ETSI ES 201 873-1 V4.12.1 (2020-05)
22

ETSI ES 201 873-1 V4.12.1 (2020-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN‑3 Core Language

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-201873-1V4.12.1
Keywords
language, methodology, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
[bookmark: _Hlk532286936]The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	13
Foreword	13
Modal verbs terminology	13
1	Scope	14
2	References	14
2.1	Normative references	14
2.2	Informative references	15
3	Definition of terms, symbols and abbreviations	16
3.1	Terms	16
3.2	Symbols	22
3.3	Abbreviations	22
4	Introduction	23
4.0	General	23
4.1	The core language and presentation formats	24
4.2	Unanimity of the specification	25
4.3	Conformance	25
5	Basic language elements	25
5.0	General	25
5.1	Identifiers and keywords	26
5.2	Scope rules	27
5.2.0	General	27
5.2.1	Scope of formal parameters	29
5.2.2	Uniqueness of identifiers	29
5.3	Ordering of language elements	30
5.4	Parameterization	30
5.4.0	General	30
5.4.1	Formal parameters	31
5.4.1.0	General	31
5.4.1.1	Formal parameters of kind value	31
5.4.1.2	Formal parameters of kind template	34
5.4.2	Actual parameters	36
5.5	Cyclic Definitions	41
6	Types and values	42
6.0	General	42
6.1	Basic types and values	43
6.1.0	Simple basic types and values	43
6.1.1	Basic string types and values	44
6.1.1.0	General	44
6.1.1.1	Accessing individual string elements	46
6.1.2	Subtyping of basic types	47
6.1.2.0	General	47
6.1.2.1	Lists of templates	47
6.1.2.2	Lists of types	47
6.1.2.3	Ranges	48
6.1.2.4	String length restrictions	49
6.1.2.5	Pattern subtyping of character string types	49
6.1.2.6	Mixing subtyping mechanisms	49
6.1.2.6.1	Mixing patterns, lists and ranges	49
6.1.2.6.2	Using length restriction with other constraints	50
6.2	Structured types and values	50
6.2.0	General	50
6.2.1	Record type and values	52
6.2.1.0	General	52
6.2.1.1	Referencing fields of a record type	55
6.2.1.2	Optional elements in a record	56
6.2.1.3	Nested type definitions for field types	56
6.2.2	Set type and values	57
6.2.2.0	General	57
6.2.2.1	Referencing fields of a set type	57
6.2.2.2	Optional elements in a set	57
6.2.2.3	Nested type definition for field types	57
6.2.3	Records and sets of single types	57
6.2.3.0	General	57
6.2.3.1	Nested type definitions	60
6.2.3.2	Referencing elements of record of and set of types	60
6.2.4	Enumerated type and values	61
6.2.5	Unions	63
6.2.5.0	General	63
6.2.5.1	Referencing fields of a union type	64
6.2.5.2	Option and union	65
6.2.5.3	Nested type definition for field types	65
6.2.6	The anytype	66
6.2.7	Arrays	66
6.2.8	The default type	68
6.2.9	Communication port types	68
6.2.10	Component types	70
6.2.10.1	Component type definition	70
6.2.10.2	Reuse of component types	71
6.2.11	Component references	73
6.2.12	Addressing entities inside the SUT	75
6.2.13	Subtyping of structured types	77
6.2.13.0	General	77
6.2.13.1	Length subtyping of record ofs and set ofs	77
6.2.13.2	List subtyping of structured types and anytype	78
6.2.13.3	Subtyping of the iterated type of record ofs and set ofs	81
6.2.13.4	Mixing subtyping mechanisms	82
6.2.14	The timer type	82
6.2.15	Map types	82
6.2.15.0	General	82
6.2.15.1	Map Type Definition	82
6.2.15.2	Indexed Assignment Notation	83
6.2.15.3	Unmapping Keys	83
6.2.15.4	Index Notation	84
6.2.15.5	Accessing the Keys of a Map	84
6.2.15.6	Accessing the Values of a Map	85
6.2.15.7	Referencing of Elements of a Map	85
6.2.15.8	Nested type definitions	85
6.2.16	The open type	85
6.3	Type compatibility	86
6.3.0	General	86
6.3.1	Compatibility of non-structured types	86
6.3.2	Compatibility of structured types	88
6.3.2.0	General	88
6.3.2.1	Compatibility of enumerated types	88
6.3.2.2	Compatibility of record and record of types	89
6.3.2.3	Compatibility of set and set of types	90
6.3.2.4	Compatibility of union types	91
6.3.2.5	Compatibility of anytype types	91
6.3.2.6	Compatibility between sub-structures	92
6.3.2.7	Compatibility of the open type	92
6.3.3	Compatibility of component types	93
6.3.4	Type compatibility of communication and connection operations	93
6.3.5	Type conversion	94
6.3.6	Type compatibility of port types	94
6.3.7	Type compatibility of timer types	94
6.3.8	Type Compatibility of Map Types	94
6.4	Type synonym	94
7	Expressions	94
7.0	General	94
7.1	Operators	95
7.1.0	General	95
7.1.1	Arithmetic operators	97
7.1.2	List operator	97
7.1.3	Relational operators	98
7.1.4	Logical operators	101
7.1.5	Bitwise operators	101
7.1.6	Shift operators	102
7.1.7	Rotate operators	102
7.1.8	Presence checking operators	103
7.1.8.0	General	103
7.1.8.1	The ispresent operator	104
7.1.8.2	The ischosen operator	105
7.1.8.3	The isvalue operator	106
7.1.8.4	The isbound operator	108
7.2	Field references and list elements	109
7.3	Decoded field reference	109
8	Modules	110
8.0	General	110
8.1	Definition of a module	110
8.2	Module definitions part	111
8.2.0	General	111
8.2.1	Module parameters	112
8.2.2	Groups of definitions	113
8.2.3	Importing from modules	114
8.2.3.0	General	114
8.2.3.1	General format of import	114
8.2.3.2	Importing single definitions	121
8.2.3.3	Importing groups	122
8.2.3.4	Importing definitions of the same kind	123
8.2.3.5	Importing all definitions of a module	123
8.2.3.6	Import definitions from other TTCN‑3 editions and from non-TTCN‑3 modules	124
8.2.3.7	Importing of import statements from TTCN-3 modules	126
8.2.3.8	Compatibility of language specifications in imports	127
8.2.4	Definition of friend modules	128
8.2.5	Visibility of definitions	128
8.3	Module control part	130
9	Port types, component types and test configurations	131
9.0	General	131
9.1	Communication ports	131
9.2	Test system interface	134
10	Declaring constants	136
11	Declaring variables	136
11.0	General	136
11.1	Value variables	137
11.2	Template variables	138
12	Declaring timers	139
13	Declaring messages	140
14	Declaring procedure signatures	141
15	Declaring templates	142
15.0	General	142
15.1	Declaring message templates	143
15.2	Declaring signature templates	145
15.3	Global and local templates	146
15.4	In-line Templates	147
15.5	Modified templates	148
15.6	Referencing elements of templates or template fields	152
15.6.0	General	152
15.6.1	Referencing individual string elements	152
15.6.2	Referencing record and set fields	152
15.6.3	Referencing record of and set of elements	153
15.6.4	Referencing signature parameters	157
15.6.5	Referencing union alternatives	158
15.7	Template matching mechanisms	159
15.7.0	General	159
15.7.1	Specific values	160
15.7.2	Special symbols that can be used instead of values	161
15.7.3	Special symbols that can be used inside values	162
15.7.4	Special symbols which describe attributes of values	162
15.8	Template Restrictions	163
15.9	Match Operation	165
15.10	Valueof Operation	167
15.11	Concatenating templates of string and list types	167
16	Functions, altsteps and testcases	170
16.0	General	170
16.1	Functions	170
16.1.0	General	170
16.1.1	Invoking functions	173
16.1.2	Predefined functions	173
16.1.3	External functions	176
16.1.4	Invoking functions from specific places	176
16.1.5	Explicit control functions	178
16.2	Altsteps	178
16.2.0	General	178
16.2.1	Invoking altsteps	180
16.3	Test cases	181
17	Void	182
18	Overview of program statements and operations	182
19	Basic program statements	185
19.0	General	185
19.1	Assignments	185
19.2	The If-else statement	187
19.3	The Select statements	187
19.3.1	The Select case statement	187
19.3.2	The Select union statement	189
19.4	The For statement	190
19.5	The While statement	190
19.6	The Do-while statement	191
19.7	The Label statement	191
19.8	The Goto statement	192
19.9	The Stop execution statement	193
19.10	The Return statement	193
19.11	The Log statement	194
19.12	The Break statement	196
19.13	The Continue statement	196
19.14	Statement block	197
20	Statement and operations for alternative behaviours	197
20.0	General	197
20.1	The snapshot mechanism	198
20.2	The Alt statement	198
20.3	The Repeat statement	202
20.4	The Interleave statement	203
20.5	Default Handling	205
20.5.0	General	205
20.5.1	The default mechanism	206
20.5.2	The Activate operation	206
20.5.3	The Deactivate operation	207
21	Configuration Operations	208
21.0	General	208
21.1	Connection Operations	209
21.1.0	General	209
21.1.1	The Connect and Map operations	210
21.1.2	The Disconnect and Unmap operations	212
21.2	Test case operations	213
21.2.0	General	213
21.2.1	Test case stop operation	214
21.3	Test Component Operations	214
21.3.0	General	214
21.3.1	The Create operation	214
21.3.2	The Start test component operation	215
21.3.3	The Stop test behaviour operation	217
21.3.4	The Kill test component operation	218
21.3.5	The Alive operation	218
21.3.6	The Running operation	219
21.3.7	The Done operation	221
21.3.8	The Killed operation	223
21.3.9	Summary of the use of any and all with components	225
21.3.10	The Call test component behaviour operation	225
22	Communication operations	227
22.0	General	227
22.1	The communication mechanisms	227
22.1.0	General	227
22.1.1	Principles of message-based communication	227
22.1.2	Principles of procedure-based communication	228
22.1.3	Principles of unicast, multicast and broadcast communication	228
22.1.4	General format of communication operations	229
22.1.4.0	General	229
22.1.4.1	General format of the sending operations	229
22.1.4.2	General format of the receiving operations	230
22.2	Message-based communication	231
22.2.0	General	231
22.2.1	The Send operation	231
22.2.2	The Receive operation	232
22.2.3	The Trigger operation	236
22.3	Procedure-based communication	239
22.3.0	General	239
22.3.1	The Call operation	239
22.3.2	The Getcall operation	243
22.3.3	The Reply operation	246
22.3.4	The Getreply operation	247
22.3.5	The Raise operation	250
22.3.6	The Catch operation	251
22.4	The Check operation	255
22.5	Controlling communication ports	257
22.5.0	General	257
22.5.1	The Clear port operation	257
22.5.2	The Start port operation	258
22.5.3	The Stop port operation	258
22.5.4	The Halt port operation	259
22.5.5	The Checkstate port operation	259
22.6	Use of any and all with ports	261
23	Timer operations	261
23.0	General	261
23.1	The timer mechanism	262
23.2	The Start timer operation	262
23.3	The Stop timer operation	263
23.4	The Read timer operation	263
23.5	The Running timer operation	264
23.6	The Timeout operation	265
23.7	Summary of use of any and all with timers	266
24	Test verdict operations	266
24.0	General	266
24.1	The Verdict mechanism	266
24.2	The Setverdict operation	267
24.3	The Getverdict operation	268
25	External actions	269
26	Module control	269
26.0	General	269
26.1	The Execute statement	270
26.2	Test suite execution	271
27	Specifying attributes	273
27.0	General	273
27.1	The Attribute mechanism	273
27.1.0	General	273
27.1.1	Scope of attributes	274
27.1.2	Overwriting rules for attributes	275
27.1.2.0	General	275
27.1.2.1	Additional default overwriting rules for variant attributes	277
27.1.2.2	Overwriting rules for multiple encoding	278
27.1.3	Changing attributes of imported language elements	278
27.2	The With statement	279
27.3	Display attributes	280
27.4	Encoding attributes	281
27.5	Variant attributes	282
27.6	Extension attributes	284
27.7	Optional attributes	284
27.8	Retrieving attribute values	286
27.9	Dynamic configuration of encoding used by ports	287
Annex A (normative): 	BNF and static semantics	289
A.1	TTCN‑3 BNF	289
A.1.0	General	289
A.1.1	Conventions for the syntax description	289
A.1.2	Statement terminator symbols	289
A.1.3	Identifiers	289
A.1.4	Comments	290
A.1.5	TTCN‑3 terminals	290
A.1.5.0	General	290
A.1.5.1	Use of whitespaces and newlines	292
A.1.6	TTCN-3 syntax BNF productions	293
A.1.6.0	TTCN-3 module	293
A.1.6.1	Module definitions part	293
A.1.6.1.0	General	293
A.1.6.1.1	Typedef definitions	293
A.1.6.1.2	Constant definitions	295
A.1.6.1.3	Template definitions	295
A.1.6.1.4	Function definitions	297
A.1.6.1.5	Signature definitions	298
A.1.6.1.6	Testcase definitions	298
A.1.6.1.7	Altstep definitions	298
A.1.6.1.8	Import definitions	298
A.1.6.1.9	Group definitions	299
A.1.6.1.10	External function definitions	299
A.1.6.1.11	Void	299
A.1.6.1.12	Module parameter definitions	300
A.1.6.1.13	Friend module definitions	300
A.1.6.2	Module control function	300
A.1.6.3	Local definitions	300
A.1.6.3.1	Variable instantiation	300
A.1.6.3.2	Timer instantiation	300
A.1.6.4	Operations	300
A.1.6.4.1	Component operations	300
A.1.6.4.2	Port operations	301
A.1.6.4.3	Timer operations	303
A.1.6.4.4	Testcase operation	303
A.1.6.5	Type	303
A.1.6.6	Value	304
A.1.6.7	Parameterization	305
A.1.6.8	Statements	305
A.1.6.8.1	With statement	305
A.1.6.8.2	Behaviour statements	306
A.1.6.8.3	Basic statements	307
A.1.6.9	Miscellaneous productions	309
Annex B (normative): 	Matching values	310
B.1	Template matching mechanisms	310
B.1.0	General	310
B.1.1	Matching specific values	310
B.1.2	Matching mechanisms instead of values	310
B.1.2.0	General	310
B.1.2.1	Template list	310
B.1.2.2	Complemented template list	311
B.1.2.3	Any value	312
B.1.2.4	Any value or none	313
B.1.2.5	Value range	314
B.1.2.6	SuperSet	314
B.1.2.7	SubSet	315
B.1.2.8	Omitting optional fields	317
B.1.2.9	Matching decoded content	317
B.1.2.10	Matching enumerated value with value list	319
B.1.3	Matching mechanisms inside values	319
B.1.3.0	General	319
B.1.3.1	Any element	319
B.1.3.1.0	General	319
B.1.3.1.1	Using single character wildcards	319
B.1.3.2	Any number of elements or no element	320
B.1.3.2.0	General	320
B.1.3.2.1	Using multiple character wildcards	320
B.1.3.3	Permutation	320
B.1.4	Matching attributes of values	322
B.1.4.0	General	322
B.1.4.1	Length restrictions	322
B.1.4.2	The IfPresent indicator	323
B.1.5	Matching character pattern	324
B.1.5.0	General	324
B.1.5.1	Set expression	326
B.1.5.2	Reference expression	326
B.1.5.3	Match expression n times	328
B.1.5.4	Match a referenced character set	328
B.1.5.5	Type compatibility rules for patterns	329
B.1.5.6	Case insensitive pattern matching	329
Annex C (normative): 	Predefined TTCN‑3 functions	330
C.0	General exception handling procedures	330
C.1	Conversion functions	330
C.1.1	Integer to character	330
C.1.2	Integer to universal character	330
C.1.3	Integer to bitstring	330
C.1.4	Integer to enumerated	331
C.1.5	Integer to hexstring	331
C.1.6	Integer to octetstring	331
C.1.7	Integer to charstring	332
C.1.8	Integer to float	332
C.1.9	Float to integer	332
C.1.10	Character to integer	332
C.1.11	Character to octetstring	332
C.1.12	Universal character to integer	333
C.1.13	Bitstring to integer	333
C.1.14	Bitstring to hexstring	333
C.1.15	Bitstring to octetstring	333
C.1.16	Bitstring to charstring	334
C.1.17	Hexstring to integer	334
C.1.18	Hexstring to bitstring	334
C.1.19	Hexstring to octetstring	335
C.1.20	Hexstring to charstring	335
C.1.21	Octetstring to integer	335
C.1.22	Octetstring to bitstring	335
C.1.23	Octetstring to hexstring	336
C.1.24	Octetstring to character string	336
C.1.25	Octetstring to character string, version II	336
C.1.26	Charstring to integer	337
C.1.27	Character string to hexstring	337
C.1.28	Character string to octetstring	337
C.1.29	Character string to float	338
C.1.30	Enumerated to integer	338
C.1.31	Octetstring to universal character string	339
C.1.32	Universal character string to octetstring	339
C.1.33	Value or template to universal charstring	340
C.2	Length/size functions	341
C.2.1	Length of strings and lists	341
C.2.2	Number of elements in a structured value	342
C.3	Presence checking functions	343
C.3.1	Void	343
C.3.2	Void	343
C.3.3	Void	343
C.3.4	Void	343
C.3.5	Matching mechanism detection	343
C.4	String/list handling functions	344
C.4.1	The Regexp function	344
C.4.2	The Substring function	346
C.4.3	The Replace function	347
C.5	Codec functions	348
C.5.1	The encoding function	348
C.5.2	The decoding function	348
C.5.3	The encoding to universal charstring function	348
C.5.4	The decoding from universal charstring function	349
C.5.5	The encoding to octetstring function	351
C.5.6	The decoding from octetstring function	351
C.5.7	Retrieving the type of string encoding	352
C.5.8	Removing BOMs of UCS encoding schemes	352
C.6	Other functions	353
C.6.1	The random number generator function	353
C.6.2	The testcasename function	353
C.6.3	The hostId function	354
Annex D (normative): 	Preprocessing macros	355
D.0	General	355
D.1	Preprocessing macro __MODULE__	355
D.2	Preprocessing macro __FILE__	355
D.3	Preprocessing macro __BFILE__	355
D.4	Preprocessing macro __LINE__	355
D.5	Preprocessing macro __SCOPE__	356
Annex E (informative): 	Library of Useful Types	358
E.1	Limitations	358
E.2	Useful TTCN‑3 types	358
E.2.1	Useful simple basic types	358
E.2.1.0	Signed and unsigned single byte integers	358
E.2.1.1	Signed and unsigned short integers	358
E.2.1.2	Signed and unsigned long integers	359
E.2.1.3	Signed and unsigned longlong integers	359
E.2.1.4	IEEE 754 floats	359
E.2.2	Useful character string types	360
E.2.2.0	UTF-8 character string "utf8string"	360
E.2.2.1	BMP character string "bmpstring"	360
E.2.2.2	UTF-16 character string "utf16string"	360
E.2.2.3	ISO/IEC 10646 character string "iso8859string"	360
E.2.2.4	Status values for TTCN-3 objects	361
E.2.2.5	Template kinds of TTCN-3 objects	361
E.2.3	Useful structured types	361
E.2.3.0	Fixed-point decimal literal	361
E.2.4	Useful atomic string types	362
E.2.4.1	Single Recommendation ITU‑T T.50 character type	362
E.2.4.2	Single universal character type	362
E.2.4.3	Single bit type	362
E.2.4.4	Single hex type	362
E.2.4.5	Single octet type	362
Annex F (informative): 	Operations on TTCN‑3 active objects	363
F.0	General	363
F.1	Test components	363
F.1.1	Test component references	363
F.1.2	Dynamic behaviour of PTCs	364
F.1.3	Dynamic behaviour of the MTC	366
F.2	Timers	367
F.3	Ports	367
F.3.0	General	367
F.3.1	Configuration Operations	367
F.3.2	Port Controlling Operations	368
F.3.3	Communication Operations	369
Annex G (informative): 	Deprecated language features	370
G.1	Group style definition of module parameters	370
G.2	Void	370
G.3	Using all in port type definitions	370
G.4	sizeof for length of lists	370
G.5	Void	370
G.6	Mixed ports	370
G.7	Void	370
G.8	Void	371
G.9	Void	371
G.10	Void	371
G.11	Void	371
G.12	Void	371
G.13	Assignment of less restrictive templates to more restrictive templates	371
G.14	Mixing case and case else branches in select statements	371
G.15	Partially initialized global and local templates	372
Annex H (informative): 	Bibliography	373
History	374

[bookmark: _Toc39058552]
Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc39058553]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as identified below:
Part 1:	"TTCN‑3 Core Language";
Part 2:	"TTCN‑3 Tabular presentation Format (TFT)";
Part 3:	"TTCN‑3 Graphical presentation Format (GFT)";
Part 4:	"TTCN‑3 Operational Semantics";
Part 5:	"TTCN‑3 Runtime Interface (TRI)";
Part 6:	"TTCN‑3 Control Interface (TCI)";
Part 7:	"Using ASN.1 with TTCN‑3";
Part 8:	"The IDL to TTCN-3 Mapping";
Part 9:	"Using XML schema with TTCN-3";
Part 10:	"TTCN-3 Documentation Comment Specification";
Part 11:	"Using JSON with TTCN-3".
[bookmark: _Toc481503921][bookmark: _Toc487612123][bookmark: _Toc525223404][bookmark: _Toc525223854][bookmark: _Toc527974963][bookmark: _Toc527980450][bookmark: _Toc534708585][bookmark: _Toc534708660]NOTE:	Part 2 of this multi-part deliverable is in status "historical" and is not maintained.
[bookmark: _Toc39058554]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc39058555]
1	Scope
The present document defines the Core Language of TTCN‑3. TTCN‑3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA® based platforms, APIs, etc. TTCN‑3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN‑3 is intended to be used for the specification of test suites which are independent of test methods, layers and protocols. In addition to the textual format defined in the present document, while GFT (ETSI ES 201 873‑3 [i.2]) defines a graphical presentation format for TTCN‑3. The specification of these formats is outside the scope of the present document.
While the design of TTCN‑3 has taken the eventual implementation of TTCN‑3 translators and compilers into consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the scope of the present document.
[bookmark: _Toc39058556]2	References
[bookmark: _Toc39058557]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_4][1]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ISOIEC10646][2]	ISO/IEC 10646 (2017): "Information technology -- Universal Coded Character Set (UCS)".
[bookmark: REF_ITU_TX292][3]	Recommendation ITU-T X.292: "OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation (TTCN)".
NOTE:	The corresponding ISO/IEC standard is ISO/IEC 9646-3: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework -- Part 3: The Tree and Tabular Combined Notation (TTCN)".
[bookmark: REF_ITU_TT50][4]	Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange".
NOTE:	The corresponding ISO/IEC standard is ISO/IEC 646: "Information technology -- ISO 7-bit coded character set for information interchange".
[bookmark: REF_ITU_TX290][5]	Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications - General concepts".
NOTE:	The corresponding ISO/IEC standard is ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework; Part 1: General concepts".
[bookmark: REF_IEEE754][6]	IEEE 754™: "IEEE Standard for Floating-Point Arithmetic".
[bookmark: _Toc39058558]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_VOID][i.1]	Void.
[bookmark: REF_ES201873_3][i.2]	ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".
[bookmark: REF_ES201873_5][i.3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][i.4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: REF_ES201873_7][i.5]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.6]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.7]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.8]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[bookmark: REF_VOID_15][i.9]	Void.
[bookmark: REF_OBJECTMANAGEMENTGROUP][i.10]	Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture and Specification - IDL Syntax and Semantics". Version 2.6, FORMAL/01-12-01.
[bookmark: REF_ES202781][i.11]	ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".
[bookmark: REF_ES202784][i.12]	ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".
[bookmark: REF_ES202785][i.13]	ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types".
[bookmark: REF_ES202782][i.14]	ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".
[bookmark: REF_VOID_21][i.15]	Void.
[bookmark: REF_VOID_22][i.16]	Void.
[bookmark: REF_ES201873_1][i.17]	ETSI ES 201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined Notation version 3; Part 1: TTCN-3 Core Language", 2001.
[bookmark: REF_ES201873_1_24][i.18]	ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2003.
[bookmark: REF_ES201873_1_25][i.19]	ETSI ES 201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2005.
[bookmark: REF_ES201873_1_26][i.20]	ETSI ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2007.
[bookmark: REF_ES201873_1_27][i.21]	ETSI ES 201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2008.
[bookmark: REF_ES201873_1_28][i.22]	ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2008.
[bookmark: REF_ES201873_1_29][i.23]	ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2009.
[bookmark: REF_ES201873_1_30][i.24]	ETSI ES 201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2010.
[bookmark: REF_ES201873_1_31][i.25]	ETSI ES 201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2011.
[bookmark: REF_ES201873_1_32][i.26]	ETSI ES 201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2012.
[bookmark: REF_ES201873_1_33][i.27]	ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2013.
[bookmark: REF_ES201873_1_34][i.28]	ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2014.
[bookmark: REF_ES201873_1_35][i.29]	ETSI ES 201 873-1 (V4.7.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2015.
[bookmark: REF_ES201873_1_36][i.30]	ETSI ES 201 873-1 (V4.8.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2016.
[bookmark: REF_ES201873_1_37][i.31]	ETSI ES 201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", 2017.
[bookmark: _Toc39058559]3	Definition of terms, symbols and abbreviations
[bookmark: clause_Definitions][bookmark: _Toc39058560]3.1	Terms
For the purposes of the present document, the terms given in Recommendation ITU‑T X.290 [5], Recommendation ITU‑T X.292 [3] and the following apply:
actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked entity (function, test case, altstep, etc.) as defined at the place of invoking
assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the elements to which a value is assigned are identified explicitly within a pair of curly brackets ("{" and "}") by the field names or the positions of the elements
basic types: set of predefined TTCN‑3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE:	Basic types are referenced by their names.
behaviour definition: dynamic test behaviour, which is either a testcase, a function, or an altstep definition
communication port: abstract mechanism facilitating communication between test components
NOTE:	A communication port is modelled as a FIFO queue in the receiving direction. Ports can be message‑based or procedure-based.
compatible type: TTCN‑3 is not strongly typed but the language does require type compatibility
NOTE:	Variables, constants, templates, etc. have compatible types if conditions in clause 6.2.15 are met.
completely initialized: value or template is completely initialized if it is not uninitialized and, if its type is a structured type, all its required parts are completely initialized
NOTE 1:	Additionally, templates are completely initialized if they are assigned a matching mechanism all parts of which are completely initialized. If a value or template is completely initialized, it fulfils the requirement of being "at least partially initialized".
NOTE 2:	A value or template of a simple, component or default type is completely initialized if anything but the unchanged symbol "-" has been assigned to it.
A value or template of a union or anytype type is completely initialized if one of its variants has been completely initialized.
A value or template of a record or set type with only optional fields and the optional "implicit omit" attribute attached, is completely initialized if the value "{}" is assigned, as all fields are implicitly set to omit.
A value or template of a record or set type with no fields is completely initialized with assignment of the value "{}".
A value or template of a record of, set of or array type is completely initialized if at least the first n elements are completely initialized, where n is the minimal length imposed by the type length restriction or array definition. Thus in case of n equals 0, the assignment of the value "{}" also completely initializes such a record of, set of or array.
component constant: constant defined in a component type
component data types: collection of all data types, component types and structured types whose sub-elements are component data types
component port: port defined in a component type
component template: template defined in a component type
component timer: timer defined in a component type
component variable: variable defined in a component type
control behaviour: collection of module control functions with the name control and functions and altsteps called by control directly or through other control functions or altsteps, and are used for the dynamic execution of test cases
NOTE:	Such functions and altsteps are called control functions and control altsteps respectively. Module control functions can be used as an entry point of executing a test suite. Declaring functions or altsteps with the modifier @control explicitly allows to distinguish them from test case behaviour definitions in their special role. Module control functions and behaviour definitions with the @control modifier are called explicit control behaviour definitions, i.e explicit control functions and explicit control altsteps.
data types: all types whose values or sub-elements cannot contain object references
NOTE:	Data types include simple basic types, basic string types, and the special data type anytype. Data types also include all structured types where all their sub-elements are of a data type. All user defined types based on a data type are data types as well. See more details in table 3 of the present document.
defined types (defined TTCN‑3 types): set of all predefined TTCN‑3 types (basic types, all structured types, the type anytype, the address, port and component types and the default type) and all user-defined types declared either in the module or imported from other TTCN‑3 modules
deterministic function: function that for the same input in the in and inout parameters always yields the same output both for the return result as well as the inout and out parameters
NOTE 1:	A non-deterministic function is one that is not deterministic.
NOTE 2:	In general, it cannot be decided if a function is deterministic or not. However, a function can be specified to be deterministic, i.e. the function is supposed to be deterministic. In this case, a violation of the determinism can be detected and handled accordingly. The handling however is tool-specific.
dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events
EXAMPLE:	The value of the actual parameter is a value received during runtime or depends on a received value by a logical relation.
exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it cannot answer a remote procedure call with the normal expected response
formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an entity (function, test case, altstep, etc.) but at the time of invoking it
NOTE:	Actual values or templates (or their names) to be used at the place of formal parameters are passed from the place of invoking the entity (see also the definition of actual parameter).
fuzzy value or template: value or template instance that is declared to be fuzzy and consequently the expression, initializing or partly initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation
NOTE:	During execution, this expression is re-evaluated each time when the fuzzy object is referenced, except when at the left hand side of an assignment or passing it to a fuzzy or lazy formal parameters. The result of this (re)evaluation is used as the actual value or template of the fuzzy instance. When new content is assigned to a fuzzy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation again.
global visibility: attribute of an entity (module parameter, constant, template, etc.) whose identifier can be referenced anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same module
Implementation Conformance Statement (ICS): See Recommendation ITU‑T X.290 [5].
Implementation eXtra Information for Testing (IXIT): See Recommendation ITU‑T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU‑T X.290 [5].
in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the formal parameter when the parameterized object is invoked, but the value of the formal parameter is not passed back to the actual parameter when the invoked object completes
NOTE 1:	In in parameterization, parameters are passed by value.
NOTE 2:	The arguments are evaluated before the parameterized object is entered.
NOTE 3:	Only the values of the arguments are passed and changes to the arguments within the invoked object have no effect on the arguments as seen by the invoking object.
index notation: notation to access individual elements of record of, set of, array and string values or templates, where the element to be accessed is identified explicitly by an index value enclosed in square brackets ("[" and "]") which specifies the position of that element within the referenced value or template and the index value is either an integer value, array of integers or record of integers
NOTE:	Integer values used for indexing (either directly or as elements of the record of or array values) always lie within the index range of the type of the referenced value or template. Except for those arrays which are defined with an explicit index range, the index range always has 0 as the index for the first element.
initialization: value or template, or a value or template field is initialized when a content is first assigned to it
NOTE:	The assignment may be explicit at the declaration of the given object, in which case the same restrictions apply as for the right-hand side of the assignment operation, or at first use on the left-hand side of an assignment, or may be implicit. Implicit initialization occurs when a yet uninitialized object is passed as actual parameter to an out formal parameter of a directly called testcase, function or altstep returns with a non-uninitialized value or template that is assigned to the actual parameter; or when module parameters not initialized in the TTCN-3 code get their runtime values before test suite execution.
inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is currently represented by the actual parameter
NOTE 1:	The invoked object uses the actual parameter directly, so that all changes made in the formal parameter become immediately effective on the actual parameter. If the same actual parameter is passed to two distinct formal parameters, a change in one formal parameter becomes immediately effective in the other one (and in the actual parameter).
NOTE 2:	Inout parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules, e.g. altsteps activated as defaults.
invalid expressions/operations: an expression or operation is invalid if it does not follow the conditions and restrictions of this standard. Such expressions and operations shall cause a dynamic error during execution, if possible be reported during compilation.
known types: set of all TTCN‑3 predefined types, types defined in a TTCN‑3 module and types imported into that module from other TTCN‑3 modules or from non-TTCN‑3 modules
lazy evaluation: evaluation of an expression, delayed during execution until the value or template instance, to which the result of the evaluation should have been assigned or passed to as actual parameter, is first referenced at another place than the left hand side of an assignment or an actual parameter passed to a fuzzy or lazy formal parameter
NOTE:	During execution, this delayed evaluation is carried out at the first actual reference, even when the result is to be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at the time of the evaluation are to be used (not the actual values at the time of the assignment or parameter passing). This implies that components of the expression may be uninitialized at the time, when execution reaches the assignment or parameter passing, but may be initialized by the time of the evaluation that can lead to successful evaluation. If, by the time of the evaluation, execution has left the scope unit, in which one or more components of the expression is defined, the actual values of the component(s) at the time of leaving the scope unit are to be stored for the purpose of the delayed evaluation (but only for that, i.e. the values are not accessible for the user).
lazy value or template: value or template instance for which the expression, initializing or partly initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation
NOTE:	When, during execution, the delayed (lazy) evaluation is taking place, its result is stored in the lazy value or template and the lazy instance is used further on like ordinary values and templates, until the next use of the lazy variable or parameter on the left hand side of an assignment. When a new content is assigned to a lazy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation again. If, during execution, no expression referencing the lazy object is evaluated, the lazy value or template instance is never evaluated.
left hand side (of assignment): value or template variable identifier or a field name of a structured type value or template variable (including array index if any), which stands left to an assignment symbol (:=)
NOTE:	A constant, module parameter, timer, structured type field name or a template header (including template type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a modified template definitions are out of the scope of this definition as not being part of an assignment.
local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the function, test case or altstep where it is defined
Main Test Component (MTC): See Recommendation ITU‑T X.292 [3].
object: instance of one of the object types (component, default, port and timer)
NOTE:	Objects of type default, port or timer, which are owned by the component that instantiated them, are local objects while objects of type component are global objects. Global objects can be referenced from other component scopes while references to local objects can only be used by the component they are bound to.
object reference: special kind of value used for instances of component, default, port and timer types which represents a reference to an existing entity in the TE
NOTE:	When used in assignments or parameter passing, only the reference to the entity is copied, but not the entity itself. An object reference can also be initialized with the special value null in which case it does not reference an object.
out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to the formal parameter when the parameterized object is invoked, but the content of the formal parameter is passed back to the actual parameter when the invoked object completes, if the formal parameter has been initialized during the invocation and the actual parameter is the reference evaluated at the time of the invocation
NOTE 1:	In out parameterization, parameters are passed by value.
NOTE 2:	Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules, e.g. altsteps activated as defaults.
NOTE 3:	Formal an out parameters are uninitialized (unbound) when the invoked object is entered.
Parallel Test Component (PTC): See Recommendation ITU‑T X.292 [3].
partially initialized: value or template is partially initialized if initialization has taken place on it or to at least one of its fields or elements
NOTE:	A template variable is initialized if a matching mechanism has been assigned to it or to at least one of its fields or elements, directly or indirectly via expansion (see clause 15.6). A template is initialized if a matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).
passing by reference: ability to link an actual parameter with a formal parameter of a function, altstep or test case and to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy of the data content is made and the actual and formal parameters share the same data content
passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to a formal or actual parameter, i.e. the actual and formal parameters do not share the same data content
NOTE:	When passing object references by value, a new reference is created, but the referenced entity remains the same.
qualified name: TTCN-3 elements can be identified unambiguously by qualified names
NOTE:	For modules, the qualified name is the <module name>. For global definitions such as testcases, functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name is <module name>.control. For local definitions, such as variables, local templates, etc. within a global definition, the qualified name is <module name>.<global definition name>.<local definition name>.
right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to an assignment symbol (:=)
NOTE:	Expressions and template references standing right of an assignment symbol (:=) in constant, module parameter, timer, template or modified template declarations are out of the scope of this definition as not being part of an assignment.
root type: root types of types derived from TTCN-3 basic types are the respective basic types
NOTE 1:	The root type of user defined record types is record, the root type of user defined record of and array types is record of, the root type of user defined set types is set, the root type of user defined set of types is set of. The root type of user defined union types is union and the root type of anytypes is anytype. The root types of special configuration types are default or component, respectively. Port types do not have a root type.
NOTE 2:	As address is more a predefined type name than a distinct type with its own properties, the root type of an address type and all of its derivatives are the same as the root type was, if the type was defined with a name different from address.
static parameterization: form of parameterization, in which actual parameters are independent of runtime events; i.e. known at compile time or in case of module parameters are known by the start of the test suite execution
NOTE 1:	A static parameter is to be known from the test suite specification, (including imported definitions), or the test system is aware of its value before execution time.
NOTE 2:	All types are known at compile time, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See Recommendation ITU‑T X.290 [5].
template: TTCN-3 data objects are values or templates by definition. A TTCN‑3 template identifies a subset of the values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the matching mechanism omit
NOTE:	Templates are defined by global and local templates, template variable definitions, or formal template parameters. Any of those are templates from the point of view of their usage, irrespective of their actual content; for example, a template variable containing a specific value is a template.
template parameterization: ability to pass a template as an actual parameter into a parameterized object via a template parameter
NOTE 1:	This actual template parameter is added to the specification of that object and may complete it.
NOTE 2:	Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).
test behaviour: (or behaviour) test case, function or altstep started on a test component when executing an execute or a start component statement and all functions and altsteps called recursively
NOTE:	During a test case execution each test component has its own behaviour and hence several test behaviours may run concurrently in the test system (i.e. a test case can be seen as a collection of test behaviour).
test case: See Recommendation ITU‑T X.290 [5].
test case error: See Recommendation ITU‑T X.290 [5].
test suite: set of TTCN‑3 modules that contains a completely defined set of test cases, optionally supplemented with one or more TTCN‑3 control functions
test system: See Recommendation ITU‑T X.290 [5].
test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN‑3 test system to those offered by the SUT
type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values of another type
EXAMPLE:	At assignments, as actual parameters at calling a function, referencing a template, etc. or as a return value of a function.
type context: "In the context of a type" means that at least one object involved in the given TTCN-3 action (an assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously
NOTE:	Either directly (e.g. an in-line template) or by means of a typed TTCN-3 object (e.g. via a constant, variable, formal parameter, etc.).
uninitialized: value or template is uninitialized as long as no initialization of it or at least one of its parts has occurred
unqualified name: unqualified name of a TTCN-3 element is its name without any qualification
user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE:	User-defined types are referenced by their identifiers (names).
[bookmark: _GoBack]valid expressions/operations: valid expression/operations are expression/operation that follow the conditions and restrictions of this standard and can be safely compiled and executed.
value: TTCN-3 data objects are values or templates by definition. A TTCN‑3 value is an instance of its type
NOTE:	Values are defined by module parameters, constants, value variables, or formal value parameters. Any of those are value objects from the point of view of their usage. A template containing only specific value matching - though referring to a single instance of its type - is not a value object, but is a template object.
value list notation: notation that can be used for record, set, record of and set of values, where the values of the subsequent fields or elements are listed within a pair of curly brackets ("{" and "}"), without an explicit identification of the field name or element position
value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE:	Values may be constants or variables.
value parameterization: ability to pass a value as an actual parameter into a parameterized object via a value parameter
NOTE:	This actual value parameter is added to the specification of that object and may complete it.
ETSI
image1.jpeg

