

	Get test system interface component reference value
	system
	
	Yes
	Yes

	Get own component reference value
	self
	
	Yes
	Yes

	Start execution of test component behaviour
	start
	
	Yes
	

	Stop execution of test component behaviour
	stop
	
	Yes
	

	Terminating the testcase with an error verdict
	testcase.stop
	
	Yes
	Yes

	Remove a test component from the system
	kill
	
	Yes
	

	Check termination of a PTC behaviour
	running
	
	Yes
	

	Check if a PTC exists in the test system
	alive
	
	Yes
	

	Wait for termination of a PTC behaviour
	done
	
	Yes
	

	Wait a PTC cease to exist
	killed
	
	Yes
	

	Communication operations

	Send message
	send
	
	Yes
	

	Invoke procedure call
	call
	
	Yes
	

	Reply to procedure call from remote entity
	reply
	
	Yes
	

	Raise exception (to an accepted call)
	raise
	
	Yes
	

	Receive message
	receive
	
	Yes
	

	Trigger on message
	trigger
	
	Yes
	

	Accept procedure call from remote entity
	getcall
	
	Yes
	

	Handle response from a previous call
	getreply
	
	Yes
	

	Catch exception (from called entity)
	catch
	
	Yes
	

	Check (current) message/call received
	check
	
	Yes
	

	Clear port queue
	clear
	
	Yes
	

	Clear queue and enable sending & receiving at a to port
	start
	
	Yes
	

	Disable sending and disallow receiving operations to match at a port
	stop
	
	Yes
	

	Disable sending and disallow receiving operations to match new messages/calls
	halt
	
	Yes
	

	Check the state of a port
	checkstate
	
	Yes
	

	Timer operations

	Start timer
	start
	Yes
	Yes
	

	Stop timer
	stop
	Yes
	Yes
	

	Read elapsed time
	read
	Yes
	Yes
	

	Check if timer running
	running
	Yes
	Yes
	

	Timeout event
	timeout
	Yes
	Yes
	

	Verdict operations

	Set local verdict
	setverdict
	
	Yes
	

	Get local verdict
	getverdict
	
	Yes
	Yes

	External actions

	Stimulate an (SUT) action externally
	action
	Yes
	Yes
	

	Execution of test cases

	Execute test case
	execute
	Yes
	Yes
(see note 3)
	

	NOTE 1:	Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on snapshot evaluation are allowed.
NOTE 2:	Can be used to control timer operations only.
NOTE 3:	Can only be used in functions and altsteps that are used in module control.
NOTE 4:	Changing of component variables is disallowed.
NOTE 5:	Can be used in functions and altsteps but not in test cases.

[bookmark: _Toc39053597]5.2.7	Extension to ETSI ES 201 873-1, clause 19 (Basic program statements)
Clause 19.0	General
The list of statements in table 17 needs to be extended with the raise exception statement as described below.
	Basic program statements

	Statement
	Associated keyword or symbol

	Assignments
	:=

	If-else
	if (…) {…} else {…}

	Select case
	select case (…) { case (…) {…} case else {…}}

	For loop
	for (…) {…}

	While loop
	while (…) {…}

	Do while loop
	do {…} while (…)

	Label and Goto
	label / goto

	Stop execution
	stop

	Returning control
	return

	Leaving a loop, alt, altstep or interleave
	break

	Next iteration of a loop
	continue

	Raise exception
	raise

	Logging
	log

Clause 19.14		Statement Block
The syntax of statement block is changed as shown below.
BasicStatementBlock: "{" { LocalDefinition | Statement } "}"
StatementBlock: BasicStatementBlock {catch "(" Type Identifier ")" BasicStatementBlock }
[finally BasicStatementBlock]

Clause 19.14		Statement Block
The semantic description part is extended.
A basic statement block is a sequence of declarations and statements.
Statement blocks can be used like basic program statements to introduce a local scope in the flow of control of TTCN-3 behaviour. The declarations and statements in a basic statement block are executed in the order of their appearance, i.e. sequentially.
A statement block consists of a basic statement block with optional additional catch clauses, that can be used to handle exceptions raised directly or indirectly within the basic statement block and an optional finally clause which is executed after the basic statement block execution. When an exception is raised by a statement in the basic statement block the catch clauses are tried in order of appeareance to find one of the same type for data types or one the exception can be cast to if it is a type class kind exception. Execution continues with the basic stament block of the first catch clause whose type matches the type of the raised exception.
The catch clause declares a variable of an exception, with the type and identifier provided, to hold the value of the exception within the catch clause. The scope of this variable is limited to the basic statement block of the catch clause, i.e. it is only visible inside the body of the catch clause.
NOTE:	The scope of the catch and finally blocks is on the same level with the scope of the basic statement block. Local variables declared within the basic statement block are not visible in the catch and finally clauses.
Clause 19.14		Statement Block
The list of restrictions is extended:
a) The control transfer statements return, and raise shall not be used in the finally clause. Functions that can raise exceptions shall not be called in the finally clause.
b) The basic statement block of a catch clause shall obey the same semantic restrictions as the basic statement block it follows.
Clause 19 is extended with a new clause.
NEW: Clause 19.15		The Raise exception statement
The raise exception statement raises an exception, causing the execution to continue at the catch block closest in the procedure call hierarchy, also executing all finally blocks it encounters while traversing the procedure call hierarchy.
Syntactical Structure
raise TemplateInstance

Semantic Description
The raise statement is used to raise an exception. On executing a raise exception statement the statement blocks, loops, alt statements or interleave statement within the encompassing function/altstep/testcase are left. If the encompassing function, altstep or testcase has a catch block with the exact same type as that of the raised exception value for data types or one the exception can be cast to if it is a class type exception, execution continues in that catch block. If the encompassing function or altstep does not have catch blocks or none of the catch blocks can handle the raised exception, execution leaves the function or altstep to handle the exception in the calling function, altstep or testcase. An exception not handled via catch clause of the StatementBlock of a testcase shall cause a dynamic error.
If the StatementBlock of a function, altstep or testcase has a finally block, this finally block is always executed before the function, altstep, testcase terminates. If an exception was raised and handled in a catch block, the finally block is executed after the catch block. If there was no exception raised, or an exception was raised but not handled in any catch blocks the finally block is executed before the function, altstep or testcase terminates.
The parameter of the raise operation shall evaluate to a value, that the exception will have.
Exceptions are specified as types. Therefore the exception value may either be derived from a template conforming to the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value). The type of the value specification to the raise operation shall be determinable as it is necessary to avoid any ambiguity of the type of the value being raised.
NOTE 0:	The type of the raised exception should be provided explicitly for literal values. Catch clauses with synonym types or restricted types will only catch exceptions of the same type.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
1. An exception shall only be raised inside a function, altstep or testcase.
The TemplateInstance shall conform to the template(value) restriction (see clause 15.8).
Exceptions shall not be raised directly or indirectly inside finally blocks of functions, altsteps or testcases.
Examples
EXAMPLE 1:
	raise (v_myVariable + v_yourVariable - 2);
	// Raises an exception with a value which is the result of the arithmetic expression

	raise integer:5;	// Raises an exception with the integer value 5

	raise charstring:"Olala!";
	// Raises an exception with the charstring value "Olala!"

EXAMPLE 2:	Catching an exception raised in a called function.
	type record of charstring t_registeredNames;
	type component myComponent {
		var t_registerdNames v_registeredNames;
	}
	function f_init(in charstring name) exception (charstring, integer) runs on myComponent
	{
 	 ...
 	 if (name_was_not_registered) {
	 raise ("Could not initialize " & name); // when the exception is raised f_init teminates
 	 }
	 ...
	}

	function f_operation(in charstring user1, in charstring user2) exception (integer)
	runs on myComponent {
	 f_init(user1);
	 f_init(user2);
	 ...
	} catch (charstring e) {
	 // the exception is available for processing in the e variable
	 // release resources and terminate function
	} catch (integer e) {
	 //there was some other issue
	 // release resources
	 raise e; /// the exception is raised again to be handled in the calling function
	}

EXAMPLE 3:	Finally is always executed.
	function f_operation2(in charstring user1, in charstring user2) exception (charstring)
	runs on myComponent {
	 f_init(user1);
	 f_init(user2);
	 …
	} finally {
	 // finally is executed wether there was an exception or not before the function terminates
	}

EXAMPLE 4:	The exception can travel through several functions in the call hierarchy until handled.

	function f_operation3(in charstring user1, in charstring user2) exception (charstring)
	runs on myComponent {
	 f_operation2(user1, user2); // an exception is raised in f_init
	 …
	} finally {
	 // after the finally block in f_operation2 this finally block is also executed
	 // the exception is not caught.
	}

EXAMPLE 5:	Exception not caught latest in a testcase is reported as dynamic error.
	
	testcase t_myTest1() runs on myComponent {
	 f_init("user1");
	 f_init("unknown user");// bad argument will raise an exception in f_init
	 … // because of the raised exception execution continues in the finally block
	} finally {
	 … // via the runs on component resources can be freed
	 // as the exception is not caught dynamic error is reported
	}

EXAMPLE 6:	The type of the exception has to match the type of the catch clause exactly.
	
	function f_example() exception (integer) {
	 raise integer:5;
	}

	type integer MyIntegerSynonim;
	type integer MyIntegerRange (0 .. 255);

	function f_example2() {
	 f_example();
	} catch (MyIntegerRange e) {
	 // The exception is not caught here.
	 // The type of the raised exception and the type of the catch type has to be the same
	} catch (MyIntegerSynonim e) {
	 // The exception is not caught here.
	 // The type of the raised exception and the type of the catch type has to be the same
	} catch (integer e) {
	 // As the exception raised in f_example was raise with the integer type it is handled here
	}

[bookmark: _Toc39053598]6	TRI Extensions for the Package
[bookmark: _Toc39053599]6.1	Extensions to clause 5.3 of ETSI ES 201 873-5 Data interface
Clause 5.3.2	Communication
The clause is to be modified:
TriExceptionType	A value of type TriExceptionType is an encoded type and value of an exception that either is to be sent to the SUT or has been received from the SUT. This abstract type is used in procedure based TRI communication operations and raising exception during execution of external functions, constructors, destructors and methods.
Clause 5.3.4	Miscellaneous
The clause is to be extended:
TriClassIdType	A value of type TriClassIdType is the name of a class as specified in the TTCN‑3 ATS.
TriObjHandleType	A value of type TriObjHandle contains platform-specific data allowing access to external objects.
[bookmark: _Toc39053600]6.2	Extensions to clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous operations
Clause 5.6.3.4	triExternalCreate (TE PA)
This clause is to be added.
	Signature
	TriStatusType triExternalCreate(
in TriClassIdType classId,
inout TriParameterListType parameterList,
out TriObjHandleType createdObject)

	In Parameters
	classId	identifier of the external class

	Out Parameters
	returnValue	handle to the created object

	InOutParameters
	parameterList	a list of encoded parameters for the indicated constructor. The parameters in parameterList are ordered as they appear in the TTCN‑3 constructor declaration.

	Return Value
	The return status of the triExternalCreate operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it invokes a constructor specified in a class which is defined as external in TTCN‑3.
In the invocation of a triExternalCreate operation by the TE all in and inout constructor parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non‑null.

	Effect
	The PA shall implement the behaviour for each external class specified in the TTCN‑3 ATS. On invocation of this operation, the PA shall invoke the constructor of a class indicated by the identifier classId. It shall access the specified in and inout constructor parameters in parameterList, create a new external object instance using the values of these parameters, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out constructor parameters and a handle to the created external object.
The triExternalCreate operation returns TRI_OK if the PA completes the constructor of the external class successfully, TRI_Error otherwise. In the latter case, the distinct value null shall be returned as the object handle.
Note that whereas most of other TRI operations are considered to be non‑blocking, the triExternalCreate operation is considered to be blocking. That means that the operation shall not return before the construction of the external object has been finished. External constructors have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

Clause 5.6.3.5	triExternalFinally (TE PA)
This clause is to be added.
	Signature
	TriStatusType triExternalFinally(
in TriObjHandleType handle)

	In Parameters
	handle	handle to the object being destroyed

	Return Value
	The return status of the triExternalFinally operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it invokes a destructor specified in a class which is defined as external in TTCN‑3.

	Effect
	The PA shall implement the behaviour for each external class specified in the TTCN‑3 ATS which contains a destructor definition. On invocation of this operation, the PA shall invoke the destructor of the object whose handle is in the handle parameter.
The triExternalFinally operation returns TRI_OK if the PA completes destruction of the external object successfully, TRI_Error otherwise.
Note that whereas most of other TRI operations are considered to be non‑blocking, the triExternalFinally operation is considered to be blocking. That means that the operation shall not return before the destruction of the external object has been finished. External destructors have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

Clause 5.6.3.6	triExternalMethod (TE PA)
This clause is to be added.
	Signature
	TriStatusType triExternalMethod(
in TriObjHandleType handle,
in String methodName,
inout TriParameterListType parameterList,
out TriParameterType returnValue)

	In Parameters
	handle	handle of the affected object; null for static methods
methodName	name of the called method

	Out Parameters
	returnValue	(optional) encoded return value

	InOutParameters
	parameterList	a list of encoded parameters for the indicated method. The parameters in parameterList are ordered as they appear in the TTCN‑3 method declaration.

	Return Value
	The return status of the triExternalMethod operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it invokes a method specified in a class which is defined as external in TTCN‑3.
In the invocation of a triExternalMethod operation by the TE all in and inout parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non‑null.

	Effect
	The PA shall implement the behaviour for each method of all external classes specified in the TTCN‑3 ATS. On invocation of this operation, the PA shall call a method methodName of an external object whose handle is in the handle paramer. It shall access the specified in and inout method parameters in parameterList, pass the values of these parameters to the called method, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out method parameters and the encoded return value.
If no return type has been defined for this method in the TTCN‑3 ATS, the distinct value null shall be used for the latter.
The triExternalMethod operation returns TRI_OK if the PA completes the method of the external object successfully, TRI_Error otherwise.
Note that whereas most of other TRI operations are considered to be non‑blocking, the triExternalMethod operation is considered to be blocking. That means that the operation shall not return before the method call has been finished. Methods of external classes have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

Clause 5.6.3.7	triRaiseException (PA TE)
This clause is to be added.
	Signature
	void triExternalRaise(in TriExceptionType exc)

	In Parameters
	exc	encoded exception to raise

	Constraints
	This operation can be called by the PA only during execution of triExternalFunction, triExternalCreate, triExternalFinally or triExternalMethod.

	Effect
	The operation raises an exception that can be later processed by the TE in the catch statement. The exception is provided in an enoded form. The TE performs decoding when the triExternalFunction, triExternalCreate, triExternalFinally or triExternalMethod where the exception was raised returns. Decoding is performed in the catch statement.

[bookmark: _Toc39053601]6.3	Extensions to clause 6 of ETSI ES 201 873-5 JavaTM language mapping
Clause 6.3.3.20	TriObjHandleType
This clause is to be added.
TriClassIdType is mapped to the following interface:
// TRI IDL TriClassIdType
package org.etsi.ttcn.tri;
public interface TriClassId {
	public String toString();
	public String getClassName();
	public boolean equals(TriClassId id);
}

Methods:
toString
Returns the string representation of the class as defined in TTCN‑3 specification.
getClassName
Returns the class identifier as defined in the TTCN‑3 specification.
equals
Compares id with this TriClassId for equality. Returns true if and only if both classes have the same class identifier, false otherwise.
Clause 6.3.3.20	TriObjHandleType
This clause is to be added.
TriObjHandleType is mapped to the java.lang.Object class.
Clause 6.3.3.21	TriObjHandleWrapper
This clause is to be added.
TriObjHandleWrapper is used in the triExternalCreate operation as a placeholder for the created object handle.
public interface TriObjHandleWrapper {
	public void setHandle(Object handle);
	public Object getHandle();
}

Methods:
setHandle
Sets the contained object.
getHandle
Gets the contained object.
Clause 6.5.3.1	TriPlatformPA
This clause is to be extended.
// TriPlatform
// TE ‑> PA
package org.etsi.ttcn.tri;
public interface TriPlatformPA {
	…

	// Ref: TRI‑Definition 5.6.3.4
	public TriStatus triExternalCreate(TriClassIdType classId,
	 TriParameterList parameterList, TriObjHandleWrapper handle);

	// Ref: TRI‑Definition 5.6.3.5
	public TriStatus triExternalFinally(Object handle);

	// Ref: TRI‑Definition 5.6.3.6
	public TriStatus triExternalMethod(Object handle, String methodName,
	 TriParameterList parameterList, TriParameter returnValue);

}

Clause 6.5.3.2	TriPlatformTE
This clause is to be extended.
// TriPlatform
// PA ‑> TE
package org.etsi.ttcn.tri;
public interface TriPlatformTE {
	…

	// Ref: TRI-Definition 5.6.3.7
	public void triRaiseException(TriException exc);
}

[bookmark: _Toc39053602]6.4	Extensions to clause 7 of ETSI ES 201 873-5 ANSI C language mapping
Clause 7.2.1	Abstract type mapping
This clause is to be extended.
	TRI ADT
	ANSI C Representation
	Notes and comments

	…
	
	

	TriClassIdType
	QualifiedName
	

	TriObjectHandleType
	typedef void * TriObjectHandle;
	

Clause 7.2.4	TRI operation mapping
This clause is to be extended.
	IDL Representation
	ANSI C Representation

	…
	

	TriStatusType triExternalCreate (in TriClassIdType classId, inout TriParameterListType parameterList, out TriObjHandleType createdObject)
	TriStatus triExternalCreate
 (const TriClassId* classId,
 TriParameterList* parameterList,
 TriObjectHandle* handle)

	TriStatusType triExternalFinally (in TriObjHandleType handle)
	TriStatus triExternalFinally
 (TriObjectHandle handle)

	TriStatusType triExternalMethod(in TriObjHandleType handle, in String methodName, inout TriParameterListType parameterList, out TriParameterType returnValue)
	TriStatus triExternalFunction
 (TriClassId handle, char* methodName,
 TriParameterList* parameterList,
 TriParameter* returnValue)

	void triRaiseException(in TriExceptionType exc)
	void triRaiseException(const TriException* exc)

[bookmark: _Toc39053603]6.5	Extensions to clause 8 of ETSI ES 201 873-5 C++ language mapping
Clause 8.5.19		TriClassId
This clause is to be added.
A value of type TriClassIdType represents the name of a class as specified in the TTCN-3 ATS. It is a derived class from QualifiedName, mapped to the following pure virtual class:
class TriClassId : public QualifiedName {
public:
	virtual ~TriClassId ();
	virtual Tboolean operator== (const TriClassId &sid) const =0;
	virtual TriClassId * cloneClassId () const =0;
	virtual Tboolean operator< (const TriClassId &sid) const =0;
}
Methods:
· ~TriClassId
Destructor.
· operator==
Returns true if both TriClassId objects are equal.
· cloneClassId
Returns a copy of the TriClassId.
· operator<
Operator < overload.
Clause 8.5.20		TriObjectHandle
This clause is to be added.
A value of type TriObjectHandle type is mapped to a void pointer:
typedef void * TriObjectHandle;

Clause 8.6.3	TriPlatformPA
This clause is to be extended.
class TriPlatformPA {
public:
	…
	
	//For each constructor on an external class specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus triExternalCreate (const TriClassId *classId, TriParameterList 	*parameterList, TriObjectHandle * handle)=0;

	//For each destructor on an external class specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus triExternalCreate (TriObjectHandle handle)=0;

	//For each method on an external class specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus triExternalMethod (TriObjectHandle handle, const Tstring & methodName, 	TriParameterList *parameterList, TriParameter *returnValue)=0;
}

Clause 8.6.4	TriPlatformTE
This clause is to be extended.
class TriPlatformTE {
public:
	…

	//Raises an exception during execution of external code in PA
	virtual void triRaiseException (const TriException *exc)=0;
}

[bookmark: _Toc39053604]6.6	Extensions to clause 9 of ETSI ES 201 873-5 C# language mapping
Clause 9.4.2.19	TriClassId
This clause is to be added.
TriClassIdType C# mapping is derived from the IQualifiedName interface:
public interface ITriClassId : IQualifiedName {}

Clause 9.4.2.20	TriObjectHandleType mapping
This clause is to be added.
TriObjectHandleIdType is mapped to the C# object class.
Clause 9.5.2.3	TriPlatformPA
This clause is to be extended.
public interface ITriPlatformPA {
	…

	// Miscellaneous operations
	// Ref: TRI-Definition clause 5.6.3.4
	TriStatus TriExternalCreate(ITriClassId classId,
		ITriParameterList parameterList, out object handle);

	// Ref: TRI-Definition clause 5.6.3.5
	TriStatus TriExternalFinally(object handle);

	// Ref: TRI-Definition clause 5.6.3.6
	TriStatus TriExternalMethod(object handle, string methodName,
		ITriParameterList parameterList, ITriParameter returnValue);
}

Clause 9.5.2.4	TriPlatformTE
This clause is to be extended.
public interface ITriPlatformTE {
	…

	// Ref: TRI Definition clause 5.6.3.7
	void TriRaiseException(ITriException exc);
}

[bookmark: _Toc39053605]7	TCI Extensions for the Package
[bookmark: _Toc39053606]7.1	Extensions to clause 7.2.2.1 of ETSI ES 201 873-6 Abstract TTCN-3 data types and values
The definition of the getTypeClass operation shall be modified of the following way:
TciTypeClassType getTypeClass()	Returns the type class of the respective type. A value of TciTypeClassType can have one of the following constants: ADDRESS, ANYTYPE, ARRAY, BITSTRING, BOOLEAN, CHARSTRING, COMPONENT, ENUMERATED, FLOAT, HEXSTRING, INTEGER, OCTETSTRING, RECORD, RECORD_OF, SET, SET_OF, UNION, UNIVERSAL_CHARSTRING, VERDICT, DEFAULT, PORT, TIMER, CLASS.
[bookmark: _Toc39053607]7.2	Extensions to clause 7.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 data types and values
Clause 7.2.2.5	Abstract TTCN-3 classes
This clause is to be added.
According to the present document, TTCN‑3 user-defined classes will be represented at the TCI interfaces using the abstract data type Class. The abstract data type Class is based on the abstract data type Type.
The following operations defined for abstract data type Type work differently in the abstract data type Class:
Value newInstance()	The method creates an ObjectInstance containing a reference to a null object of the class.
The following operations are defined for abstract data type Class:
ObjectInstance create(TriComponentIdType c, TciParameterListType tciPars)
Calls the constructor to create a new instance of this class using the supplied parameters for the specified component. Created objects are always considered to be initialized.
ClassSeq getSuperclasses ()	Returns the superclasses of the current class.
TStringSeq getFieldNames ()	Returns the names of all public fields defined in the class.
TStringSeq getMethodNames ()	Returns the names of all public methods of the class.
TciParameterTypeListType getConstructorParmeters ()	
Returns formal parameters of the class constructor.
TciParameterTypeListType getMethodParameters (TString methodName)	
Returns formal parameters of the specified public method. The distinct value null is returned if the method does not exist or is not public.
Type getFieldType (TString name)	Returns the type of the specified public field. The distinct value null is returned if the member variable does not exist or is not public.
Type getMethodReturnType (TString name)	
Returns the return type of specified public method or the distinct value null if no return value is defined, the method does not exist or it is not public.
Clause 7.2.2.6	ClassSeq
This clause is to be added.
The abstract data type ClassSeq is used to represent a list of classes.
[bookmark: _Toc39053608]7.3	Extensions to clause 7.2.2.2.0 of ETSI ES 201 873-6 Basic rules
The figure 4 is to be extended.
ObjectInstance
Type
Value
MatchingMechanism
IntegerValue
FloatValue
BooleanValue
CharstringValue
UniversalCharstringValue
BitstringValue
OctetstringValue
HexstringValue
RecordOfValue
RecordValue
UnionValue
EnumeratedValue
VerdictValue
AddressValue
MatchingList
ValueRange
CharacterPattern
MatchDecodedContent
Class

Figure 4: Hierarchy of abstract values
[bookmark: _Toc39053609]7.4	Extensions to clause 7.2.2.2 of ETSI ES 201 873-6 Abstract TTCN-3 values
Clause 7.2.2.16	The abstract data type ObjectInstance
This clause is to be added.
The abstract data type ObjectInstance is based on the abstract data type Value. It is used to modify the referenced object and to access public object fields and methods.
The following operations are defined on the abstract data type ObjectInstance:
TriComponentIdType getOwner ()	Returns the component that owns the object instance.
TString getId ()	Returns an identifier of the object which is unique within the owner component context.
void setObject (ObjectInstance source)	
The operation sets the referenced object to be the same one as the one referenced by the source parameter. In case the source object does not contain a null reference, the object instance and the source object shall be owned by the same component.
Value getField (TString fieldName)	
Returns the value of the referenced public member field. The distinct value null is returned if the object does not contain the referenced field or the field is not accessible.
Value callMethod(TString methodName, TciParameterListType tciPars)	
Calls the method of the object instance. The distinct value null is returned if the method does not return any value. A runtime error is generated if the method does not exist or if the given parameters do not conform to the formal parameters of the declared method.
[bookmark: _Toc39053610]7.5	Extensions to clause 7.3.4.1 of ETSI ES 201 873-6 Abstract TCI-TL provided
Clause 7.3.4.1.122	tliObjCreateEnter
This clause is to be added.
	Signature
	void tliObjCreateEnter(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TciParameterListType tciPars)

	In Parameters
	am
	An additional message.

	
	ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	c
	The component which produces this event.

	
	className
	The class of the constructor being called.

	
	obj
	The object being created.

	
	tciPars
	The parameters of the constructor.

	Return Value
	Void

	Constraint
	Shall be called by TE to log the entering of a constructor of an object. This event occurs after the constructor has been entered.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.123	tliObjCreateLeave
This clause is to be added.
	Signature
	void tliObjCreateLeave(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TciParameterListType tciPars)

	In Parameters
	am
	An additional message.

	
	ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	c
	The component which produces this event.

	
	className
	The class of the constructor being called.

	
	obj
	The created object instance.

	
	tciPars
	The parameters of the constructor.

	Return Value
	Void

	Constraint
	Shall be called by TE to log the leaving of an object constructor. This event occurs after the constructor has been left.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.124	tliObjFinallyEnter
This clause is to be added.
	Signature
	void tliObjFinallyEnter(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj)

	In Parameters
	am
	An additional message.

	
	ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	c
	The component which produces this event.

	
	className
	The class of the finally block being executed.

	
	obj
	The object instance being destroyed.

	Return Value
	Void

	Constraint
	Shall be called by TE to log the entering of a destructor of an object. This event occurs after the destructor has been entered.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.125	tliObjFinallyLeave
This clause is to be added.
	Signature
	void tliObjCreateLeave(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TciParameterListType tciPars)

	In Parameters
	am
	An additional message.

	
	ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	c
	The component which produces this event.

	
	className
	The class of the finally block being executed.

	
	obj
	The object being destroyed.

	Return Value
	Void

	Constraint
	Shall be called by TE to log the leaving of an object destructor. This event occurs after the destructor has been left. Accessing any members, properties and methods of a destroyed object with exception of methods used for comparison shall cause an error.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.126	tliObjMethodEnter
This clause is to be added.
	Signature
	void tliObjMethodEnter(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TString methodName,
 in TciParameterListType tciPars)

	In Parameters
	Am
	An additional message.

	
	Ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	C
	The component which produces this event.

	
	className
	The class of the method being called.

	
	obj
	The affected object instance.

	
	methodName
	The name of the called method.

	
	tciPars
	The parameters of the called method.

	Return Value
	void

	Constraint
	Shall be called by TE to log the entering of an object method. This event occurs after the method has been entered.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.127	tliObjMethodLeave
This clause is to be added.
	Signature
	void tliObjMethodLeave(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TString methodName,
 in TciParameterListType tciPars, in Value returnValue)

	In Parameters
	Am
	An additional message.

	
	Ts
	The time when the event is produced.

	
	src
	The source file of the test specification.

	
	line
	The line number where the request is performed.

	
	C
	The component which produces this event.

	
	className
	The class of the method being called.

	
	obj
	The affected object instance.

	
	methodName
	The name of the called method.

	
	tciPars
	The parameters of the called method.

	
	returnValue
	The return value of the called method.

	Return Value
	void

	Constraint
	Shall be called by TE to log the leaving of an object method. This event occurs after the method has been left.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

Clause 7.3.4.1.132	tliObjVar
This clause is to be added.
	Signature
	void tliObjVar(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c, QualifiedName className,
 in ObjectInstance obj, in TString name, in Value value)

	In Parameters
	Am
	An additional message.

	
	Ts
	The time when the event is produced.

	
	Src
	The source file of the test specification.

	
	Line
	The line number where the request is performed.

	
	C
	The component which produces this event.

	
	className
	The class declaring the member variable.

	
	Oobj
	The affected object instance.

	
	name
	The name of the member variable.

	
	value
	The new value of the member variable.

	Return Value
	Void

	Constraint
	Shall be called by TE to log the modification of the value of a field of an object. This event occurs after the field value has been changed. In case of @lazy fields, it is called also after performing evaluation as the evaluation result is automatically assigned to the field.

	Effect
	The TL presents all the information provided in the parameters of this operation to the user, how this is done is not within the scope of the present document.

[bookmark: _Toc39053611]7.6	Extensions to clause 8 of ETSI ES 201 873-6 JavaTM language mapping
Clause 8.3.2.4	TciTypeClassType
This clause is to be extended.
TciTypeClassType is mapped to the following interface:
// TCI IDL TciTypeClassType
package org.etsi.ttcn.tci;
public interface TciTypeClass {
	public final static int ADDRESS					= 0 ;
	public final static int ANYTYPE					= 1 ;
	public final static int BITSTRING				= 2 ;
	public final static int BOOLEAN					= 3 ;
	public final static int CHARSTRING				= 5 ;
	public final static int COMPONENT				= 6 ;
	public final static int ENUMERATED				= 7 ;
	public final static int FLOAT					= 8 ;
	public final static int HEXSTRING				= 9 ;
	public final static int INTEGER					= 10 ;
 	public final static int OCTETSTRING				= 12 ;
	public final static int RECORD					= 13 ;
	public final static int RECORD_OF				= 14 ;
	public final static int ARRAY					= 15 ;
	public final static int SET						= 16 ;
	public final static int SET_OF					= 17 ;
	public final static int UNION					= 18 ;
	public final static int UNIVERSAL_CHARSTRING	= 20 ;
	public final static int VERDICT					= 21 ;
	public final static int DEFAULT					= 22 ;
	public final static int PORT					= 23 ;
	public final static int TIMER					= 24 ;
	public final static int CLASS					= 25 ;
}

Clause 8.3.6.7	Abstract class mapping
This clause is to be added.
Class is mapped to the following interface:
// TCI IDL Type
package org.etsi.ttcn.tci;
public interface Class extends Type {
	public ObjectInstance create (TriComponentId c, TciParameterList tciPars);
	public Class[]		getSuperclasses ();
	public String[]		getFieldNames ();
	public String[]		getMethodNames ();
	public TciParameterTypeList getConstructorParmeters ();
	public TciParameterTypeList getMethodParameters (String methodName);
	public Type 		getFieldType (String name);
	public Type 		getMethodReturnType (String methodName);
}

Methods:
create	Calls the constructor to create a new instance of this class using the supplied parameters for the specified component.
getSuperclasses	Returns the list of superclasses of this class.
getFieldNames	Returns the names of all public fields defined in the class.
getMethodNames	Returns the names of all public methods of the class.
getConstructorParmeters	Returns the formal parameters of the class constructor.
getMethodParameters	Returns the formal parameters of the specified public method.
getFieldType	Returns the type of the specified public field.
getMethodReturnType	Returns the return type of specified public method or the distinct value null if no return type is declared.
Clause 8.3.6.8	ClassSeq
This clause is to be added.
ClassSeq abstract data type mapped to an array of TciClass.
Clause 8.3.4.16	ObjectInstance
This clause is to be added.
ObjectInstance is mapped to the following interface:
// TCI IDL DynamicMatch
package org.etsi.ttcn.tci;
public interface ObjectInstance extends Value {
	public TriComponentId getOwner ();
	public TString			getId ();
	public void 		setObject (ObjectInstance source);
	public Value		callMethod (String methodName, TciParameterList tciPars);
}

Methods:
getOwner	Returns the component that owns the object instance.
getId	Returns the unique identifier of the object instance.
setObject	The operation sets the referenced object to the same reference as the given object.
getField	Gets the value of the referenced public field.
callMethod	Calls a method of the object instance.
Clause 8.5.4.1	TCI-TL provided
The TciTLProvided interface is to be extended:
package org.etsi.ttcn.tci;
public interface TciTLProvided {
	…
	public void tliObjCreateEnter(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj, TciParameterList tciPars);
	public void tliObjCreateLeave(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj, TciParameterList tciPars);
	public void tliObjFinallyEnter(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj);
	public void tliObjFinallyLeave(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj);
	public void tliObjMethodEnter(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj, String methodName,
 TciParameterList tciPars);
	public void tliObjMethodLeave(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj, String methodName,
 TciParameterList tciPars, Value returnValue);
	public void tliObjVar(String am, int ts, String src, int line, TriComponentId c,
	 	QualifiedName className, ObjectInstance obj, String name, Value value);
}

[bookmark: _Toc39053612]7.7	Extensions to clause 9 of ETSI ES 201 873-6 ANSI C language mapping
Clause 9.2	Data
The table 5 is to be extended.
	TCI IDL Interface
	ANSI C representation
	Notes and comments

	:
	
	

	Class

	Value create(TriComponentIdType c, TciParameterListType tciPars)
	Value tciObjCreate(Type cls, TriComponentId c, TciParameterListType tciPars)
	

	ClassSeq getSuperclasses ()
	Type* tciGetSuperclasses (Type cls)
	Returns null pointer or a null‑pointer terminated array

	TStringSeq getFieldNames ()
	String* tciGetClassFieldNames (Type cls)
	Returns null pointer or a null‑pointer terminated array

	TStringSeq getMethodNames ()
	String* tciGetClassMethodNames (Type cls)
	

	TciParameterTypeListType getConstructorParmeters ()
	TciParameterTypeListType* tciGetClassConstructorParameters (Type cls)
	

	TciParameterTypeListType getMethodParameters (TString methodName)
	TciParameterTypeListType* tciGetClassMethodParameters (Type cls, String methodName)
	

	Type getMemberType (TString name)
	Type tciGetClassFieldType(Type cls, String name)
	

	Type getMethodReturnType (TString methodName)
	Type tciGetClassMethodReturnType (Type cls, String methodName)
	

	ObjectInstance

	TriComponentIdType getOwner ()
	TriComponentId tciGetObjOwner (Value obj)
	

	TString getId ()
	char * tciGetObjUniqueId (Value obj)
	

	void setObject (ObjectInstance source)
	void tciSetObject (Value obj, Value source)
	

	Value getField (TString fieldName)
	Value tciGetObjField (Value obj, String fieldName)
	

	Value callMethod(TString methodName, TciParameterListType tciPars)
	Value tciCallObjMethod(Value obj, String methodName, TciParameterListType tciPars)
	

Clause 9.4.4.1	TCI-TL provided
The clause is to be extended.
void tliObjCreateEnter
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj,
TciParameterListType tciPars);
void tliObjCreateLeave
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj,
TciParameterListType tciPars);
void tliObjFinallyEnter
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj);
void tliObjFinallyLeave
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj);
void tliObjMethodEnter
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj,
 String methodName,
TciParameterListType tciPars);
void tliObjMethodLeave
 (String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj,
 String methodName,
TciParameterListType tciPars, Value returnValue);
void tliObjVar
(String am, int ts, String src, int line, TriComponentId c, QualifiedName className, Value obj,
 String name,
Value value);

Clause 9.5	Data
The definition of the TciTypeClassType in the table 7 is to be modified.
	TCI IDL ADT
	ANSI C representation (Type definition)
	Notes and comments

	:
	
	

	TciTypeClassType
	typedef enum
{
TCI_ADDRESS_TYPE = 0,
TCI_ANYTYPE_TYPE = 1,
TCI_BITSTRING_TYPE = 2,
TCI_BOOLEAN_TYPE = 3,
TCI_CHARSTRING_TYPE = 5,
TCI_COMPONENT_TYPE = 6,
TCI_ENUMERATED_TYPE = 7,
TCI_FLOAT_TYPE = 8,
TCI_HEXSTRING_TYPE = 9,
TCI_INTEGER_TYPE = 10,
 TCI_OCTETSTRING_TYPE = 12,
TCI_RECORD_TYPE = 13,
TCI_RECORD_OF_TYPE = 14,
TCI_ARRAY_TYPE = 15,
TCI_SET_TYPE = 16,
TCI_SET_OF_TYPE = 17,
TCI_UNION_TYPE = 18,
TCI_UNIVERSAL_CHARSTRING_TYPE = 20,
TCI_VERDICT_TYPE = 21
TCI_DEFAULT_TYPE = 22,
TCI_PORT_TYPE = 23,
TCI_TIMER_TYPE = 24,
TCI_CLASS_TYPE = 25
} TciTypeClassType;
	

	:
	
	

[bookmark: _Toc39053613]7.8	Extensions to clause 10 of ETSI ES 201 873-6 C++ language mapping
Clause 10.5.2.14		TciTypeClass
This clause is to be extended.
[bookmark: AAAAAAAAKD][bookmark: AAAAAAAAKF][bookmark: AAAAAAAAKG][bookmark: AAAAAAAAKH]typedef enum
{
 TCI_ADDRESS = 0,
 TCI_ANYTYPE = 1,
 TCI_BITSTRING = 2,
 TCI_BOOLEAN = 3,
 TCI_CHARSTRING = 5,
 TCI_COMPONENT = 6,
 TCI_ENUMERATED = 7,
 TCI_FLOAT = 8,
 TCI_HEXSTRING = 9,
 TCI_INTEGER = 10,
 TCI_OCTETSTRING = 12,
 TCI_RECORD = 13,
 TCI_RECORD_OF = 14,
 TCI_ARRAY = 15,
 TCI_SET = 16,
 TCI_SET_OF = 17,
 TCI_UNION = 18,
 TCI_UNIVERSAL_CHARSTRING = 20,
 TCI_VERDICT = 21
 TCI_DEFAULT = 22,
 TCI_PORT = 23,
 TCI_TIMER = 24
 TCI_CLASS = 25
} TciTypeClass;

Clause 10.5.3.23		Class
This clause is to be added.
TTCN-3 class support. It is mapped to the following pure virtual class:
class TciClass : public virtual TciType {
public:
	virtual ~TciClass ();
	virtual ObjectInstance * create(const TriComponentId & c, TciParameterList & tciPars) =0;
	virtual const std::vector<TciClass*> & getSuperclasses () const =0;
	virtual const std::vector<Tstring*> & getFieldNames () const =0;
	virtual const std::vector<Tstring*> & getMethodNames () const =0;
	virtual const TciParameterTypeList & getConstructorParmeters () const =0;
	virtual const TciParameterTypeList & getMethodParameters (Tstring methodName) const =0;
	virtual const TciType & getMemberType (const Tstring & name) const =0;
	virtual const TciType & getMethodReturnValue (const Tstring & name) const =0;
	virtual Tboolean operator== (const TciClass &p_class) const =0;
	virtual TciClass * clone () const =0;
	virtual Tboolean operator< (const TciClass &p_content) const =0;
}

Methods:
~TciClass
	Destructor
create
	Calls the constructor to create a new instance of this class using the supplied parameters for the specified component
getSuperclasses
	Returns the superclasses of the current class
getFieldNames
	Returns the names of all public fields defined in the class
getMethodNames
	Returns the names of all public methods of the class
getConstructorParmeters
	Returns formal parameters of the class constructor
getMethodParameters
	Returns formal parameters of the specified public method
getFieldType
	Returns the type of the specified public field
getMethodReturnValue
	Returns the return type of specified public method or the distinct value null if no return value is defined
operator==
	Returns true if both objects are equal
clone
	Return a copy of the matching mechanism
operator<
	Operator < overload
Clause 10.5.3.24		ObjectInstance
This clause is to be added.
TTCN-3 implication and exclusion matching mechanism support. It is mapped to the following pure virtual class:
class ObjectInstance : public virtual TciValue {
public:
	virtual ~ObjectInstance ();
	virtual const TriComponentId & getOwner () const =0;
	virtual const TString getId () const =0;
	virtual void setObject (ObjectInstance & val) =0;
	virtual TciValue * getField (const Tstring & fieldName) =0;
	virtual Value callMethod(const TString & methodName, TciParameterList & tciPars) =0;
	virtual Tboolean operator== (const ObjectInstance &p_obj) const =0;
	virtual ObjectInstance * clone () const =0;
	virtual Tboolean operator< (const ObjectInstance &p_content) const =0;
}

Methods:
~ObjectInstance
	Destructor
getOwner
	Returns the component that owns the object instance
getId
	Returns the unique identifier of the object instance
setObject
	The operation sets the referenced object
getField
	Returns the value of the referenced public field
callMethod
	Calls a method of the object instance
operator==
	Returns true if both objects are equal
clone
	Return a copy of the matching mechanism
operator<
	Operator < overload
Clause 10.5.3.25		ClassSeq
This clause is to be added.
[bookmark: AAAAAAAAKW][bookmark: AAAAAAAAKX]The ClassSeq abstract data type is mapped to std::vector<TciClass*> .
Clause 10.6.4.1	TciTlProvided
This clause is to be extended.
//Called by TE to log the entering of a constructor
virtual void tliObjCreateEnter (const Tstring &am, const timeval ts, const Tstring &src, const Tinteger line, const TriComponentId *c, const QualifiedName *className, const ObjectInstance *obj,
const TciParameterList *tciPars)=0;

//Called by TE to log the leaving of a constructor
virtual void tliObjCreateLeave (const Tstring &am, const timeval ts, const Tstring &src, const Tinteger line, const TriComponentId *c, const QualifiedName *className, const ObjectInstance *obj, const TciParameterList *tciPars)=0;

//Called by TE to log the entering of a destructor
virtual void tliObjFinallyEnter (const Tstring &am, const timeval ts, const Tstring &src,
const Tinteger line, const TriComponentId *c, const QualifiedName *className,
const ObjectInstance *obj)=0;

//Called by TE to log the leaving of a destructor
virtual void tliObjFinallyLeave (const Tstring &am, const timeval ts, const Tstring &src,
const Tinteger line, const TriComponentId *c, const QualifiedName *className,
const ObjectInstance *obj)=0;

//Called by TE to log the entering of an object method
virtual void tliObjMethodEnter (const Tstring &am, const timeval ts, const Tstring &src,
const Tinteger line, const TriComponentId *c, const QualifiedName *className,
const ObjectInstance *obj, const Tstring &methodName, const TciParameterList *tciPars)=0;

//Called by TE to log the leaving of an object method
virtual void tliObjMethodLeave (const Tstring &am, const timeval ts, const Tstring &src,
const Tinteger line, const TriComponentId *c, const QualifiedName *className,
const ObjectInstance *obj, const Tstring &methodName, const TciParameterList *tciPars,
const TciValue *returnValue)=0;

//Called by TE to log the modification of a member variable of an object
virtual void tliObjVar (const Tstring &am, const timeval ts, const Tstring &src,
const Tinteger line, const TriComponentId *c, const QualifiedName *className,
const ObjectInstance *obj,
const Tstring &name, const TciValue *value)=0;

[bookmark: _Toc39053614]7.9	Extensions to clause 11 of ETSI ES 201 873-6 W3C XML mapping
Clause 11.3.3.30		ObjectInstance
ObjectInstance type is mapped to the complex type specified below. The content of the XML elements based on the ObjectInstance type shall be equal to the string produced by the valueToString operation (described in clause 7.2.2.2.1 of ETSI ES 201 873-6 [4]):
	<xsd:complexType name="ObjectInstance">
		<xsd:group ref="Values:BaseValue"/>
		<xsd:attributeGroup ref="Values:ValueAtts"/>
	</xsd:complexType>

Items:
BaseValue	Object instance content described in clause 11.3.3.1 of ETSI ES 2001-873-6
ValueAtts	Value attributes described in clause 11.3.3.1 of ETSI ES 2001-873-6
Clause 11.4.2.1	TCI-TL provided
This clause is to be extended.
 <xsd:complexType name="tliObjCreateEnter">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 <xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjCreateLeave">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 <xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
 <xsd:element name="returnValue" type="Values:Value" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjFinallyEnter">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjFinallyLeave">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjMethodEnter">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 <xsd:element name="methodName" type="SimpleTypes:TString" />
 <xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjMethodLeave">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 <xsd:element name="methodName" type="SimpleTypes:TString" />
 <xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
 <xsd:element name="returnValue" type="Values:Value" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tliObjVar">
 <xsd:complexContent mixed="true">
 <xsd:extension base="Events:Event">
 <xsd:sequence>
 <xsd:element name="className" type="Types:QualifiedName" />
 <xsd:element name="obj" type="Values:ObjectInstance" />
 <xsd:element name="name" type="SimpleTypes:TString" />
 <xsd:element name="val" type="Values:Value" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

[bookmark: _Toc39053615]7.10	Extensions to clause 12 of ETSI ES 201 873-6 C# language mapping
Clause 12.4.2.4	TciTypeClassType
This clause is to be extended.
TciTypeClassType is mapped to the following enumeration:
public enum TciTypeClass {
	Address = 0,
	Anytype = 1,
	Bitstring = 2,
	BooleanType = 3,
	Charstring = 5,
	Component = 6,
	Enumerated = 7,
	Float = 8,
	Hexstring = 9,
	IntegerType = 10,
	Octetstring = 12,
	Record = 13,
	RecordOf = 14,
	Array = 15
	Set = 16,
	SetOf = 17,
	Union = 18,
	UniversalCharstring = 20,
	Verdict = 21,
	Default = 22,
	Port = 23,
	Timer = 24,
	Class = 25
}

Clause 12.4.7		Abstract class mapping
This clause is to be added.
The IDL type Class is mapped to the following interface:
// TCI IDL Type
package org.etsi.ttcn.tci;
public interface ITciClass : ITciType {
	ITciObjectInstance Create (ITriComponentId c, ITciParameterList tciPars);
	ITciClass[]	Superclasses { get; }
	String[]	FieldNames { get };
	String[]	MethodNames { get; }
	ITciParameterTypeList ConstructorParmeters { get; }
	ITciParameterTypeList GetMethodParameters (String methodName);
	ITciType	GetFieldType (String name);
	ITciType	GetMethodReturnType (String methodName);
}

Methods:
Create	Calls the constructor to create a new instance of this class using the supplied parameters for the specified component.
Superclasses	Returns the list of superclass of the current.
FieldNames	Returns the names of all public fields defined in the class.
MethodNames	Returns the names of all public methods of the class.
ConstructorParmeters	Returns formal parameters of the class constructor.
GetMethodParameters	Returns formal parameters of the specified public method.
GetFieldType	Returns the type of the specified public field.
GetMethodReturnType	Returns the return type of specified public method or the distinct value null if no return value is defined.
Clause 12.4.8		ClassSeq mapping
This clause is to be added.
The ClassSeq abstract data type is mapped to ITciClass[].
Clause 12.4.4.16		ObjectInstance
This clause is to be added.
The IDL type ObjectInstance is mapped to the following interface:
public interface ITciObjectInstance : ITciValue {
	ITciComponentId Owner { get; }
	String 			Id { get; }
	void 			SetObject (ITciObjectInstance source);
	ITciValue		GetField (String fieldName);
	ITciValue		CallMethod (String methodName, ITciParameterList tciPars);
}

Methods:
Owner	Returns the component that owns the object instance.
Id	Returns the unique identifier of the object instance.
SetObject	The operation sets the referenced object.
GetField	Returns the value of the referenced public field.
CallMethod	Calls a method of the object instance.
Clause 12.5.4.1	TCI-TL provided
The ITciTLProvided interface is to be extended:
public interface ITciTLProvided {
…
	void TliObjCreateEnter(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj,
 ITciParameterList tciPars);
	void TliObjCreateLeave(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj,
 ITciParameterList tciPars);
	void TliObjFinallyEnter(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj);
	void TliObjFinallyLeave(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj);
	void TliObjMethodEnter(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj, string methodName,
 ITciParameterList tciPars);
	void TliObjMethodLeave(string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj, string methodName,
 ITciParameterList tciPars,
		ITciValue returnValue);
	void TliObjVar (string am, System.DateTime ts, string src, int line,
		ITriComponentId c, IQualifiedName className, ITciObjectInstance obj, string name,
 ITciValue value);
}

[bookmark: _Toc39053616]8	XTRI Extensions for the Package (optional)
[bookmark: _Toc39053617]8.1	Changes to clause 5.6.3 of ETSI ES 201 873-5 Miscellaneous operations
Clause 5.6.3.4	triExternalCreate xtriExternalCreate
	Signature
	TriStatusType xtriExternalCreate(
in TriClassIdType classId,
inout TciParameterListType parameterList,
out TriObjHandleType createdObject)

	In Parameters
	classId	identifier of the external class

	Out Parameters
	createdObject	handle to the created object

	InOutParameters
	parameterList	a list of encoded parameters for the indicated constructor. The parameters in parameterList are ordered as they appear in the TTCN‑3 constructor declaration.

	Return Value
	The return status of the xtriExternalCreate operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it invokes a constructor specified in a class which is defined as external in TTCN‑3.
In the invocation of a triExternalCreate operation by the TE all in and inout constructor parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non‑null.

	Effect
	The PA shall implement the behaviour for each external class specified in the TTCN‑3 ATS. On invocation of this operation, the PA shall invoke the constructor of a class indicated by the identifier classId. It shall access the specified in and inout constructor parameters in parameterList, create a new external object instance using the values of these parameters, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out constructor parameters and a handle to the created external object.
The xtriExternalCreate operation returns TRI_OK if the PA completes the constructor of the external class successfully, TRI_Error otherwise. In the latter case, the distinct value null shall be returned as the object handle.
Note that whereas most of other TRI operations are considered to be non‑blocking, the xtriExternalCreate operation is considered to be blocking. That means that the operation shall not return before the construction of the external object has been finished. External constructors have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

Clause 5.6.3.6	triExternalMethod xtriExternalMethod
	Signature
	TriStatusType xtriExternalMethod(
in TriObjHandleType handle,
in String methodName,
inout TciParameterListType parameterList,
out TciParameterType returnValue)

	In Parameters
	handle	handle of the affected object; null for static methods
methodName	name of the called method

	Out Parameters
	returnValue	(optional) encoded return value

	InOutParameters
	parameterList	a list of encoded parameters for the indicated method. The parameters in parameterList are ordered as they appear in the TTCN‑3 method declaration.

	Return Value
	The return status of the xtriExternalMethod operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it invokes a method specified in a class which is defined as external in TTCN‑3.
In the invocation of a xtriExternalMethod operation by the TE all in and inout parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non‑null.

	Effect
	The PA shall implement the behaviour for each method of all external classes specified in the TTCN‑3 ATS. On invocation of this operation, the PA shall call a method methodName of an external object whose handle is in the handle paramer. It shall access the specified in and inout method parameters in parameterList, pass the values of these parameters to the called method, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out method parameters and the encoded return value.
If no return type has been defined for this method in the TTCN‑3 ATS, the distinct value null shall be used for the latter.
The xtriExternalMethod operation returns TRI_OK if the PA completes the method of the external object successfully, TRI_Error otherwise.
Note that whereas most of other TRI operations are considered to be non‑blocking, the xtriExternalMethod operation is considered to be blocking. That means that the operation shall not return before the method call has been finished. Methods of external classes have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

Clause 5.6.3.7	triRaiseException xtriRaiseException
	Signature
	void xtriRaiseException(in Value exc)

	In Parameters
	exc	encoded exception to raise

	Constraints
	This operation can be called by the PA during execution of triExternalFunction, triExternalCreate, triExternalFinally or triExternalMethod.

	Effect
	The operation raises an exception that can be later processed by the TE in the catch statement. The exception is provided in an enoded form. Decoding is performed in the catch statement.

[bookmark: _Toc39053618]8.2	Extensions to clause 6 of ETSI ES 201 873-5 JavaTM language mapping
Clause 6.5.3.1	Changes to TriPlatformPA
This clause is to be extended.
// TriPlatform
// TE ‑> PA
package org.etsi.ttcn.tri;
public interface xTriPlatformPA {
	…

	// Ref: TRI‑Definition 5.6.3.4
	public TriStatus triExternalCreate(TriClassIdType classId,
	 TciParameterList parameterList, TriObjHandleWrapper handle);

	// Ref: TRI‑Definition 5.6.3.6
	public TriStatus xtriExternalMethod(Object handle, String methodName,
	 TciParameterList parameterList, TciParameter returnValue);
}
Clause 6.5.3.1 	Changes to TriPlatformPA
This clause is to be extended.
// TriPlatform
// PA ‑> TE
package org.etsi.ttcn.tri;
public interface xTriPlatformTE {
	…

	// Ref: TRI-Definition 5.6.3.7
	public void triRaiseException(Value exc);
}

[bookmark: _Toc39053619]8.3	Extensions to clause 7 of ETSI ES 201 873-5 ANSI C language mapping
Clause 7.2.4	TRI operation mapping
This clause is to be extended.
	IDL Representation
	ANSI C Representation

	…
	

	TriStatusType xtriExternalCreate (in TriClassIdType classId, inout TciParameterListType parameterList, out TriObjHandleType createdObject)
	TriStatus xtriExternalCreate
 (const TriClassId* classId,
 TciParameterList* parameterList,
 TriObjectHandle* handle)

	TriStatusType xtriExternalMethod(in TriObjHandleType handle, in String methodName, inout TciParameterListType parameterList, out TciParameterType returnValue)
	TriStatus xtriExternalFunction
 (TriClassId handle, char* methodName,
 TciParameterList* parameterList,
 TciParameter* returnValue)

	void xtriRaiseException(in Value exc)
	void xtriRaiseException(const Value* exc)

[bookmark: _Toc39053620]8.4	Extensions to clause 8 of ETSI ES 201 873-5 C++ language mapping
Clause 8.6.3	TriPlatformPA
This clause is to be extended.
class xTriPlatformPA {
public:
	…
	
	//For each constructor on an external class specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus xtriExternalCreate (const TriClassId *classId, TciParameterList 	*parameterList, TriObjectHandle * handle)=0;
	//For each method on an external class specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus xtriExternalMethod (TriObjectHandle handle, const Tstring & methodName, 	TciParameterList *parameterList, TciParameter *returnValue)=0;
}

Clause 8.6.4	TriPlatformTE
This clause is to be extended.
class xTriPlatformTE {
public:
	…

	//Raises an exception during execution of external code in PA
	virtual void xtriRaiseException (const TciValue *exc)=0;
}

[bookmark: _Toc39053621]8.5	Extensions to clause 9 of ETSI ES 201 873-5 C# language mapping
Clause 9.5.2.3	TriPlatformPA
This clause is to be extended.
public interface IXTriPlatformPA {
	…

	// Miscellaneous operations
	// Ref: TRI-Definition clause 5.6.3.4
	TriStatus XTriExternalCreate(ITriClassId classId,
		ITciParameterList parameterList, out object handle);

	// Ref: TRI-Definition clause 5.6.3.6
	TriStatus XTriExternalMethod(object handle, string methodName,
		ITciParameterList parameterList, ITciParameter returnValue);
}

Clause 9.5.2.4	TriPlatformTE
This clause is to be extended.
public interface IXTriPlatformTE {
	…

	// Ref: TRI Definition clause 5.6.3.7
	void XTriRaiseException(ITciValue exc);
}

[bookmark: _Toc39053622]Annex A (normative):
BNF and static semantics
[bookmark: _Toc39053623]A.1	Extensions to TTCN-3 terminals
The list of reserved terminals which are keywords in table A.3 in ETSI ES 201 873-1 [1] needs to be extended with class, finally, object and this. The extension of table A.3 in ETSI ES 201 873-1 [1], clause A.1.5.0 is shown below.
	action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
class
clear
complement
component
connect
const
continue
control
create

deactivate
decmatch
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external
	fail
false
finally
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc
	noblock
none
not
not4b
nowait
null

object
octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record

recursive
rem
repeat
reply
return
running
runs
	select
self
send
sender
set
setverdict
signature
start
stop
subset
superset
system

template
testcase
this
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

[bookmark: _Toc39053624]A.2	Modified TTCN-3 syntax BNF productions
This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language document ETSI ES 201 873-1 [1]. When using this package the BNF rules below replace the corresponding BNF rules in the TTCN-3 core language document. The rule numbers define the correspondence of BNF rules.
BNF changes in clause A.1.6.1.1	Type definitions
[bookmark: StructuredTypeDef]12.	StructuredTypeDef ::= RecordDef |
							UnionDef |
							SetDef |
							RecordOfDef |
							SetOfDef |
							EnumDef |
							PortDef |
							ComponentDef |
							ClassDef

[bookmark: ClassKeyword][bookmark: ThisOp][bookmark: SuperOp][bookmark: FinalModifier][bookmark: AbstractModifier][bookmark: FinallyKeyword][bookmark: ObjectType][bookmark: ClassMemberList][bookmark: ClassMember][bookmark: MemberVisibility]BNF changes in clause A.1.6.1.4	Function definitions
[bookmark: FunctionDef]158. FunctionDef ::= FunctionKeyword [DeterministicModifier | ControlModifier]
						IdentifierOrControl "(" [FunctionFormalParList] ")"
						[RunsOnSpec] [MtcSpec] [SystemSpec] [ReturnType] [ExceptionSpec]
						StatementBlock
[bookmark: FunctionRef]169. StatementBlock ::= BasicStatementBlock [CatchBlocks] [FinallyBlock]
176. FunctionRef ::= [(Identifier | ObjectInstance) Dot]
						(Identifier | PreDefFunctionIdentifier)

[bookmark: BasicStatementBlock][bookmark: CatchBlocks][bookmark: CatchBlock][bookmark: FinallyBlock][bookmark: ObjectInstance][bookmark: StatementBlock]BNF changes in clause A.1.6.1.6	Testcase definitions
[bookmark: TestcaseDef]185. TestcaseDef ::= TestcaseKeyword Identifier "(" [TemplateOrValueFormalParList] ")" ConfigSpec
						StatementBlock

BNF changes in clause A.1.6.1.7	Altstep definitions
[bookmark: AltstepDef]192. AltstepDef ::= AltstepKeyword [ControlModifier] [InterleaveKeyword]
					Identifier "(" [FunctionFormalParList] ")"
					[RunsOnSpec] [MtcSpec] [SystemSpec] [ExceptionSpec]
					"{" AltstepLocalDefList AltGuardList "}" [CatchBlocks] [FinallyBlock]

BNF changes in clause A.1.6.1.10	External function definitions
[bookmark: ExtFunctionDef]235. ExtFunctionDef ::= ExtKeyword FunctionKeyword [DeterministicModifier | ControlModifier]
						Identifier "(" [FunctionFormalParList] ")"
						[ReturnType] [ExceptionSpec]

BNF changes in clause A.1.6.3.1	Variable instantiation
[bookmark: TValueRef][bookmark: TVariableRef]261. ValueRef ::= [ThisOp Dot] Identifier [ExtendedFieldReference]

BNF changes in clause A.1.6.4.1	Component Operations
[bookmark: ConfigurationOps][bookmark: TCreateOp]267. CreateOp ::= Type Dot CreateKeyword [ActualParList]
 [AliveKeyword |
				 ExternalKeyword ActualParList]

BNF changes in clause A.1.6. 5	Type
[bookmark: TPredefinedType]400. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |
 TimerKeyword |
						ObjectKeyword

BNF changes in clause A.1.6.6	Value
[bookmark: TReferencedValue]433. ReferencedValue ::= ((ExtendedIdentifier | ThisOp) [ExtendedFieldReference])
 | ReferencedEnumValue

BNF changes in clause A.1.6.8.2	Behaviour statements
[bookmark: BehaviourStatements]479. BehaviourStatements ::= TestcaseInstance |
								FunctionInstance |
								ReturnStatement |
								AltConstruct |
								InterleavedConstruct |
								LabelStatement |
								GotoStatement |
								RepeatStatement |
								DeactivateStatement |
								AltstepInstance |
								ActivateOp |
								BreakStatement |
								ContinueStatement |
								RaiseExceptionStatement

[bookmark: RaiseExceptionStatement]BNF changes in A.1.6.8.3	Basic statements
[bookmark: RelOp]548. RelOp ::= "<" | ">" | ">=" | "<=" | OfKeyword

[bookmark: _Toc39053625]A.3	Additional TTCN-3 syntax BNF productions
This clause includes all additional BNF productions that needed to define the syntax introduced by this package. All rules start with the digits "0330".
Additional BNF rules related to clause A.1.6.1.1	Type definitions
[bookmark: TClassDef]033001. ClassDef ::= [ExtKeyword] ClassKeyword [FinalModifier | AbstractModifier]
					Identifier [ExtendsKeyword ClassType] [RunsOnSpec] [MtcSpec] [SystemSpec]
					"{" ClassMemberList "}"
					[FinallyKeyword BasicStatementBlock]
033002. ClassKeyword ::= "class"
[bookmark: TThisOp]033003. ThisOp ::= "this"
033004. SuperOp ::= "super"
033005. FinalModifier ::= "@final"
033006. AbstractModifier ::= "@abstract"
033007. FinallyKeyword ::= "finally"
033008. ObjectKeyword ::= "object"
[bookmark: TClassType]033008a. ClassType ::= ReferencedType | ObjectKeyword
/* STATIC SEMANTICS – ReferencedType shall evaluate to a class. */
033009. ClassMemberList ::= { ClassMember [WithStatement] [SemiColon] }
033010. ClassMember ::= [MemberVisibility]
						(VarInstance |
							TimerInstance |
							ClassConstDef |
							ClassTemplateDef |
							ClassFunctionDef |
							ConstructorDef |
 ClassDef)
033011. MemberVisibility ::= "public" | "private"
[bookmark: TClassFunctionDef]033012. ClassFunctionDef ::= [ExtKeyword] FunctionKeyword
							[FinalModifier | AbstractModifier] [DeterministicModifier]
							Identifier "(" [FunctionFormalParList] ")" [ReturnType]
							[StatementBlock]
[bookmark: TConstructorDef]033013. ConstructorDef ::= CreateKeyword
							"(" FunctionFormalParList ")"
 [ExternalKeyword "(" FunctionFormalParList ")"]
 [":" ReferencedType ActualParList]
							[StatementBlock]
/* STATIC SEMANTICS – ReferencedType shall evaluate to a class. */
[bookmark: TClassConstDef]033013a. ClassConstDef ::= ConstKeyword Type ClassConstList
[bookmark: TConstList][bookmark: TClassConstList]033013a ClassConstList ::= SingleClassConstDef {"," SingleClassConstDef}
[bookmark: TSingleConstDef][bookmark: TSingleClassConstDef]033013a SingleClassConstDef ::= Identifier [ArrayDef] [AssignmentChar ConstantExpression]
[bookmark: TClassTemplateDef]033013b. ClassTemplateDef ::= TemplateKeyword [TemplateRestriction]
 [FuzzyModifier [DeterministicModifier]]
 BaseTemplate [DerivedDef] [AssignmentChar BaseTemplateBody]

Additional BNF rules related to clause A.1.6.1.4	Function definitions
033014. BasicStatementBlock ::= "{" [FunctionDefList] [FunctionStatementList] "}"
033015. CatchBlocks ::= CatchBlock { CatchBlock }
033016. CatchBlock ::= CatchOpKeyword "(" Type Identifier ")" BasicStatementBlock
033017. FinallyBlock ::= FinallyKeyword BasicStatementBlock
033018. ObjectInstance ::= (ThisOp | ValueRef | FunctionInstance) [ExtendedFieldReference]

Additional BNF rules related to clause A.1.6.8.2	Behaviour statements
033019. RaiseExceptionStatement ::= RaiseKeyword TemplateInstance
/* STATIC SEMANTICS - The TemplateInstance shall evaluate to an explicit value. */

[bookmark: _Toc39053626]Annex B (normative):
Standard Collections
[bookmark: _Toc39053627]B.1	The TTCN3_standard_collections module
[bookmark: _Toc39053628]B.1.0	General
The classes and external functions defined in this module provide users with the following commonly used data structures.
module TTCN3_standard_collections {

function instanceEqual(object element1, object element2) return boolean {
 return element1 == element2
}
public external function createLinkedList(in equalsFunctionType equalsFunction := instanceEqual) return LinkedList;
public external function createQueue(in equalsFunctionType equalsFunction := instanceEqual)
return Queue;
public external function createPriorityQueue(in comparatorFunctionType comparatorFunction)
return PriorityQueue;
public external function createStack(in equalsFunctionType equalsFunction := instanceEqual)
return Stack;
public external function createRingBuffer(in integer maxSize) return RingBuffer;
public external function createHashMap(in hashFunctionType hashFunction,
 in equalsFunctionType equalsFunction) return HashMap;
public external function createSet(in equalsFunctionType equalsFunction := instanceEqual)
return Set;

[bookmark: Exception]public type class @abstract Exception {
}
[bookmark: Iterator]type class @abstract Iterator {
 function @abstract hasNext() return boolean;
 function @abstract next() return object;
}
[bookmark: Collection]type class @abstract Collection {
 function size() return integer;
 function contains(object element) exception Exception return boolean;
 function @abstract iterator() return Iterator;
}
[bookmark: List]type class @abstract List extends Collection {
	public function @abstract add(object element) exception Exception;
	public function @abstract remove(object element) exception Exception return boolean;
public function @abstract get(integer index) exception Exception return object;
}
[bookmark: LinkedList]public type class @abstract LinkedList extends List {
 public function @abstract getFirst() exception Exception return object;
 public function @abstract getLast() exception Exception return object;
 public function @abstract removeFirst() exception Exception return object;
 public function @abstract removeLast() exception Exception return object;
 public function @abstract addFirst(object element) exception Exception;
 public function @abstract addLast(object element) exception Exception;
}
[bookmark: Queue]public type class @abstract Queue extends Collection {
 public function @abstract add(object element) exception Exception;
 public function @abstract remove() exception Exception return object;
}
public type function comparatorFunctionType(in object element1, in object element2) exception Exception return integer;
[bookmark: PriorityQueue]public type class @abstract PriorityQueue extends Queue {
}
[bookmark: Stack]public type class @abstract Stack extends Collection {
 public function @abstract push(object element) exception Exception;
 public function @abstract pop() exception Exception return object;
}

[bookmark: RingBuffer]public type class @abstract RingBuffer extends Collection {
 public function @abstract put(object element) exception Exception;
 public function @abstract get() exception Exception return object;
 public function @abstract capacity() return integer;
}
	
public type function hashFunctionType(in object element) exception Exception return integer;
public type function equalsFunctionType(in object element1, in object element2) exception Exception return boolean;

[bookmark: HashMap]public type class @abstract HashMap {
 public function @abstract put(object keyElement, object valueElement) exception Exception;
 public function @abstract get(object keyElement) exception Exception return object;
 public function @abstract containsKey(object keyElement) exception Exception return boolean;
 public function @abstract remove(object keyElement) exception Exception return object;
 public function @abstract keySet() return Set;
 public function @abstract values() return List;
 public function @abstract size() return integer;
}
[bookmark: Set]public type class @abstract Set extends Collection {
 public function @abstract add(object element) exception Exception return boolean;
 public function @abstract remove(object element) exception Exception;
}
}

[bookmark: _Toc39053629]B.1.1	The Collection class
The abstract Collection class represents a data structure that is a collection of elements. It is used as a base class of more specific collection data structures like lists and sets.
External function and class methods:
· size
Returns the number of elements stored in the LinkedList.
· contains
Returns the value true if the given element is contained at least once in the collection.
· iterator
Returns an Iterator object for iterating over the elements of the collection.
[bookmark: _Toc39053630]B.1.2	The List class
The abstract List class represents a list of elements where each contained element has an index (starting from 0).
External function and class methods:
· add
Adds the given element to the list.
· remove
Tries to remove one instance of the provided element from the List.
Returns true if an element was removed, false if no elements were removed.
Please note, that a List might contain the same element several times, in which case only one instance will be removed.
· get
Gets the element at the given index from the list, if the index in in the range (0 .. size()-1).
[bookmark: _Toc39053631]B.1.3	The LinkedList class
The abstract LinkedList class represents a double linked data structure for storing objects.
A new Instance can be created via the external function createLinkedList. It is derived from the abstract List class.
External function and class methods:
· createLinkedList
Factory function for creating a new LinkedList instance.

· getFirst
Returns the first element of the LinkedList if it is not empty.
Raises an exception if the LinkedList is empty.

· getLast
Returns the last element of the LinkedList if it is not empty.
Raises an exception if the LinkedList is empty.

· removeFirst
Removes and returns the first element of the LinkedList if it is not empty.
Raises an exception if the LinkedList is empty.

· removeLast
Removes and returns the last element of the LinkedList if it is not empty.
Raises an exception if the LinkedList is empty.

· addFirst
Adds a new element as the first element of the LinkedList if this is possible.
Raises an exception in case of error, for example: running out of memory.

· addLast
Adds a new element as the last element of the LinkedList if this is possible.
Raises an exception in case of error, for example: running out of memory.

· iterator
Returns an iterator over the elements of this LinkedList.
The elements are iterated from first to last.

· size
Returns the number of elements stored in the LinkedList.
[bookmark: _Toc39053632]B.1.4	The Queue class
The abstract Queue class represents a queue data structure for storing objects. This data structure uses a First In First Out semantics, meaning that the element added first will also be the element removed first. It is derived from the abstract class Collection.
A new Instance can be created via the external function createQueue.
External function and class methods:
· createQueue
Factory function for creating a new Queue instance.

· add
Adds an element to the end Queue if this is possible.
Raises an exception in case of error, for example: running out of memory.

· remove
Removes and returns the first element of the Queue if it is not empty.
Raises an exception if the Queue is empty.

· size
Returns the number of elements stored in the Queue.
[bookmark: _Toc39053633]B.1.5	The PriorityQueue class
The abstract PriorityQueue class represents a priority queue data structure for storing objects. This data structure stores its elements ordered according to the comparator function. This data structure does not allow null elements.
A new Instance can be created via the external function createPriorityQueue. It is derived from the class Queue.
External function and class methods:
· createPriorityQueue
Factory function for creating a new PriorityQueue instance.

· comparatorFunctionType
Used to compare the 2 provided elements for their ordering.
Returns a negative integer if the element1 is less than element2.
Returns 0 if the element1 is equivalent to element2.
Return a positive integer if element1 is greater than element2.
Functions of this type can also raise an exception, for example if the object received as one of their actual parameters is not of the expected class.

· add
Adds an element to the PriorityQueue if this is possible. The element will be added before all elements that are greater than the element and after all elements that are smaller than or equal to the element. Thereby it is ensured that always the smallest element first added to the queue is at the head of the queue.
Raises an exception in case of error, for example: running out of memory or adding a null object.

· remove
Removes and returns the head element of the PriorityQueue if it is not empty. The head element has the lowest priority among the elements of the PriorityQueue.
Raises an exception if the PriorityQueue is empty.

· size
Returns the number of elements stored in the PriorityQueue.
[bookmark: _Toc39053634]B.1.6	The Stack class
The abstract Stack class represents a stack data structure for storing objects. This data structure uses a Last In First Out semantics, meaning that the element added last will also be the element removed first.
A new Instance can be created via the external function createStack.
External function and class methods:
· createStack
Factory function for creating a new Stack instance.

· push
Pushes an element onto the Stack if this is possible.
Raises an exception in case of error, for example: running out of memory.

· pop
Removes and returns the element inserted last from the Stack if it is not empty.
Raises an exception if the Stack is empty.

· size
Returns the number of elements stored in the Stack.
[bookmark: _Toc39053635]B.1.7	The RingBuffer class
The abstract RingBuffer class represents a ringbuffer data structure for storing objects. This data structure uses a First In First Out semantics, with a fixed size limit. This means that the element added first will also be the element removed first. An instance of this collection can only accept elements to the maximum amount it is created for.
A new Instance can be created via the external function createRingBuffer.
External function and class methods:
· createRingBuffer
Factory function for creating a new RingBuffer instance, with the provided maximum size.

· put
Adds an element to the end of the RingBuffer if this is possible.
Raises an exception in case of error, for example: reching the maximum allowed size of the buffer.

· get
Removes and returns the first element of the RingBuffer if it is not empty.
Raises an exception if the RingBuffer is empty.

· size
Returns the number of elements stored in the RingBuffer.

· capacity
Returns the maximum capacity of the RingBuffer.
[bookmark: _Toc39053636]B.1.8	The HashMap class
The abstract HashMap class represents a hashmap data structure for storing key-value pairs of objects. This collection can be indexed with the keyElement part of the pair, to receive the valueElement of the pair.
Pleae note that each key has to be unique according to the given equalsFunction.
A new Instance can be created via the external function createHashMap.
The hash value of the keyElement object can be calculated using the provided hashFunctionType function and the equality of two given keyElements can be determined using the provided equalsFunctionType function.
External function and class methods:
· createHashMap
Factory function for creating a new HashMap instance, that will use the provided hashFunction for calculating the hash values of the key element objects and an equalsFunction for determinining the equality of keys. The two functions need to fulfil the property that for all pairs of objects o1, o2, if equalsFunction(o1,o2) is true then also hashFunction(o1)==hashFunction(o2) is true.

· hashFunctionType
A behaviour type allowing the user of the collection to provide their implementation for calculating the hash value of their key element objects.
Functions of this type will be called with a key element object as their only parameter and shall return an integer value that represents the hash value of the object.
Functions of this type can also raise an exception, for example if the object received as their actual parameter is not of the expected class.

· equalsFunctionType
A behaviour type allowing the user of the collection to provide their implementation with an equality relation between key objects insofar that different object instances of the same content can be seen as equal which allows to ensure the uniqueness property for the keys as there can be no two different key instances k1, k2 where equalsFunction(k1.k2) is true.

· put
Adds a new keyElement – valueElement pair to the HashMap.
If the HashMap already contains a pair with the same keyELement, the old pair is removed before inserting the new pair.
Raises an exception in case of error, for example: running out of memory.

· get
Returns the valueElement part of a keyElement – valueElement pair in the HashMap, if such a pair with the provided keyElement object exists in the HashMap.
Raises an exception if the HashMap has no keyElement – valueElement pair with the provided keyElement.

· containsKey
Returns true if the HashMap contains a keyElement – valueElement pair with the provided keyElement, false otherwise.
Raises an exception in case of error, for example the hashFunction raised an exception.

· remove
Removes a keyElement – valueElement and returns the valueElement part of a keyElement – valueElement pair in the HashMap, if such a pair with the provided keyElement object exists in the HashMap.
Raises an exception in case of error, for example the hashFunction raised an exception.

· keyset
Returns a Set object containing a set of the keyElements of all the keyElement – valueElement pairs in the HashMap.

· values
Returns a List object containing the valueElement objects of all the keyElement – valueElement pairs in the HashMap.

· size
Returns the number of pairs stored in the HashMap.
[bookmark: _Toc39053637]B.1.9	The Set class
The abstract Set class represents a set data structure for storing objects. This data structure is unordered and contains unique elements.
A new Instance can be created via the external function createSet.
External function and class methods:
· createSet
Factory function for creating a new Set instance. It may be passed an equalsFunction to determine equality and ensure uniqueness of the contained set elements. Per default, instance equality is used.

· add
Adds an element to the Set if this is possible.
Returns true if the element could be added, returns false if the element was already present in the set and so was not added (to ensure uniqueness).
Raises an exception in case of error, for example: running out of memory.

· remove
Removes the provided element from the Set if it is present in the set.
Returns true if the element was located in the Set, false otherwise.
Subclasses might raise an exception.

· contains
Returns true if the Set contains the element, false otherwise.
Subclasses might raise an exception.

· iterator
Returns an iterator over the elements of this Set.
The elements are not iterated in any particular order.

· size
Returns the number of elements stored in the Queue.
[bookmark: _Toc39053638]B.1.10	The Exception class
The abstract Exception class represents a generic exception that can be raised by standard collections.
Please note, that later the list of raised exception can be updated with more specific exceptions.
[bookmark: _Toc39053639]B.1.11	The Iterator class
The abstract Iterator class represents an iterator over a collection. An instance of the Iterator class allows to iterate over the elements of a collection.

Class methods:
· hasNext
Returns true if the iterated collection still has elements not yet visited by the iterator.

· next
Returns the next element in the collection and steps the iterator for the upcoming collection.
Raises an exception if the collection has no more elements not yet visited.

[bookmark: _Toc39053640]History
	Document history

	V1.1.1
	January 2019
	Publication

	V1.2.1
	February 2020
	Membership Approval Procedure	MV 20200428:	2020-02-28 to 2020-04-28

	V1.2.1
	May 2020
	Publication

	
	
	

	
	
	

ETSI
image1.jpeg

