ETSI ES 201 873-1 V4.12.1 (2020-05)
2

ETSI ES 201 873-1 V4.12.1 (2020-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN‑3 Core Language

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-201873-1V4.12.1
Keywords
language, methodology, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
[bookmark: _Hlk532286936]The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

[bookmark: _Toc39058559]3	Definition of terms, symbols and abbreviations
[bookmark: clause_Definitions][bookmark: _Toc39058560]3.1	Terms
For the purposes of the present document, the terms given in Recommendation ITU‑T X.290 [5], Recommendation ITU‑T X.292 [3] and the following apply:
actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked entity (function, test case, altstep, etc.) as defined at the place of invoking
assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the elements to which a value is assigned are identified explicitly within a pair of curly brackets ("{" and "}") by the field names or the positions of the elements
basic types: set of predefined TTCN‑3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE:	Basic types are referenced by their names.
behaviour definition: dynamic test behaviour, which is either a testcase, a function, or an altstep definition
communication port: abstract mechanism facilitating communication between test components
NOTE:	A communication port is modelled as a FIFO queue in the receiving direction. Ports can be message‑based or procedure-based.
compatible type: TTCN‑3 is not strongly typed but the language does require type compatibility
NOTE:	Variables, constants, templates, etc. have compatible types if conditions in clause 6.2.15 are met.
completely initialized: value or template is completely initialized if it is not uninitialized and, if its type is a structured type, all its required parts are completely initialized
NOTE 1:	Additionally, templates are completely initialized if they are assigned a matching mechanism all parts of which are completely initialized. If a value or template is completely initialized, it fulfils the requirement of being "at least partially initialized".
NOTE 2:	A value or template of a simple, component or default type is completely initialized if anything but the unchanged symbol "-" has been assigned to it.
A value or template of a union or anytype type is completely initialized if one of its variants has been completely initialized.
A value or template of a record or set type with only optional fields and the optional "implicit omit" attribute attached, is completely initialized if the value "{}" is assigned, as all fields are implicitly set to omit.
A value or template of a record or set type with no fields is completely initialized with assignment of the value "{}".
A value or template of a record of, set of or array type is completely initialized if at least the first n elements are completely initialized, where n is the minimal length imposed by the type length restriction or array definition. Thus in case of n equals 0, the assignment of the value "{}" also completely initializes such a record of, set of or array.
component constant: constant defined in a component type
component data types: collection of all data types, component types and structured types whose sub-elements are component data types
component port: port defined in a component type
component template: template defined in a component type
component timer: timer defined in a component type
component variable: variable defined in a component type
control behaviour: collection of module control functions with the name control and functions and altsteps called by control directly or through other control functions or altsteps, and are used for the dynamic execution of test cases
NOTE:	Such functions and altsteps are called control functions and control altsteps respectively. Module control functions can be used as an entry point of executing a test suite. Declaring functions or altsteps with the modifier @control explicitly allows to distinguish them from test case behaviour definitions in their special role. Module control functions and behaviour definitions with the @control modifier are called explicit control behaviour definitions, i.e explicit control functions and explicit control altsteps.
data types: all types whose values or sub-elements cannot contain object references
NOTE:	Data types include simple basic types, basic string types, and the special data type anytype. Data types also include all structured types where all their sub-elements are of a data type. All user defined types based on a data type are data types as well. See more details in table 3 of the present document.
defined types (defined TTCN‑3 types): set of all predefined TTCN‑3 types (basic types, all structured types, the type anytype, the address, port and component types and the default type) and all user-defined types declared either in the module or imported from other TTCN‑3 modules
deterministic function: function that for the same input in the in and inout parameters always yields the same output both for the return result as well as the inout and out parameters
NOTE 1:	A non-deterministic function is one that is not deterministic.
NOTE 2:	In general, it cannot be decided if a function is deterministic or not. However, a function can be specified to be deterministic, i.e. the function is supposed to be deterministic. In this case, a violation of the determinism can be detected and handled accordingly. The handling however is tool-specific.
dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events
EXAMPLE:	The value of the actual parameter is a value received during runtime or depends on a received value by a logical relation.
exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it cannot answer a remote procedure call with the normal expected response
formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an entity (function, test case, altstep, etc.) but at the time of invoking it
NOTE:	Actual values or templates (or their names) to be used at the place of formal parameters are passed from the place of invoking the entity (see also the definition of actual parameter).
fuzzy value or template: value or template instance that is declared to be fuzzy and consequently the expression, initializing or partly initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation
NOTE:	During execution, this expression is re-evaluated each time when the fuzzy object is referenced, except when at the left hand side of an assignment or passing it to a fuzzy or lazy formal parameters. The result of this (re)evaluation is used as the actual value or template of the fuzzy instance. When new content is assigned to a fuzzy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation again.
global visibility: attribute of an entity (module parameter, constant, template, etc.) whose identifier can be referenced anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same module
Implementation Conformance Statement (ICS): See Recommendation ITU‑T X.290 [5].
Implementation eXtra Information for Testing (IXIT): See Recommendation ITU‑T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU‑T X.290 [5].
in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the formal parameter when the parameterized object is invoked, but the value of the formal parameter is not passed back to the actual parameter when the invoked object completes
NOTE 1:	In in parameterization, parameters are passed by value.
NOTE 2:	The arguments are evaluated before the parameterized object is entered.
NOTE 3:	Only the values of the arguments are passed and changes to the arguments within the invoked object have no effect on the arguments as seen by the invoking object.
index notation: notation to access individual elements of record of, set of, array and string values or templates, where the element to be accessed is identified explicitly by an index value enclosed in square brackets ("[" and "]") which specifies the position of that element within the referenced value or template and the index value is either an integer value, array of integers or record of integers
NOTE:	Integer values used for indexing (either directly or as elements of the record of or array values) always lie within the index range of the type of the referenced value or template. Except for those arrays which are defined with an explicit index range, the index range always has 0 as the index for the first element.
initialization: value or template, or a value or template field is initialized when a content is first assigned to it
NOTE:	The assignment may be explicit at the declaration of the given object, in which case the same restrictions apply as for the right-hand side of the assignment operation, or at first use on the left-hand side of an assignment, or may be implicit. Implicit initialization occurs when a yet uninitialized object is passed as actual parameter to an out formal parameter of a directly called testcase, function or altstep returns with a non-uninitialized value or template that is assigned to the actual parameter; or when module parameters not initialized in the TTCN-3 code get their runtime values before test suite execution.
inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is currently represented by the actual parameter
NOTE 1:	The invoked object uses the actual parameter directly, so that all changes made in the formal parameter become immediately effective on the actual parameter. If the same actual parameter is passed to two distinct formal parameters, a change in one formal parameter becomes immediately effective in the other one (and in the actual parameter).
NOTE 2:	Inout parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules, e.g. altsteps activated as defaults.
known types: set of all TTCN‑3 predefined types, types defined in a TTCN‑3 module and types imported into that module from other TTCN‑3 modules or from non-TTCN‑3 modules
lazy evaluation: evaluation of an expression, delayed during execution until the value or template instance, to which the result of the evaluation should have been assigned or passed to as actual parameter, is first referenced at another place than the left hand side of an assignment or an actual parameter passed to a fuzzy or lazy formal parameter
NOTE:	During execution, this delayed evaluation is carried out at the first actual reference, even when the result is to be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at the time of the evaluation are to be used (not the actual values at the time of the assignment or parameter passing). This implies that components of the expression may be uninitialized at the time, when execution reaches the assignment or parameter passing, but may be initialized by the time of the evaluation that can lead to successful evaluation. If, by the time of the evaluation, execution has left the scope unit, in which one or more components of the expression is defined, the actual values of the component(s) at the time of leaving the scope unit are to be stored for the purpose of the delayed evaluation (but only for that, i.e. the values are not accessible for the user).
lazy value or template: value or template instance for which the expression, initializing or partly initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation
NOTE:	When, during execution, the delayed (lazy) evaluation is taking place, its result is stored in the lazy value or template and the lazy instance is used further on like ordinary values and templates, until the next use of the lazy variable or parameter on the left hand side of an assignment. When a new content is assigned to a lazy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation again. If, during execution, no expression referencing the lazy object is evaluated, the lazy value or template instance is never evaluated.
left hand side (of assignment): value or template variable identifier or a field name of a structured type value or template variable (including array index if any), which stands left to an assignment symbol (:=)
NOTE:	A constant, module parameter, timer, structured type field name or a template header (including template type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a modified template definitions are out of the scope of this definition as not being part of an assignment.
local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the function, test case or altstep where it is defined
Main Control Component (MCC): The main control component is the component that is started when executing a testsuite by running a control function. The control function is the behaviour being executed by the MCC.
Main Test Component (MTC): See Recommendation ITU‑T X.292 [3].
object: instance of one of the object types (component, default, port and timer)
NOTE:	Objects of type default, port or timer, which are owned by the component that instantiated them, are local objects while objects of type component are global objects. Global objects can be referenced from other component scopes while references to local objects can only be used by the component they are bound to.
object reference: special kind of value used for instances of component, default, port and timer types which represents a reference to an existing entity in the TE
NOTE:	When used in assignments or parameter passing, only the reference to the entity is copied, but not the entity itself. An object reference can also be initialized with the special value null in which case it does not reference an object.
out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to the formal parameter when the parameterized object is invoked, but the content of the formal parameter is passed back to the actual parameter when the invoked object completes, if the formal parameter has been initialized during the invocation and the actual parameter is the reference evaluated at the time of the invocation
NOTE 1:	In out parameterization, parameters are passed by value.
NOTE 2:	Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules, e.g. altsteps activated as defaults.
NOTE 3:	Formal an out parameters are uninitialized (unbound) when the invoked object is entered.
Parallel Control Component (PCC): A parallel control component is a component created inside control behaviour, but not inside testcase behaviour. PCCs can be created either by the main control component or by other PCCs.
Parallel Test Component (PTC): See Recommendation ITU‑T X.292 [3].
partially initialized: value or template is partially initialized if initialization has taken place on it or to at least one of its fields or elements
NOTE:	A template variable is initialized if a matching mechanism has been assigned to it or to at least one of its fields or elements, directly or indirectly via expansion (see clause 15.6). A template is initialized if a matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).
passing by reference: ability to link an actual parameter with a formal parameter of a function, altstep or test case and to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy of the data content is made and the actual and formal parameters share the same data content
passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to a formal or actual parameter, i.e. the actual and formal parameters do not share the same data content
NOTE:	When passing object references by value, a new reference is created, but the referenced entity remains the same.
qualified name: TTCN-3 elements can be identified unambiguously by qualified names
NOTE:	For modules, the qualified name is the <module name>. For global definitions such as testcases, functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name is <module name>.control. For local definitions, such as variables, local templates, etc. within a global definition, the qualified name is <module name>.<global definition name>.<local definition name>.
right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to an assignment symbol (:=)
NOTE:	Expressions and template references standing right of an assignment symbol (:=) in constant, module parameter, timer, template or modified template declarations are out of the scope of this definition as not being part of an assignment.
root type: root types of types derived from TTCN-3 basic types are the respective basic types
NOTE 1:	The root type of user defined record types is record, the root type of user defined record of and array types is record of, the root type of user defined set types is set, the root type of user defined set of types is set of. The root type of user defined union types is union and the root type of anytypes is anytype. The root types of special configuration types are default or component, respectively. Port types do not have a root type.
NOTE 2:	As address is more a predefined type name than a distinct type with its own properties, the root type of an address type and all of its derivatives are the same as the root type was, if the type was defined with a name different from address.
static parameterization: form of parameterization, in which actual parameters are independent of runtime events; i.e. known at compile time or in case of module parameters are known by the start of the test suite execution
NOTE 1:	A static parameter is to be known from the test suite specification, (including imported definitions), or the test system is aware of its value before execution time.
NOTE 2:	All types are known at compile time, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See Recommendation ITU‑T X.290 [5].
template: TTCN-3 data objects are values or templates by definition. A TTCN‑3 template identifies a subset of the values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the matching mechanism omit
NOTE:	Templates are defined by global and local templates, template variable definitions, or formal template parameters. Any of those are templates from the point of view of their usage, irrespective of their actual content; for example, a template variable containing a specific value is a template.
template parameterization: ability to pass a template as an actual parameter into a parameterized object via a template parameter
NOTE 1:	This actual template parameter is added to the specification of that object and may complete it.
NOTE 2:	Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).
test behaviour: (or behaviour) test case, function or altstep started on a test component when executing an execute or a start component statement and all functions and altsteps called recursively
NOTE:	During a test case execution each test component has its own behaviour and hence several test behaviours may run concurrently in the test system (i.e. a test case can be seen as a collection of test behaviour).
test case: See Recommendation ITU‑T X.290 [5].
test case error: See Recommendation ITU‑T X.290 [5].
test suite: set of TTCN‑3 modules that contains a completely defined set of test cases, optionally supplemented with one or more TTCN‑3 control functions
test system: See Recommendation ITU‑T X.290 [5].
test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN‑3 test system to those offered by the SUT
type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values of another type
EXAMPLE:	At assignments, as actual parameters at calling a function, referencing a template, etc. or as a return value of a function.
type context: "In the context of a type" means that at least one object involved in the given TTCN-3 action (an assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously
NOTE:	Either directly (e.g. an in-line template) or by means of a typed TTCN-3 object (e.g. via a constant, variable, formal parameter, etc.).
uninitialized: value or template is uninitialized as long as no initialization of it or at least one of its parts has occurred
unqualified name: unqualified name of a TTCN-3 element is its name without any qualification
user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE:	User-defined types are referenced by their identifiers (names).
value: TTCN-3 data objects are values or templates by definition. A TTCN‑3 value is an instance of its type
NOTE:	Values are defined by module parameters, constants, value variables, or formal value parameters. Any of those are value objects from the point of view of their usage. A template containing only specific value matching - though referring to a single instance of its type - is not a value object, but is a template object.
value list notation: notation that can be used for record, set, record of and set of values, where the values of the subsequent fields or elements are listed within a pair of curly brackets ("{" and "}"), without an explicit identification of the field name or element position
value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE:	Values may be constants or variables.
value parameterization: ability to pass a value as an actual parameter into a parameterized object via a value parameter
NOTE:	This actual value parameter is added to the specification of that object and may complete it.

[bookmark: clause_ConfigOps][bookmark: _Toc39058788]21	Configuration Operations
[bookmark: _Toc39058789]21.0	General
Configuration operations are used to set up and control test components and their connections as well as control components and their connections. They are summarized in table 20.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
1. These operations shall only be used in:
TTCN‑3 test cases;
behaviour invoked directly or indirectly from a test case or from behaviour started on a ptc.
They shall not be present in:
control behaviour;
declarations inside component type definitions; or
functions invoked directly or indirectly from declarations inside component type definitions.
[bookmark: tab_Config_Oper]Table 20: Overview of TTCN‑3 configuration operations
	Operation
	Explanation
	Syntax Examples

	Connection Operations

	connect
	Connects the port of one test component to the port of another test component
	connect(ptc1:p1, ptc2:p2);

	disconnect
	Disconnects two or more connected ports
	disconnect(ptc1:p1, ptc2:p2);

	map
	Maps the port of one test component to the port of the test system interface
	map(ptc1:q, system:sutPort1);

	unmap
	Unmaps two or more mapped ports
	unmap(ptc1:q, system:sutPort1);

	Test Component Operations

	create
	Creation of a normal or alive test component, the distinction between normal and alive test components is made during creation
(MTC behaves as a normal test component)
	Non-alive test components:
var PTCType c := PTCType.create;
Alive test components:
var PTCType c := PTCType.create alive;

	start
	Starting test behaviour on a test component, starting behaviour does not affect the status of component variables, timers or ports
	c.start(PTCBehaviour());

	stop
	Stopping test behaviour on a test component
	c.stop;

	kill
	Causes a test component to cease to exist
	c.kill;

	alive
	Returns true if the test component has been created and is ready to execute or is already executing behaviour; otherwise returns false
	if (c.alive) …

	running
	Returns true as long as the test component is executing behaviour; otherwise returns false
	if (c.running) …

	done
	Checks whether the function behaviour running on a test component has terminated
	c.done;

	killed
	Checks whether a test component has ceased to exist
	c.killed { … }

	Test Case Operations

	stop
	Terminates the test case with the test verdict error
	testcase.stop (…);

	Reference Operations

	mtc
	Gets the reference to the MTC
	connect(mtc:p, ptc:p);

	system
	Gets the reference to the test system interface
	map(c:p, system:sutPort);

	self
	Gets the reference to the test component that executes this operation
	self.stop;

[bookmark: clause_ConfigOps_ConnectionOps][bookmark: _Toc39058790]21.1	Connection Operations
[bookmark: _Toc39058791]21.1.0	General
The ports of a test component can be connected to ports of other components or to the ports of the test system interface (see figure 10). In the case of connections between two test components or two control components, the connect operation shall be used. When connecting a test component or control component port to a test system interface port the map operation shall be used. The connect operation directly connects one port to another with the in side connected to the out side and vice versa. The map operation on the other hand can be seen purely as a name translation defining how communications streams can be referenced.

[bookmark: fig_ConnectAndMap]Figure 10: Illustration of the connect and map operations
[bookmark: clause_ConfigOps_ConnectMap][bookmark: _Toc39058792]21.1.1	The Connect and Map operations
The connect operation is used to setup connections between non-system test components. The map operation are used to setup connections to the SUT.
Syntactical Structure
connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"

map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"
		[param "(" [{ ActualPar [","] }+] ")"]

Semantic Description
With both the connect operation and the map operation, the ports to be connected are identified by the component references of the components to be connected and the names of the ports to be connected.
The operation mtc identifies the MTC, the operation system identifies the test system interface and the operation self identifies the test component in which self has been called (see clause 6.2.11). All these operations can be used for identifying and connecting ports.
Both the connect and map operations shall be only invoked from places specified in 21.0.. Before either operation is called, the components to be connected shall have been created and their component references shall be known together with the names of the relevant ports.
Applying a map or connect operation to ports which are already mapped or connected has no effect on the test behaviour or test configuration, i.e. test execution continues as if the operation has not been invoked.
NOTE 1:	Please note that also triMap or tciConnect respectively will not be invoked in such a case.
The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param clause of the port type declaration of the system port used.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a)	For both the connect and map operations, only consistent connections are allowed.
	Assuming the following:
1)	ports PORT1 and PORT2 are the ports to be connected or mapped;
2)	inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3)	outlist-PORT1defines the messages or procedures of the out-direction of PORT1;
4)	inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5)	outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b)	The connect operation is allowed if and only if:
1)	outlist-PORT1 inlist-PORT2 and outlist-PORT2 inlist-PORT1; and
2)	neither PORT1 nor PORT2 are system port references; and
3)	atleast one of outlist-PORT1 or outlist-PORT2 is not empty.
c)	The map operation is allowed if and only if:
1)	PORT1 is a component port reference and PORT2 is a system port reference; and
2)	outlist‑PORT1 outlist-PORT2 and inlist-PORT2 inlist-PORT1; and
3)	at least one of outlist-PORT1 or inlist-PORT2 is not empty.
NOTE 2:	Please note that PORT1 and PORT2 can occur in any order, thus the system adapter port can be either the first or the second operand of the map operation.
d)	In all other cases, the operations shall not be allowed.
e)	Since TTCN‑3 allows dynamic configurations and addresses, not all of these consistency checks can be made statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and shall lead to a test case error when failing.
f)	In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.
g)	In map operations, param clauses are optional. If in a map operation a param clause is present, exactly one of the components referenced by the operation shall be the system component reference, the type of the system component shall be known in the context of the operation either via a system clause or via a runs on clause in a testcase without system clause, the type of the system port to which the operation is applied shall include a map param declaration, and the actual parameters shall conform to the map param clause of the port type declaration of the system port used.
h)	If the type of the component referenced in a connection operation is known (either when the component reference is a variable or value returned from a function or the type is defined in the runs on, mtc or system clause of the calling function), the referenced port declaration shall be present in this component type.
Examples
EXAMPLE 1:	Simple map and connect:
	// It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
	// in the corresponding port type and component type definitions
	 :
	var MyComponentType v_myNewPTC;
	v_myNewPTC := MyComponentType.create;
	 :
	connect(v_myNewPTC:port1, mtc:port3);
	map(v_myNewPTC:port2, system:pCO1);
	 :
	// In this example a new component of type MyComponentType is created and its reference stored
	// in variable v_myNewPTC. Afterwards in the connect operation, port1 of this new component
	// is connected with port3 of the MTC. By means of the map operation, port2 of the new component
	// is then connected to port pCO1 of the test system interface
	

EXAMPLE 2:	Parameterized map:
	 :
	var MyConfigType v_myConfig := { option := 1, lock := false};
	 :
	map(mtc:port4, system:pCO2) param (v_myConfig);
	 :
	// In this example by means of the map operation, port4 of the MTC is connected to the port pCO2
	// of the test system interface, and additionally a parameter containing configuration options
	// for the connection is passed.

EXAMPLE 3:	Port visibility:
	type port P message { inout integer; }
	type component C1 { port P p1; }
	type component C2 { port P p1, p2; }

	testcase TC runs on C1 system C1
	{
	 var C1 v_ptc := C2.create; // valid assignment, instance of C2 is compatible with C1 type
	 connect (self:p1, v_ptc:p1); // valid, p1 is present in C1 type definition
	 disconnect (self:p1, v_ptc:p1);
	 connect (self:p1, v_ptc:p2); // invalid, although the real instance in v_ptc is of the
	 // C2 type, the variable itself is of the C1 type making the p2 port invisible to the
	 // connection operation
	 connect (v_ptc:p1, system:p1); // invalid, connect parameters shall not contain
	 // a system port reference
	}

[bookmark: _Toc39058793]21.1.2	The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map.
Syntactical Structure
disconnect [("(" ComponentRef ":" Port "," ComponentRef ":" Port ")") |
 ("(" PortRef ")") |
 ("(" ComponentRef ":" all port ")") |
 ("(" all component ":" all port ")")]

unmap [("(" ComponentRef ":" Port "," ComponentRef ":" Port ")"
 [param "(" [{ ActualPar [","] }+] ")"]) |
 ("(" PortRef ")" [param "(" [{ ActualPar [","] }+] ")"]) |
 ("(" ComponentRef ":" all port ")") |
 ("(" all component ":" all port ")")]

Semantic Description
The disconnect and unmap operations perform the disconnection (of previously connected) ports of non-system test components and the unmapping of (previously mapped) ports of test non-system components and ports in the test system interface.
Both, the disconnect and unmap operations can be called from any component if the relevant component references together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the connection or mapping to be removed has been created beforehand.
To ease disconnect and unmap operations related to all connections and mappings of a component or a port, it is allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of the connections to be disconnected or unmapped. The all port keyword can be used to denote all ports of a component.
The usage of a disconnect or unmap operation without any parameters is a shorthand form for using the operation with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.
The all component keyword shall only be used in combination with the all port keyword, i.e. all component:all port, and shall only be used by the MTC. Furthermore, the all component:all port argument shall be used as the one and only argument of a disconnect or unmap operation and it allows to release all connections and mappings of the test configuration.
Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system port used. It allows to pass values needed for dynamic runtime configuration.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a)	In an unmap operation, a param clause shall only be present if the system port to which the param clause belongs to is explicitly referenced.
b)	In unmap operations, param clauses are optional. If in an unmap operation a param clause is present, exactly one of the components referenced by the operation shall be the system component reference, the type of the system component shall be known in the context of the operation either via a system clause or via a runs on clause in a testcase without system clause, the type of the system port to which the operation is applied shall include an unmap param declaration and the actual parameters shall conform to the unmap param clause of the port type declaration of the system port used.
c)	If the type of the component referenced in a connection operation is known (either when the component reference is a variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling function), the referenced port declaration shall be present in this component type.
d)	The disconnect operation parameters shall not contain a system port reference.
Examples
EXAMPLE 1:	Disconnect/unmap for specific connections:
	connect(myNewComponent:port1, mtc:port3);
	map(myNewComponent:port2, system:pCO1);
	 :
	disconnect(myNewComponent:port1, mtc:port3);	// disconnect previously made connection
	unmap(myNewComponent:port2, system:pCO1);		// unmap previously made mapping

EXAMPLE 2:	Disconnect/unmap for a component:
	disconnect(myNewComponent:port1);				// disconnects all connections of Port1, which
													// is owned by component myNewComponent.
	unmap(myNewComponent:all port);					// unmaps all ports of component myNewComponent

EXAMPLE 3:	Disconnect/unmap for "self":
	disconnect;										// is a shorthand form for …
	disconnect(self:all port);						// which disconnects all ports of the component
													// that called the operation
	 :
	unmap;											// is a shorthand form for …
	unmap(self:all port);							// which unmaps all ports of the component
													// that called the operation

EXAMPLE 4:	Disconnect/unmap for "all component":
	disconnect(all component:all port);				// the MTC disconnects all ports of all
													// components in the test configuration.
	 :
	unmap(all component:all port);					// the MTC unmaps all ports of all
													// components in the test configuration.

[bookmark: _Toc39058794]21.2	Test case operations
[bookmark: _Toc39058795]21.2.0	General
Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.
[bookmark: clause_ConfigOps_TestCase_Stop][bookmark: _Toc39058796]21.2.1	Test case stop operation
The testcase stop operation defines a user defined immediate termination of a test case with the test verdict error and an (optional) associated reason for the termination. Such an immediate stop of a test case is required for cases where a user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leads to a situation where the continuation of the test case makes no more sense.
Syntactical Structure
testcase "." stop ["(" { (FreeText | TemplateInstance) [","] } ")"]

Semantic Description
The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict error. In addition, the test case stop operation provides the means to specify the reason for the immediate termination of a test case by writing one or more items to some logging device associated with the test control or the test component in which the operation is used. Items to be logged shall be identified by a comma‑separated list in the argument of the test case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of the log statement (see clause 19.11).
Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16.
Examples
	testcase.stop("Unexpected Termination");
	// The test case stops the an error verdict and the string "Unexpected Termination"
	// is written to some log device of the test system

[bookmark: _Toc39058797]21.3	Test Component Operations
[bookmark: _Toc39058798]21.3.0	General
CTest component operations are used to create, start, stop and kill test test or control components. They can also be used to check if test components are alive or , running, or react to them being done or killed.
[bookmark: _Toc39058799]21.3.1	The Create operation
The create operation is used to create test components inside testcase behavior and control components inside control behavior.
Syntactical Structure
ComponentType "." create ["(" Expression ["," Expression] ")"] [alive]

Semantic Description
The MTC is the only test component, which is automatically created when a test case starts. All other test components (the PTCs) shall be created explicitly during test execution by create operations. Likewise, the main control component (MCC) is the only control component which is created automatically when starting the main control function. All other parallel control components (the PCCs) are created explicitly during control execution by create operations. A component is created with its full set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a port is defined to be of the type in or inout it shall be in a listening state ready to receive traffic over the connection.
All component variables and timers are reset to their initial value (if any) and all component constants are reset to their assigned values when the component is explicitly or implicitly created.
Two types of parallel componentPTCs are distinguished: a componentPTC that can execute a behaviour only once and a componentPTC that is kept alive after termination of a behaviour and can be therefore reused to execute another behaviour. The latter is created using the additional alive keyword. An alive-type componentPTC shall be destroyed explicitly using the kill operation (see clause 21.3.4), whereas a non-alive componentPTC is destroyed implicitly after its behaviour terminates. Termination of a test case, i.e. the MTC, terminates all PTCs that still exist, if any. Termination of the main control behavior terminates all PCCs that still exist.
Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall completely create its required configuration of components and connections when it is invoked. Likewise, the main control component shall create its required configuration of parallel control components and connections.
The create operation shall return the unique component reference of the newly created instance. The unique reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting instances and for communication purposes such as sending and receiving.
Optionally, a name can be associated with the newly created component instance. The test system shall associate the names 'MTC' to the MTC and 'SYSTEM' to the test system interface automatically at creation. Associated component names are not required to be unique.
The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the component instance (the component reference shall be used for this purpose) and has no effect on matching.
Also optionally, a host id can be associated with the newly created component instance. If a host id is provided, the create operation shall cause a test case error, if the component cannot be deployed on the specified host.
Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic configurations (i.e. any component can create any other parallel componentPTC). The visibility of component references shall follow the same scope rules as that of variables and in order to reference components outside their scope of creation the component reference shall be passed as a parameter or as a field in a message.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a)	The name given by the first Expression shall be a charstring value and when assigned it shall appear as the first argument of the create function.
b)	The host id given by the second Expression shall be a charstring value and, when assigned, it shall appear as the second argument of the create function.
Examples
	// This example declares variables of type MyComponentType, which is used to store the
	// references of newly created component instances of type MyComponentType which is the
	// result of the create operations. An associated name is allocated to some of the created
	// component instances.
	 :
	var MyComponentType v_myNewComponent;
	var MyComponentType v_myNewestComponent;
	var MyComponentType v_myAliveComponent;
	var MyComponentType v_myAnotherAliveComponent;
 var MyComponentType v_myDeployedComponent;
	 :
	v_myNewComponent := MyComponentType.create;
	v_myNewestComponent := MyComponentType.create("Newest");
	v_myAliveComponent := MyComponentType.create alive;
	v_myAnotherAliveComponent := MyComponentType.create("Another Alive") alive;
 v_myDeployedComponent := MyComponentType.create(-, "Host4");

[bookmark: clause_ConfigOps_TCOps_Start][bookmark: _Toc39058800]21.3.2	The Start test component operation
The start operation is used to associate a test behaviour to a test component, which is then being executed by that test component.
Syntactical Structure
ObjectReference "." start "(" (FunctionInstance | AltstepInstance) ")"

Semantic Description
Once a PTC component has been created and connected, behaviour has to be bound to this PTC component and the execution of its behaviour has to be started. This is done by using the start operation (as PTC component creation does not start execution of the component behaviour). The reason for the distinction between create and start is to allow connection operations to be done before actually running the test component.
The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to an already defined function or altstep.
An alive-type PTC component may perform several behaviours in sequential order. Starting a second behaviour on a non-alive PTC component or starting a behaviour on a PTC component that is still running results in a test case error. If a behaviour is started on an alive-type PTC component after termination of a previous behaviour, it uses variable values, timers, ports, and the local verdict as they were left after termination of the previous behaviour. In particular, if a timer was started in the previous behaviour, the subsequent behaviour should be enabled to handle a possible timeout event. In contrast to that, all active defaults are deactivated when the behaviour of an alive-type PTC component is stopped. This means no default is activated when a new behaviour is started on an alive-type PTCcomponent.
NOTE 1:	The lifetime of variables and timers is bound to the scope in which they are declared. When an alive-type component is stopped, only the component scope is left. This means only variable values and timers declared in the component type definition of an alive-type PTC component can be accessed by a behaviour with a corresponding runs on-clause that is started on an alive-type PTCcomponent.
Actual inout parameters will be passed to the function by value, i.e. like in-parameters.
If the function's formal parameter list includes any out parameter the actual parameter list may omit actual out parameters using the dash symbol ("-") or be omitted in the same manner as for actual in parameters with default values (see clause 5.4.2), i.e. they can be omitted in the list notation if all following actual parameters are also omitted and their assignment can be omitted altogether in assignment notation. If a variable is given as an actual out parameter, it will remain unchanged by the started behaviour, even if the behaviour changes the formal parameter during its execution.
Possible return values of a function invoked in a start test component operation, i.e. templates denoted by return keyword or inout and out parameters, have no effect when the started test component terminates.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The ObjectReference shall be of component type and shall not resolve to a template.
1. The function or altstep invoked in a start test component operation shall have a runs on definition referencing a component type that is compatible with the newly created component (see clause 6.3.2.7).
All formal parameters of the function or altstep invoked in a start test component operation shall be of a component data type.
When used from inside a control behaviour the started behavior must also be a control behaviour.
NOTE 2:	As in and inout ports starts listening when the component is created, at the moment, when it starts execution there may be messages in the incoming queues of such ports already waiting to be processed.
Examples
	function f_myFirstBehaviour() runs on MyComponentType { … }
	function f_mySecondBehaviour() runs on MyComponentType { … }
	function f_myThirdBehaviour(out integer p_p1, inout integer p_p2) runs on MyComponentType { … }
	altstep a_myFourthBehaviour() runs on MyComponentType { ... }
	:
	var MyComponentType v_myNewPTC;
	var MyComponentType v_myAlivePTC;
	var integer v_int := 0;
	:
	v_myNewPTC := MyComponentType.create;			// Creation of a new non-alive test component.
	v_myAlivePTC := MyComponentType.create alive;	// Creation of a new alive-type test component
	:
	v_myNewPTC.start(f_myFirstBehaviour());		// Start of the non-alive component.
	v_myNewPTC.done;							// Wait for termination
	v_myNewPTC.start(f_mySecondBehaviour());	// Test case error
	:
	v_myAlivePTC.start(f_myFirstBehaviour());	// Start of the alive-type component
	v_myAlivePTC.done;							// Wait for termination
	v_myAlivePTC.start(f_mySecondBehaviour());	// Start of the next function on the same component
	:
	v_myAlivePTC.start(f_myThirdBehaviour(-,v_int));	// v_int will not be changed by the function
	v_myAlivePTC.done;
	v_myAlivePTC.start(a_myFourthBehaviour());		// Direct start of an altstep behaviour<>

[bookmark: clause_ConfigOps_TCOps_Stop][bookmark: _Toc39058801]21.3.3	The Stop test behaviourcomponent operation
The stop test behaviourcomponent operation is used to stop the execution of a test component by itself or by another test component.
Syntactical Structure
stop |
((ObjectReference | mtc | self) "." stop) |
(all component "." stop)

Semantic Description
By using the stop test component statement a test component can stop the execution of its own currently running test behaviour or the execution of the test behaviour running on another test component. If a component does not stop its own behaviour, but the behaviour running on another test component in the test system, the component to be stopped has to be identified by using its component reference. A component can stop its own behaviour by using a simple stop execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the self operation.
NOTE 1:	While the create, start, running, done and killed operations can be used for PTC(s) and PCCs only, the stop operation can also be applied to the MTC.
Stopping a test component is the explicit form of terminating the execution of the currently running behaviour. A test component behaviour terminates also by completing its execution upon reaching the end of the test behaviour that is started on this component or by an explicit return statement. This termination is also called implicit stop. The implicit stop has the same effects as an explicit stop, i.e.for PTCs the global verdict is updated with the local verdict of the stopped test component (see clause 24).
If the stopped test component is the MTC, resources of all existing PTCs shall be released, the PTCs shall be removed from the test system and the test case shall terminate (see clause 26.1). When a control component is stopped while it is executing a testcase, the MTC of that testcase is stopped.
Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the test component shall be released.
Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist and can execute new behaviour (started on it using the start operation). Stopping an alive-type component means that all variables, timers and ports declared in the component type definition of the alive-type component keep their value, contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent state after stopping its behaviour.
For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if the component is stopped during re-starting an already running timer, the timer shall be left in the running state after termination of the behaviour.
The all keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself. The all component construct can also be used by the master control component to stop all running parallel control components but itself.
NOTE 2:	A PTC can stop the test case execution by stopping the MTC.
NOTE 3:	The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The ObjectReference shall be of component type and shall not resolve to a template.
Examples
EXAMPLE 1:	Stopping another test component and a test component by itself
	var MyComponentType v_myComp := MyComponentType.create;	// A new test component is created
	v_myComp.start(f_compBehaviour());							// The new component is started
	:
	if (v_date == "1.1.2005") {
		v_myComp.stop;					// The component "v_myComp" is stopped
	}

	:
	if (v_a < v_b) {
		 :
		self.stop;		// The test component that is currently executing stops its own behaviour
	}
	:
	stop			// The test component stops its own behaviour

EXAMPLE 2:	Stopping all PTCs by the MTC
	all component.stop		// The MTC stops all PTCs of the test case but not itself.

[bookmark: clause_ConfigOps_TCOps_Kill][bookmark: _Toc39058802]21.3.4	The Kill test component operation
The kill test component operation is used to destroy a test component by itself or by another test component. Kill and stop on a non-alive component have the same results, while they differ for alive components: stopping an alive components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the test component.
Syntactical Structure
kill |
((ObjectReference | mtc | self) "." kill) |
(all component "." kill)

Semantic Description
The kill operation applied on a test component stops the execution of the currently running behaviour - if any - of that component and frees all resources associated to it (including all port connections of the killed component) and removes the component from the test system. The kill operation can be applied on the current test component itself by a simple kill statement or by addressing itself using the self operation in conjunction with the kill operation. The kill operation can also be applied to another test component. In this case the component to be killed shall be addressed using its component reference. If the kill operation is applied on the MTC, e.g. mtc.kill, it terminates the test case. If the kill operation is applied to a control component while it is executing a testcase, the mtc of that testcase will be stopped.
The all keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself. The all component construct can also be used by the main control component to stop and kill all running parallel control components but itself.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and 21 and shown in table 16, the following restrictions apply:
1. The ObjectReference shall be of component type and shall not resolve to a template.
Examples
EXAMPLE 1:	Killing another test component and a test component by itself
	var PTCType v_myAliveComp := PTCType.create alive;	// Create an alive-type test component
	v_myAliveComp.start(f_myFirstBehaviour());			// The new component is started
	v_myAliveComp.done;									// Wait for termination
	v_myAliveComp.start(f_mySecondBehavior());			// Start the component a 2nd time
	v_myAliveComp.done;									// Wait for termination
	v_myAliveComp.kill;									// Free its resources

EXAMPLE 2:	Killing all PTCs by the MTC
	all component.kill;		// The MTC stops all (alive-type and normal) PTCs of the test case first
	// and frees their resources.

[bookmark: _Toc39058803]21.3.5	The Alive operation
The alive operation is a Boolean operation that checks whether a test component has been created and is ready to execute or is executing already a behaviour.
Syntactical Structure
(ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." alive
["->" @index value ValueRef]

Semantic Description
Applied on a normal parallel test component, the alive operation returns true if the component is inactive or running a behaviour and false otherwise. Applied on an alive-type parallel test component, the operation returns true if the component is inactive, running or stopped. It returns false if the component has been killed. Applied on the mtc of the main control component the operation returns true.
The alive operation can be used similar to the running operation (see clause 21.3.6). In particular, in combination with the all keyword it returns true if all (alive-type or normal) PTCs are alive inside a testcase behaviour or if all parallel control components are alive in a control behaviour.
The alive operation used in combination with the any keyword returns true if at least one PTC is alive in a testcase behaviour or at least one PCC is alive in a control behaviour.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for being inactive or running a function from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found being inactive or running a behaviour causes the alive operation to return the true value. The index of the first component found alive can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer array or record of integer variable for multi‑dimensional component arrays.
When used from a control behaviour, the all and any component contructs are only in reference to created parallel control components and do not include the test components of test cases these control components are executing.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The ObjectReference shall be of component type and shall not resolve to a template.
1. [bookmark: text_SizeRestruction2StoreSingleDimArray]The ComponentArrayRef shall be a reference to a completely initialized component array.
1. The index redirection shall only be used when the operation is used on an any from component array construct.
1. If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
1. [bookmark: text_SizeRestruction2StoreMultiDimArray]If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
1. If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the alive operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the alive operation.
Examples
	pTC1.done;								// Waits for termination of the component
	if (pTC1.alive) {						// If the component is still alive …
		pTC1.start(f_anotherFunction());	// … execute another function on it.

[bookmark: clause_ConfigOps_TCOps_Running][bookmark: _Toc39058804]21.3.6	The Running operation
The running operation is a Boolean operation that checks whether a test component is already executing already a behaviour.
Syntactical Structure
(ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." running
["->" @index value ValueRef]

Semantic Description
The running operation allows behaviour executing on a test component to ascertain whether behaviour running on a different test component has completed. The running operation returns true for the mtc, the main control component and PTCs parallel componets that have been started but not yet terminated or stopped. It returns false otherwise. The running operation is considered to be a boolean expression and, thus, returns a boolean value to indicate whether the specified test component (or all test components) has terminated. In contrast to the done operation, the running operation can be used freely in boolean expressions.
When the all keyword is used with the running operation inside a testcase behaviour, it will return true if all PTCs started but not stopped explicitly by another component are executing their behaviour. When it is used inside a control behaviour, it will return true if all PCCs started but not stopped explicitly by another component are executing their behaviour. Otherwise it returns false.
NOTE:	The difference between the running operation applied to a single ptc and the usage of the all keyword leads to the situation that ptc.running is false if the ptc has never been started but all component.running is true at the same time as it considers only those components that ever have been started.
When the any keyword is used with the running operation inside a testcase behaviour, it will return true if at least one PTC is executing its behaviour. When used inside a control behaviour, it will return true if at least one PCC is executing its behaviour. Otherwise it returns false.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for executing currently from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found executing causes the running operation to succeed. The index of the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-dimensional component arrays.
When used from a control behaviour, the all and any component contructs are only in reference to created parallel control components and do not include the test components of test cases these control components are executing.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The ObjectReference shall be of component type and shall not resolve to a template.
1. The ComponentArrayRef shall be a reference to a completely initialized component array.
1. The index redirection shall only be used when the operation is used on an any from component array construct.
1. If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
1. If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
1. If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the running operation. Later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the running operation.
Examples
	if (pTC1.running) 						// usage of running in an if statement
	{
		// do something!
	}

	while (all component.running != true) {	// usage of running in a loop condition
		f_mySpecialFunction()
	}

[bookmark: clause_ConfigOps_TCOps_Done][bookmark: _Toc39058805]21.3.7	The Done operation
The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a different test component has completed. In addition, the done operation allows to retrieve the final local verdict of completed test components, i.e., the value of the local verdict at the time of test component completion.
Syntactical Structure
[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." done
["->" [value ValueRef] [@index value ValueRef]]

Semantic Description
The done operation shall be used in the same manner as a receiving operation or a timeout operation. This means it shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for an alt statement with the done operation as the only alternative. If the @nodefault modifier is placed before a stand-alone done operation, the implicit alt statement also contains the @nodefault modifier.
When the done operation is applied to a PTCcomponent, it matches only if the behaviour of that PTC component has been stopped (implicitly or explicitly) or the PTC component has been killed. Otherwise, the match is unsuccessful.
NOTE 1:	The execution of a done operation does not change the state of the test component. Consecutive done operations applied to the same test component will give the same result as long as the test component does not change its state (see clause F.1.2).
When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and stored in a variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the name of the variable into which the verdict is stored.
When the all keyword is used with the done operation inside a testcase behaviour, it matches if no one PTC is executing its behaviour. It also matches if no PTC has been created. When the all keyword is used with the done operation inside a control behaviour, it matches if no one PCC is executing its behaviour. It also matches if no PCC has been created.
NOTE 2:	The difference between the done operation applied to a single ptc and the usage of the all keyword leads to the situation that ptc.done does not match if the ptc has never been started but all component.done matches at the same time as it considers only those components that ever have been started.
When the any keyword is used with the done operation inside a testcase behaviour, it matches if at least the behaviour of one PTC has been stopped or killed. If used inside a control behaviour, it matches if at least the behaviour of one PCC has been stopped or killed. Otherwise, the match is unsuccessful.
NOTE 3:	Stopping the behaviour of a non-alive component also results in removing that component from the test system, while stopping an alive-type component leaves the component alive in the test system. In both cases the done operation matches.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-dimensional component arrays.
When used from a control behaviour, the all and any component contructs are only in reference to created parallel control components and do not include the test components of test cases these control components are executing.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a) The done operation can be used for PTCs only.
b) The ObjectReference followed by the done keyword, i.e. used for identifying a specific PTC, shall be of a component type and shall not resolve to a template.
c) The ComponentArrayRef shall be a reference to a completely initialized component array.
d) The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the type verdicttype.
e) The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with all component or any component.
f) The index redirection shall only be used when the operation is used on an any from component array construct.
g) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
h) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
i) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the done operation.
j) The @nodefault modifier is allowed only in stand-alone done statements.
k) The verdict value redirect shall not be used inside control behaviour.
Examples
	// Use of done in alternatives
	alt {
		[]	myPTC.done {
				setverdict(pass)
			}

		[]	any port.receive {
				repeat
			}
	}

	var MyComp v_c := MyComp.create alive;
	v_c.start(f_myPTCBehaviour());
	:
	v_c.done;
		// matches as soon as the function f_myPTCBehaviour (or function/altstep called by it) stops
	v_c.done;
		// matches again, even if the component has not been started again
	if(v_c.running) {v_c.done}
		// in case that some other component has started v_c in the meantime
		// done here matches the end of the next behaviour only, not the previous one

	// the following done as stand-alone statement:
	@nodefault all component.done;

	// has the following meaning:
	alt @nodefault {
		[]	all component.done {}
	}
	// and thus, blocks the execution until all parallel test components have terminated while
	// ignoring all activated default alternatives

	// Retrieving and using the final local verdict of a completed PTC
	var MyComp v_myPTC := MyPTC.create alive;
	var verdicttype v_myPTCverdict := none;
	v_myPTC.start(f_myPTCBehaviour());
	:
	alt {
		[]	v_myPTC.done -> value v_myPTCverdict {
				if (v_myPTCverdict == fail) {
					setverdict(fail);
					stop;
				}
				else {
					setverdict (pass);
				}
			}

		[]	any port.receive {
				repeat
			}
	}

[bookmark: _Toc39058806]21.3.8	The Killed operation
The killed operation allows to ascertain whether a different test component is alive or has been removed from the test system. In addition, the killed operation allows to retrieve the final local verdict of killed test components, i.e., the value of the local verdict at the time when the test component was killed.
Syntactical Structure
[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." killed
 ["->" [value ValueRef] [@index value ValueRef]]

Semantic Description
The killed operation shall be used in the same manner as receiving operations. This means it shall not be used in boolean expressions, but it can be used to determine an alternative in an alt statement or as a stand-alone statement in a behaviour description. In the latter case a killed operation is considered to be a shorthand for an alt statement with the killed operation as the only alternative. If the @nodefault modifier is placed before a stand-alone killed operation, the implicit alt statement also contains the @nodefault modifier.
NOTE 1:	When checking normal test components a killed operation matches if it stopped (implicitly or explicitly) the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done operation (see clause 21.3.7). When checking alive-type test components, however, the killed operation matches only if the component has been killed using the kill operation. Otherwise the killed operation is unsuccessful.
NOTE 2:	The execution of a killed operation does not change the state of the test component. Consecutive killed operations applied to the same test component will give the same result as long as the test component does not change its state (see clause F.1.2).
When the all keyword is used with the killed operation inside testcase behaviour, it matches if all PTCs of the test case have ceased to exist. It also matches if no PTC has been created. When the all keyword is used with the killed operation inside control behaviour, it matches if all PCCs have ceased to exist. It also matches if no PCC has been created.
When the killed operation is applied to a PTC and matches, the final local verdict of that PTC can be retrieved and stored in a variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the name of the variable into which the verdict is stored.
When the any keyword is used with the killed operation, it matches if at least one PTC ceased to exist. Otherwise, the match is unsuccessful.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for being killed from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer array or record of integer variable for multi-dimensional component arrays.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The killed operation can be used for PTCs only.
1. The ObjectReference followed by the killed keyword, i.e. used for identifying a specific PTC, shall be of a component type and shall not resolve to a template.
1. The ComponentArrayRef shall be a reference to a completely initialized component array.
1. The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the type verdicttype.
1. The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with all component or any component.
1. The index redirection shall only be used when the operation is used on an any from component array construct.
1. If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
1. If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
1. If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the killed operation i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the killed operation.
1. The @nodefault modifier is allowed only in stand-alone killed statements.
1. The verdict value redirect shall not be used inside control behaviour.
Examples
	var MyPTCType v_ptc := MyPTCType.create alive;	// create an alive-type test component
	timer t_T:= 10.0;								// create a timer
	t_T.start;										// start the timer
	v_ptc.start(f_myTestBehavior());				// start executing a function on the PTC
	alt {
	[] v_ptc.killed {								// if the PTC was killed during execution …
		t_T.stop;									// … stop the timer and …
		setverdict(inconc);							// … set the verdict to 'inconclusive'
	 }
	[] v_ptc.done {									// if the PTC terminated regularly …
		t_T.stop;									// … stop the timer and …
		v_ptc.start(f_anotherFunction());			// … start another function on the PTC
	 }
	[] t_T.timeout {								// if the timeout occurs before the PTC stopped
		v_ptc.kill;									// … kill the PTC and …
		setverdict(fail);							// … set the verdict to 'fail'
	 }
	}

	// Retrieving and using the final local verdict of a killed PTC
	var MyComp v_myPTC := MyPTC.create alive;
	var verdicttype v_myPTCverdict := none;
	v_myPTC.start(f_myPTCBehaviour());
	:
	alt {
		[]	v_myPTC.done {							// expected termination
					setverdict (pass);
				}
			}
		[]	v_myPTC.killed -> value v_myPTCverdict {
				if (v_MyPTCverdict == none) {		// v_myPTC killed before verdict assignment
					setverdict(fail);
					stop;
				}
				else {
					setverdict (inconc);			// further analysis is needed
					stop;
				}
			}
		[]	any port.receive {
				repeat
			}
	}

[bookmark: _Toc39058807]21.3.9	Summary of the use of any and all with components
The keywords any and all may be used with configuration operations as indicated in table 21.
[bookmark: tab_AnyAltComponents]Table 21: Any and All with components
	Operation
	Allowed
	Example
	Comment

	
	any (see note)
	all (see note)
	
	

	create
	
	
	
	

	start
	
	
	
	

	running
	Yes but from MTC or MCC only
	Yes but from MTC or MCC only
	any component.running;

all component.running;
	Is there any PTC parallel component performing test behaviour?
Are all PTCs parallel components performing test behaviour?

	alive
	Yes but from MTC or MCC only
	Yes but from MTC or MCC only
	any component.alive;
all component.alive;
	Is there any alive PTCparallel component?
Are all PTCs parallel components alive?

	done
	Yes but from MTC or MCC only
	Yes but from MTC or MCC only
	any component.done;

all component.done;
	Is there any PTC parallel component that completed execution?
Did all PTCs parallel components complete their execution?

	killed
	Yes but from MTC or MCC only
	Yes but from MTC or MCC only
	any component.killed;

all component.killed;
	Is there any PTC parallel component that ceased to exist?
Did all PTCs parallel components cease to exist?

	stop
	
	Yes but from MTC or MCC only
	all component.stop;
	Stop the behaviour on all PTCsparallel components.

	kill
	
	Yes but from MTC or MCC only
	all component.kill;
	Kill all PTCsparallel components, i.e. they cease to exist.

	NOTE:	any and all refer to PTCs parallel components only, i.e. the MTC/MCC is not considered.

[bookmark: _Toc39058808]21.3.10	The Call test component behaviour operation
The call operation is used start a test behaviour on a test component and wait until that behaviour has terminated.
Syntactical Structure
ObjectReference "." call "(" (FunctionInstance | AltstepInstance)
["," SimpleExpression] ")"
["->" [value Ref] [verdict Ref]]
[catch "(" timeout ")" StatementBlock]
[catch "(" stop ")" StatementBlock]

Semantic Description
Similar to the start operation on test components which is not blocking, the blocking call operation implicitly uses a start operation, but waits until either the started behaviour has terminated or some timeout has occurred.
A timeout duration in seconds can be given explicitly in the form of a SimpleExpression as an additional parameter to the call operation. If no timeout duration is given, an infinite timeout duration is used.
The actions taken by the call operation are dependent on whether the execution of the started behaviour is complete or incomplete. Complete execution occurs when the started function is terminated by executing a return statement or if it reaches the end of the function body. If the started behaviour is terminated for any other reason, the execution is incomplete.
If the incomplete execution occurs because the called component was stopped or killed and a catch stop clause is added to the call operation, the StatementBlock of that clause is executed before the call operation terminates.
If the started behaviour does not terminate in the given timeout duration and a catch timout clause is added to the call operation, the called component is implicitly stopped and the StatementBlock of the catch timeout clause is executed before the call operation terminates.
In all other cases when the execution is incomplete, the call operation ends with a test case error.
After complete execution of the started behaviour, the out and inout actual parameters given to the actual parameter list of the called function or altstep instance will be updated in the same manner as if it was a normal function/altstep invocation.
Additionally, a redirect clause can be added to the operation which allows assignment of the return result (in case that the called function has a return clause) to a variable via the value clause and also the assignment of the termination verdict of the called component via the verdict clause.
In all cases of incomplete execution, the variables referenced in the value and verdict clause or in out and inout actual parameters will stay unchanged and no assignment will be made.
If the called component is not created alive and has already been started or called once or if it has been killed, additional call operations are not allowed.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a) The ObjectReference shall be of a component type.
b) The function or altstep invoked in a call test component operation shall have a runs on definition referencing a component type to which the called component is compatible (see clause 6.3.2.7).
c) All formal parameters of the function or altstep invoked in a call test component operation shall be of a component data type.
d) The return value of the function invoked from a call test component operation shall be of a component data type.
e) The optional SimpleExpression representing the timer value shall be of a float type.
f) The optional catch timeout clause may be present only if the timeout value has been defined.
g) The variable in the value clause shall be compatible with the return value of the invoked function.
h) The variable in the verdict clause shall be of type verdicttype.
Examples
	function f_myFirstBehaviour() runs on MyComponentType { … }
	function f_mySecondBehaviour() runs on MyComponentType { … }
	function f_myThirdBehaviour(out integer p_p1, inout integer p_p2)
	runs on MyComponentType
	return integer { … }
	altstep a_myFourthBehaviour() runs on MyComponentType { ... }
	:
	var MyComponentType v_myNewPTC;
	var MyComponentType v_myAlivePTC;
	var integer v_out, v_inout := 0, v_result;
	:
	v_myNewPTC := MyComponentType.create;			// Creation of a new non-alive test component.
	v_myAlivePTC := MyComponentType.create alive;	// Creation of a new alive-type test component
	:
	v_myNewPTC.call(f_myFirstBehaviour());			// Call to the non-alive component.
	v_myNewPTC.call(f_mySecondBehaviour());			// Test case error
	:
	v_myAlivePTC.call(f_myFirstBehaviour());	// Call to the alive-type component
	v_myAlivePTC.call(f_mySecondBehaviour());	// Another call to the same component
	:
	v_myAlivePTC.call(f_myThirdBehaviour(v_out,v_inout)) // v_out/v_inout can be changed
-> value v_result verdict v_verdict; // v_result/v_verdict are assigned on successful
 // termination
v_myAlivePTC.call(a_myFourthBehaviour());		// Direct call of an altstep behaviour

[bookmark: clause_ModuleControl][bookmark: _Toc39058857]26	Module control
[bookmark: _Toc39058858]26.0	General
Test cases are defined in the module definitions part while the control functions manage their execution. The statements and operations that can be used in control behaviour are summarized in table 31.
[bookmark: tab_StmtOper_ModuleControl]Table 31: Overview of TTCN‑3 statements and operations in module control
	Statement
	Associated keyword or symbol

	Assignments
	:=

	If-else
	if (…) {…} else {…}

	Select case
	select case (…) { case (…) {…} case else {…}}

	For loop
	for (…) {…}

	While loop
	while (…) {…}

	Do while loop
	do {…} while (…)

	Label and Goto
	label / goto

	Stop execution
	stop

	Leaving a loop, alt or interleave
	break

	Next iteration of a loop
	continue

	Logging
	log

	Alternative behaviour (see note)
	alt {…}

	Re-evaluation of alternative behaviour (see note)
	repeat

	Interleaved behaviour (see note)
	interleave {…}

	Activate a default (see note)
	activate

	Deactivate a default (see note)
	deactivate

	Start timer
	start

	Stop timer
	stop

	Read elapsed time
	read

	Check if timer or component running
	running

	Timeout event
	timeout

	Stimulate an (SUT) action externally
	action

	Execute test case
	execute

	Create component
	Ccreate

	Start cComponent control operations
	Sstart, stop, kill

	Stop cComponent events
	Stopdone, killed

	Connect portsConfiguration operations
	Cconnect, disconnect, map, unmap

	Map and unmap ports
	map/unmap

	Port Ssending operations
	send, call, reply, raise

	Port control operations
	halt, clear, start

	Port receiving operations
	receive, getcall, getreply, catch

	NOTE:	Can be used to control timer operations only.

[bookmark: clause_ModuleControl_Execute][bookmark: _Toc39058859]26.1	The Execute statement
Test cases are executed with an execute statement in the module control.
Syntactical Structure
execute "(" TestcaseRef "(" [{ ActualPar [","] }] ")" ["," TimerValue ["," HostId]] ")"

Semantic Description
The execute statement is used to start test cases (see clause 27.1) in control behaviour. The result of an executed test case is always a value of type verdicttype. Every test case shall contain one and only one MTC the type of which is referenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour of the MTC.
When a test case is invoked the MTC is created, the ports of the MTC and the test system interface are instantiated and the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly i.e. without explicit create and start operations.
Test case start
A test case is called using an execute statement. As the result of the execution of a test case, a test case verdict of either none, pass, inconc, fail or error shall be returned and may be assigned to a variable for further processing.
Optionally, the execute statement allows supervision of a test case by means of a timer duration.
Also optionally, the execute statement allows deployment of the MTC to a specific host before starting the execution. The host is identified by means of a host id.
Test case parameterization and configuration
All variables (if any) visible in the scope unit where the execute statement is used shall be passed into the test case by parameterization if they are to be used in the behaviour definition of that test case, i.e. TTCN‑3 does not support global variables of any kind.
At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted by create, connect, etc. operations in a previous test case were destroyed when that test case was stopped (hence are not "visible" to the new test case).
Test case termination
A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all running parallel test components shall be removed by the test system.
NOTE 1:	The concrete mechanism for stopping all PTCs is tool specific and therefore outside the scope of the present document.
The final verdict of a test case is calculated based on the final local verdicts of the different test components according to the rules defined in clause 24.1. The actual local verdict of a test component becomes its final local verdict when the test component terminates itself or is stopped by itself, another test component or by the test system.
NOTE 2:	To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC should ensure that all PTCs have stopped (by means of the done or killed statement) before it stops itself.
Test case timer
Timer may be used to supervise the execution of a test case. This may be done using an explicit timeout in the execute statement. If the test case does not end within this duration, the result of the test case execution shall be an error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer and need not be declared or started.
Host id
A host id can be used to give a specific deployment location to the test system where the MTC shall be started and execute its behaviour. If a host id is provided, the execute statement shall end with a test case error if the MTC cannot be deployed on the specified host.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
a)	The TimerValue shall resolve to a non-negative numerical float value (i.e. the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).
b)	When the corresponding formal parameter is not of template type TemplateInstance shall resolve to an Expression.
c)	The execute statement shall not be called from within an existing executing test behaviour chain called from a test case, i.e. test cases can only be executed from a control behaviour.
d)	The HostId parameter shall resolve to a charstring value.
Examples
EXAMPLE 1:	Test case execution without keeping the test case verdict:
	execute(TC_MyTestCase1());	// executes TC_MyTestCase1, without storing the
								// returned test verdict and without time supervision

EXAMPLE 2:	Test case execution with keeping the test case verdict:
	v_myVerdict := execute(TC_MyTestCase2());	// executes TC_MyTestCase2 and stores the resulting
												// verdict in variable v_myVerdict

EXAMPLE 3:	Test case timer:
	v_myVerdict := execute(TC_MyTestCase3(),5E-3);
	// executes TC_MyTestCase3 and stores the resulting verdict in variable v_myVerdict.
	// If the test case does not terminate within 5ms, v_myVerdict will get the value 'error'

EXAMPLE 4:	Host id:
	v_myVerdict := execute(TC_MyTestCase3(), -, "Host1");	
	// executes TC_MyTestCase3 with unlimited time with MTC deployed to 'Host1'

[bookmark: clause_ModuleControl_Control][bookmark: _Toc39058860]26.2	Test suite execution
TTCN-3 test suite execution is controlled by the the module control function. The module control function defines, in which order, sequence, loop, under which preconditions, and with which parameters test cases are to be executed.
Execution and control component
The module control function is an entry point for execution of a TTCN-3 test suite. If the function contains formal parameters, their actual values shall be provided. When the control function is started, the TE creates a test component called control component. The component contains variables, constants, templates and times important for controlling of the execution of the test suite. The created control component is of the type specified in the runs on clause of the module control function. If the runs on clause is missing, an empty control component is created.
Sequence of test cases
Program statements specify such things like the order in which test cases are to be executed or the number of times a test case should run.
If no programming statements are used then, by default, the test cases are executed in the sequential order in which they appear in the module control function.
NOTE:	This does not preclude the possibility that certain tools may wish to override this default ordering to allow a user or tool to select a different execution order.
Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and deselection of test cases can also be used to control the execution of test cases.
There are different ways in TTCN‑3 to select and deselect test cases. For example, boolean expressions may be used to select and deselect which test cases are to be executed. This includes, of course, the use of functions that return a boolean value.
Another way to execute test cases as a group is to collect them in a control function and invoke that function from the module control function.
As a test case returns a single value of type verdicttype, it is also possible to control the order of test case execution depending on the outcome of a test case. The use of the TTCN‑3 verdicttype is another way to select test cases.
Examples
EXAMPLE 1:	Test case execution in a loop:
	module MyTestSuite () {
		 :
		control {
			 :
			// Do this test 10 times
			v_count:=0;
			while (v_count < 10)
			{	execute (TC_MySimpleTestCase1());
				V_count := v_count+1;
			}
		}
	}

EXAMPLE 2:	Test case execution controlled by a timer and a counter:
	// Example of the use of the running timer operation
	while (t_t1.running or v_x<10)	// Where t_t1 is a previously started timer
	{	execute(TC_MyTestCase());
		v_x := v_x+1;
	}

	// Example of the use of the start and timeout operations

	timer t_t1:= 1.0;	
	 :
	execute(TC_MyTestCase1());
	t_t1.start;
	t_t1.timeout;	// Pause before executing the next test case
	execute(TC_MyTestCase2());

EXAMPLE 3:	Selection/deselection of test cases with Boolean expressions:
	module MyTestSuite () {
		 :
		control {
			 :
			if (f_mySelectionExpression1()) {
				execute(TC_MySimpleTestCase1());
				execute(TC_MySimpleTestCase2());
				execute(TC_MySimpleTestCase3());
			}
			if (f_mySelectionExpression2()) {
				execute(TC_MySimpleTestCase4());
				execute(TC_MySimpleTestCase5());
				execute(TC_MySimpleTestCase6());
			}
			 :
		}
	}

EXAMPLE 4:	Selection/deselection of test cases with functions:
	function f_myTestCaseGroup1()
	{	execute(TC_MySimpleTestCase1());
		execute(TC_MySimpleTestCase2());
		execute(TC_MySimpleTestCase3());
	}
	function f_myTestCaseGroup2()
	{	execute(TC_MySimpleTestCase4());
		execute(TC_MySimpleTestCase5());
		execute(TC_MySimpleTestCase6());
	}
	 :
	control
	{	if (f_mySelectionExpression1()) { f_myTestCaseGroup1(); }
		if (f_mySelectionExpression2()) { f_myTestCaseGroup2(); }
		 :
	}

EXAMPLE 5:	Selection/deselection of test cases based on test case verdicts:
	if (execute (TC_MySimpleTestCase()) == pass)
 { execute (TC_MyGoOnTestCase()) }
	else
 { execute (TC_MyErrorRecoveryTestCase()) };
26.3	Parallel control components
The same way that a testcase can create parallel test components, a control function can create parallel control components (PCCs). Every control component can only be started with a control function at a time.
Control components work the same way as test components, they can communicate over ports with each other and with the system under test. Once the main control component terminates, all PCCs are terminated as well.
The all component construct used in a control behavior references all PCCs. Only the main control component can wait for all PCCs to be done or stop/kill all PCCs.

ETSI
image2.emf

Connected Ports

 OUT IN

 IN OUT OUT

MTC PTC

IN OUT

SUT

Abstract Test System Interface

Real Test System Interface

Mapped Ports

IN OUT

Test system

oleObject1.bin

Connected Ports

 OUT			 IN

 IN			OUT			 OUT

MTC

PTC

IN

OUT

SUT

Abstract Test System Interface

Real Test System Interface

Mapped Ports

IN

OUT

Test system

image1.jpeg

