ETSI ES 201 873-1 V4.11.1 (2019-04)
47

ETSI ES 201 873-1 V4.11.1 (2019-04)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN‑3 Core Language

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-201873-1v4.11.1_Core
Keywords
language, methodology, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

[bookmark: clause_FuncAltTC_Func_InvokingAlt][bookmark: _Toc7508658]16.2.1	Invoking altsteps
The invocation of an altstep is always related to an alt statement. The invocation may be done either implicitly by the default mechanism (see clause C.5) or explicitly by a direct call within an alt statement (see clause 20.2).
Syntactical Structure
[@nodefault] AltstepRef "(" [{ ActualPar [","] }] ")"

Semantic Description
The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by using the actual snapshot of the alt statement from which the altstep was called.
NOTE 1:	A new snapshot within an altstep will of course be taken, if within a selected top alternative a new alt statement is specified and entered.
For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by means of an activate statement before the place of the invocation is reached.
An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative. When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of the altstep. The alternatives of the altstep are checked and executed the same way as alternatives of an alt statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call is the last alternative of the alt statement). A successful termination may cause either the termination of the test component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement, i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the execution of the selected top alternative of the altstep ends with a break statement (see clause 19.12) or without explicit repeat or stop.
NOTE 2:	Due to the possibility of defining dynamic test configurations, an alternative in an explicitly invoked altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, an explicitly invoked altstep may execute receiving operations that empty the queues of unmapped and disconnected ports without causing a test case error.
An altstep can also be called as a stand-alone statement in a TTCN‑3 behaviour description. In this case, the call of the altstep can be interpreted as shorthand for an alt statement with only one alternative describing the explicit call of the altstep. If the @nodefault modifier is placed before a stand-alone altstep call, the implicit alt statement also contains the @nodefault modifier.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
a)	When invoking an altstep, the compatibility of the test component type of the invoking test component and of the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.
b)	Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
c)	When invoking an altstep, the mtc and system compatibility of the mtc and system components of the invoked altstep with the actual mtc and system types of the running test case as described in clause 6.3.3 need to be fulfilled.
Examples
EXAMPLE 1:	Implicit invocation of an altstep via a default activation
	 :
	var default v_myDefVarTwo := activate(a_mySecondAltStep()); // Activation of an altstep as
																 // default
	 :

EXAMPLE 2:	Explicit invocation of an altstep within an alt statement
	 :
	alt {
		[] pCO3.receive {
			 …
			}
		[] a_anotherAltStep();	// explicit call of altstep a_anotherAltStep as an alternative
								// of an alt statement
		[] t_myTimer.timeout {}
	}

EXAMPLE 3:	Explicit, stand-alone invocation of an altstep
	// The statement
	a_anotherAltStep(); // a_anotherAltStep is assumed to be a correctly defined altstep

	//is a shorthand for

	alt {
		[] a_anotherAltStep();
	}

[bookmark: clause_AlternativeBehaviour_Alt][bookmark: _Toc7508683]20.2	The Alt statement
An alt statement expresses sets of possible alternatives that form a tree of possible execution paths.
Syntactical Structure
alt [@nodefault] "{"
			{
 		 "[" [BooleanExpression] "]"
					 ((TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement) StatementBlock)
					 |
					 (AltstepInstance [StatementBlock])
			}
			["[" else "]" StatementBlock]
"}"

Semantic Description
The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or timer events and/or the termination of parallel test components, i.e. it is related to the use of the TTCN‑3 operations receive, trigger, getcall, getreply, catch, check, timeout, done and killed. The alt statement denotes a set of possible events that are to be matched against a particular snapshot.
Execution of alternative behaviour:
When entering an alt statement, a snapshot is taken.
The alternative branches in the alt statement and the top alternatives of invoked altsteps and altsteps that are activated as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their activation determines the evaluation order of the top alternatives in the defaults. The alternative branches in active defaults are reached by the default mechanism described in clause 20.5. If the alt statement contains the @nodefault modifier, all active default alternatives are ignored for the execution of this alt statement.
The individual alternative branches are either branches that may be guarded by a Boolean expression or else-branches, i.e. alternative branches starting with [else].
Else-branches are always chosen and executed when they are reached (see below).
Branches that may be guarded by boolean expressions either invoke an altstep (altstep-branch), or start with a done operation (done-branch), a killed operation (killed-branch), timeout operation (timeout-branch) or a receiving operation (receiving-branch), i.e. receive, trigger, getcall, getreply, catch or a check operation. The evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no Boolean guard is defined, or if the Boolean guard evaluates to true. The branches are processed and executed in the following manner.
An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation of the referenced altstep, i.e. the altstep is invoked and the evaluation of the snapshot continues within the altstep. An altstep-branche may contain an optional statement block. The optional statement block shall be executed only, if an alternative of the altstep referenced in the altstep-branch has been selected and executed.
A done-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of stopped components of the snapshot. The selection causes the execution of the statement block following the done operation. The done operation itself has no further effect.
A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of killed components of the snapshot. The selection causes the execution of the statement block following the killed operation. The killed operation itself has no further effect.
A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event is in the timeout-list of the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event from the timeout-list, and the execution of the statement block following the timeout operation.
A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an assignment of the received information to a variable and the execution of the statement block following the receiving operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is fulfilled but the matching criteria is not. In this case the statement block of the given alternative is not executed.
NOTE 1:	The TTCN‑3 semantics describe the evaluation of a snapshot as a series of indivisible actions of a test component. The semantics do not assume that the evaluation of a snapshot has no duration. During the evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies or exceptions may enter the port queues of the component However, these events do not change the actual snapshot and thus, are not considered for the snapshot evaluation.
NOTE 2:	Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, the execution of receiving operations may empty the queues of unmapped and disconnected ports without causing a test case error.
If none of the alternative branches in the alt statement and top alternatives in the invoked altsteps and active defaults can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an alternative branch is selected and executed, or the test case is stopped by another component or by the test system (e.g. because the MTC is stopped) or with a dynamic error.
The test case shall stop and indicate a dynamic error if a test component is completely blocked. This means none of the alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports contain at least one message, call, reply or exception that do not match.
NOTE 3:	The repetitive procedure of taking a complete snapshot and re-evaluate all alternatives is only a conceptual means for describing the semantics of the alt statement. The concrete algorithm that implements this semantics is outside the scope of the present document.
Selecting/deselecting an alternative:
If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the ("[…]") brackets of the alternative.
Else branch in alternatives:
Any branch in an alt statement can be defined as an else branch by including the else keyword between the opening and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no other alternative textually preceding the else branch has proceeded.
Default mechanism:
It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives unless the @nodefault modifier is present. If an else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.
NOTE 4:	It is also possible to use else in altsteps.
NOTE 5:	It is allowed to use a repeat statement within an else branch.
NOTE 6:	It is allowed to define more than one else branch in an alt statement or in an altstep, however always only the first else branch is executed.
Re-evaluation of alt statements:
The re-evaluation of an alt statement can be specified by using a repeat statement (see clause 20.3).
Invocation of altsteps as alternatives:
TTCN‑3 allows the invocation of altsteps as alternatives in alt statements (see clause 16.2.1). When an altstep is explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.
Continue execution after the alt statement:
Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or invoked defaults is selected and completely executed, or a branch of an altstep used in an altsteps-branch is selected and the branch and the optional statement block following the invoked altstep are completely executed.
Execution also continues with the statement following the alt statement if a break statement is reached in the statement block of the selected branch of an alt statement, of an altstep used in an altstep-branch, or of an altstep invoked as default.
The alt statement can also be left by using a goto statement in the selected branch of the alt (i.e. no branches of altsteps and defaults can be considered in this case), and execution continues with the statement following the label, goto is pointing to.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
1. The open and close square brackets ("[…]") shall be present at the start of each alternative, even if they are empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from another.
The evaluation of a Boolean expression guarding an alternative shall not have side effects. To avoid side effects that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions as the restrictions for the initialization of local definitions within altsteps (clause 16.1.5) and the restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply.
The evaluation of the event of an alt branch shall not have side effects. To avoid side effects that cause an inconsistency between the actual snapshot and the state of the component or introduce indeterminism in the evaluation of the following alt branches or the re-evaluation of the same alt branch, the restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply to expressions occurring in the matching part of an alternative.
The evaluation of an altstep invoked from an alt branch, if none of the alternatives in the altstep is chosen, shall not have side effects. To avoid side effects the restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply to the actual parameters of the invoked altstep.
Void.
An alt statement used inside control behaviour shall only contain timeout statements.
Examples
EXAMPLE 1:	Nested alternatives
	alt {
		[] myPort.receive (mw_myMessage) {
			setverdict (pass);
			t_myTimer.start;
			alt {
				[] myPort.receive (mw_mySecondMessage) {
					t_myTimer.stop;
					setverdict (pass);
				}
				[] t_myTimer.timeout {
					myPort.send (m_myRepeat);
					t_myTimer.start;
					alt {
						[] myPort.receive (mw_mySecondMessage) {
							t_myTimer.stop;
							setverdict (pass)
						}
						[] t_myTimer.timeout { setverdict (inconc) }
						[] myPort.receive { setverdict (fail) }
					}
				}
				[] myPort.receive { setverdict (fail) }
			}
		}
		[] t_myTimer.timeout { setverdict (inconc) }
		[] myPort.receive { setverdict (fail) }
	}

EXAMPLE 2:	Alt statement with guards
	alt {
	 [v_x>1] l2.receive {					// Boolean guard/expression
			 setverdict(pass);
	 }
	 [v_x<=1] l2.receive {					// Boolean guard/expression
			 setverdict(inconc);
	 }
	}
	

EXAMPLE 3:	Alt statement with else branch
	// Use of alternative with Boolean expressions (or guard) and else branch
	alt {
	 :
	 [else] {						// else branch
			f_myErrorHandling();
			setverdict(fail);
			stop;
	 }
	}

EXAMPLE 4:	Re-evaluation with repeat
	alt {
	 [] pCO3.receive {
			v_count := v_count + 1;
			repeat					// usage of repeat
	 }
	 [] t_t1.timeout { }
	 [] any port.receive {
			setverdict(fail);
			stop;
	 }
	}

EXAMPLE 5:	Alt statement with explicitly invoked altstep
	alt {
	 [] pCO3.receive { }
	 [] a_anotherAltStep() { 	// Explicit call of altstep a_anotherAltStep as alternative.
			setverdict(inconc)	// Statement block executed if an alternative within
								// altstep AnotherAltStep has been selected and executed.
 	 }
	 [] t_myTimer.timeout { }
	}

EXAMPLE 6:	Alt statement with forbidden function calls
	alt {
	 [] f_getPort().receive(t(p())) { } // forbidden if f_getPort, t or p has side effects
	 [] a_anotherAltStep(f()); 	 // forbidden if f has side effects
	 [] t_myTimer[i(p())].timeout { } // forbidden if i or p has side effects
 [f_g()] f_getComponent(p()).done {} // forbidden if f_g, f_getComponent or p has side effects
	}

[bookmark: clause_AlternativeBehaviour_DefaultMecha][bookmark: _Toc7508688]20.5.1	The default mechanism
The default mechanism is evoked at the end of each alt statement not annotated with the @nodefault modifier, if due to the actual snapshot none of the specified alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last activated default, and waits for the result of its termination. The termination can be successful or unsuccessful. Unsuccessful means that none of the top alternatives of the altstep (see clause 16.1.5) defining the default behaviour could be selected, successful means that one of the top alternatives of the default has been selected and executed.
[bookmark: bugnotes]NOTE 1:	An interleave statement is semantically equivalent to a nested set of alt statements and the default mechanism also applies to each of these alt statements. This means, the default mechanism also applies to interleave statements. Furthermore, the restrictions imposed on interleave statements in clause 20.4 do not apply to altsteps that are activated as default behaviour for interleave statements.
NOTE 2:	Due to the possibility of defining dynamic test configurations, an alternative in an altstep activated as default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, an altstep invoked as default may execute receiving operations that empty the queues of unmapped and disconnected ports without causing a test case error.
In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default in the list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful default execution will also be indicated if the list of defaults is empty.
An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked (see clause 20.1).
In the case of a successful termination, the default may either stop the test component by means of a stop statement, or the main control flow of the test component will continue immediately after the alt statement from which the default mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has to be specified by means of a repeat statement (see clause 20.3). If the execution of the selected top alternative of the default ends with a break statement or without a repeat statement the control flow of the test component will continue immediately after the alt statement.
NOTE 3:	TTCN‑3 does not restrict the implementation of the default mechanism. It may for example be implemented in form of a process that is implicitly called at the end of each alt statement or in form of a separate thread that is only responsible for the default handling. The only requirement is that defaults are called in the reverse order of their activation when the default mechanism has been invoked.
[bookmark: clause_ConfigOps_TCOps_Done][bookmark: _Toc7508708]21.3.7	The Done operation
The done operation allows behaviour executing on a test component to ascertain whether the behaviour running on a different test component has completed. In addition, the done operation allows to retrieve the final local verdict of completed test components, i.e., the value of the local verdict at the time of test component completion.
Syntactical Structure
[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." done
["->" [value ValueRef] [@index value ValueRef]]

Semantic Description
The done operation shall be used in the same manner as a receiving operation or a timeout operation. This means it shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for an alt statement with the done operation as the only alternative. If the @nodefault modifier is placed before a stand-alone done operation, the implicit alt statement also contains the @nodefault modifier.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.
NOTE 1:	The execution of a done operation does not change the state of the test component. Consecutive done operations applied to the same test component will give the same result as long as the test component does not change its state (see clause F.1.2).
When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and stored in variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the name of the variable into which the verdict is stored.
When the all keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It also matches if no PTC has been created.
NOTE 2:	The difference between the done operation applied to a single ptc and the usage of the all keyword leads to the situation that ptc.done does not match if the ptc has never been started but all component.done matches at the same time as it considers only those components that ever have been started.
When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been stopped or killed. Otherwise, the match is unsuccessful.
NOTE 3:	Stopping the behaviour of a non-alive component also results in removing that component from the test system, while stopping an alive-type component leaves the component alive in the test system. In both cases the done operation matches.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-dimensional component arrays.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
a) The done operation can be used for PTCs only.
b) The ObjectReference followed by the done keyword, i.e. used for identifying a specific PTC, shall be of a component type and shall not resolve to a template.
c) The ComponentArrayRef shall be a reference to a completely initialized component array.
d) The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the type verdicttype.
e) The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with all component or any component.
f) The index redirection shall only be used when the operation is used on an any from component array construct.
g) If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
h) If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
i) If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the done operation.
j) The @nodefault modifier is allowed only in stand-alone done statements.
Examples
	// Use of done in alternatives
	alt {
		[]	myPTC.done {
				setverdict(pass)
			}

		[]	any port.receive {
				repeat
			}
	}

	var MyComp v_c := MyComp.create alive;
	v_c.start(f_myPTCBehaviour());
	:
	v_c.done;
		// matches as soon as the function f_myPTCBehaviour (or function/altstep called by it) stops
	v_c.done;
		// matches again, even if the component has not been started again
	if(v_c.running) {v_c.done}
		// in case that some other component has started v_c in the meantime
		// done here matches the end of the next behaviour only, not the previous one

	// the following done as stand-alone statement:
	@nodefault all component.done;

	// has the following meaning:
	alt @nodefault {
		[]	all component.done {}
	}
	// and thus, blocks the execution until all parallel test components have terminated while
	// ignoring all activated default alternatives

	// Retrieving and using the final local verdict of a completed PTC
	var MyComp v_myPTC := MyPTC.create alive;
	var verdicttype v_myPTCverdict := none;
	v_myPTC.start(f_myPTCBehaviour());
	:
	alt {
		[]	v_myPTC.done -> value v_myPTCverdict {
				if (v_myPTCverdict == fail) {
					setverdict(fail);
					stop;
				}
				else {
					setverdict (pass);
				}
			}

		[]	any port.receive {
				repeat
			}
	}

[bookmark: _Toc7508709]21.3.8	The Killed operation
The killed operation allows to ascertain whether a different test component is alive or has been removed from the test system. In addition, the killed operation allows to retrieve the final local verdict of killed test components, i.e., the value of the local verdict at the time when the test component was killed.
Syntactical Structure
[@nodefault] (ObjectReference |
any component |
all component |
any from ComponentArrayRef) "." killed
 ["->" [value ValueRef] [@index value ValueRef]]

Semantic Description
The killed operation shall be used in the same manner as receiving operations. This means it shall not be used in boolean expressions, but it can be used to determine an alternative in an alt statement or as a stand-alone statement in a behaviour description. In the latter case a killed operation is considered to be a shorthand for an alt statement with the killed operation as the only alternative. If the @nodefault modifier is placed before a stand-alone killed operation, the implicit alt statement also contains the @nodefault modifier.

NOTE 1:	When checking normal test components a killed operation matches if it stopped (implicitly or explicitly) the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done operation (see clause 21.3.7). When checking alive-type test components, however, the killed operation matches only if the component has been killed using the kill operation. Otherwise the killed operation is unsuccessful.
NOTE 2:	The execution of a killed operation does not change the state of the test component. Consecutive killed operations applied to the same test component will give the same result as long as the test component does not change its state (see clause F.1.2).
When the all keyword is used with the killed operation, it matches if all PTCs of the test case have ceased to exist. It also matches if no PTC has been created.
When the killed operation is applied to a PTC and matches, the final local verdict of that PTC can be retrieved and stored in a variable of the type verdicttype. This is denoted by the symbol '->' the keyword value followed by the name of the variable into which the verdict is stored.
When the any keyword is used with the killed operation, it matches if at least one PTC ceased to exist. Otherwise, the match is unsuccessful.
When the any from component array notation is used, the components from the referenced array are iterated over and individually checked for being killed from innermost to outermost dimension from lowest to highest index for each dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer array or record of integer variable for multi-dimensional component arrays.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21 and shown in table 16, the following restrictions apply:
1. The killed operation can be used for PTCs only.
1. The ObjectReference followed by the killed keyword, i.e. used for identifying a specific PTC, shall be of a component type and shall not resolve to a template.
1. The ComponentArrayRef shall be a reference to a completely initialized component array.
1. The variable used in the (optional) value clause for storing the final local verdict of a PTC shall be of the type verdicttype.
1. The (optional) value clause for storing the final local verdict of a PTC shall not be used in combination with all component or any component.
1. The index redirection shall only be used when the operation is used on an any from component array construct.
1. If the index redirection is used for single-dimensional component arrays, the type of the integer variable shall allow storing the highest index of the respective array.
1. If the index redirection is used for multi-dimensional component arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
1. If a variable referenced in the @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the killed operation i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the killed operation.
1. The @nodefault modifier is allowed only in stand-alone killed statements.
Examples
	var MyPTCType v_ptc := MyPTCType.create alive;	// create an alive-type test component
	timer t_T:= 10.0;								// create a timer
	t_T.start;										// start the timer
	v_ptc.start(f_myTestBehavior());				// start executing a function on the PTC
	alt {
	[] v_ptc.killed {								// if the PTC was killed during execution …
		t_T.stop;									// … stop the timer and …
		setverdict(inconc);							// … set the verdict to 'inconclusive'
	 }
	[] v_ptc.done {									// if the PTC terminated regularly …
		t_T.stop;									// … stop the timer and …
		v_ptc.start(f_anotherFunction());			// … start another function on the PTC
	 }
	[] t_T.timeout {								// if the timeout occurs before the PTC stopped
		v_ptc.kill;									// … kill the PTC and …
		setverdict(fail);							// … set the verdict to 'fail'
	 }
	}

	// Retrieving and using the final local verdict of a killed PTC
	var MyComp v_myPTC := MyPTC.create alive;
	var verdicttype v_myPTCverdict := none;
	v_myPTC.start(f_myPTCBehaviour());
	:
	alt {
		[]	v_myPTC.done {							// expected termination
					setverdict (pass);
				}
			}
		[]	v_myPTC.killed -> value v_myPTCverdict {
				if (v_MyPTCverdict == none) {		// v_myPTC killed before verdict assignment
					setverdict(fail);
					stop;
				}
				else {
					setverdict (inconc);			// further analysis is needed
					stop;
				}
			}
		[]	any port.receive {
				repeat
			}
	}

[bookmark: _Toc7508722]22.1.4.2	General format of the receiving operations
A receiving operation consists of a receive part and an (optional) assignment part.
The receive part:
a)	specifies the port at which the operation shall take place;
b)	defines a matching part which specifies the acceptable input which will match the statement;
c)	gives an (optional) address expression that uniquely identifies the communication partner (in case of one‑to‑many connections).
The port name, operation name and value part of all receiving operations shall be present. The identification of the communication partner (denoted by the from keyword) is optional and need only be specified in cases of one‑to‑many connections where the receiving entity needs to be explicitly identified.
The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store received messages. In the case of procedure-based ports it is used for storing the in and inout parameters of an accepted call, for storing the return value or for storing exceptions. For the message or parameter value assignment part strong typing is not required, e.g. the variable used for storing a message shall be type-compatible to the type of the incoming message.
In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or call to a variable. This is useful for one-to-many connections where, for example, the same message or call can be received from different components, but the message, reply or exception shall be sent back to the original sending component.
For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may also be used to store the indices that identify the specific port instance where the receiving operation matched.
If a receiving operation is used as a stand-alone statement, the @nodefault modifier can be placed before it to indicate that the implicit alt statement containing the operation as an alternative shall have the @nodefault modifier.
EXAMPLE:
	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment

	myP1.getreply
	(AProc:{?} value 5)
	
	->
	
	param (v_v1)
	sender v_aPeer

	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment

	myP2.receive
	(mw_myTemplate(5,7))
	from v_aPeer
	->
	value v_myVar
	
	

	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment
	(Optional)
port index assignment

	any from p.receive
	(mw_myTemplate(5,7))
	
	->
	
	
	
	@index value v_i

[bookmark: _Toc7508752][bookmark: clause_MsgComm_Receive][bookmark: _Toc7508726]22.2.2	The Receive operation
The receive operation is used to receive a message from an incoming message port queue.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." receive
["(" TemplateInstance ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The receive operation is used to receive a message from an incoming message port queue. The message may be specified by referencing a defined template or can be defined as an in-line template.
The receive operation removes the top message from the associated incoming port queue if, and only if, that top message satisfies all the matching criteria associated with the receive operation.
If the match is not successful, the top message shall not be removed from the port queue i.e. if the receive operation is used as an alternative of an alt statement and it is not successful, the execution of alt statement shall continue with its next alternative.
Matching criteria
The matching criteria are related to the type and value of the message to be received. The type and value of the message to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined template or be specified in-line. An optional type field in the matching criteria to the receive operation shall be used to avoid any ambiguity of the type of the value being received.
NOTE 2:	Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce an abstract value from the received message encoded in a different way than specified by the attributes.
Receiving from a specific sender
In the case of one-to-many connections the receive operation may be restricted to a certain communication partner. This restriction shall be denoted using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 3:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
Storing the received message and parts of the received message
If the match is successful, the value is removed from the port queue and/or parts of this value can be stored in variables or formal parameters. This is denoted by the symbol '->' and the keyword value.
When the keyword value is followed by a name of a variable or formal parameter, the whole received message shall be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the received message.
When the keyword value is followed by a list enframed by a pair of parentheses, the whole received message and/or one or more parts of it can be stored. For each list element that consists only of a variable or formal parameter name the whole message shall be stored in that variable or formal parameter. The type of the variable or formal parameter shall be compatible with the type of the message. Each assignment notation member of the list allows storing the value of the field or element of the received message, which is referenced on the right hand side of the assignment notation (:=), in the variable or formal parameter on the left hand side. The variable or formal parameter shall be type compatible with the type of the referenced field or element.
When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the @decoded modifier. In this case, the referenced field on the right hand side of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
NOTE 4:	The model of the behaviour of this implicit decoding is defined in clause B.1.2.9.
NOTE 5:	The @decoded clause is typically used together with the decmatch matching mechanism in the matching part of the receive statement. Since the decoding procedures for assignment and matching are virtually the same, TTCN-3 tools can be optimized in such a way that only one call to the decoder is made when the receiving statement contains both decmatch matching mechanism and @decoded assignment for the same payload field.
Storing the sender
It is also possible to retrieve and store the component reference or address of the sender of a message. This is denoted by the keyword sender.
When the message is received on a connected port, only the component reference is stored in the following the sender keyword, but the test system shall internally store the component name too, if any (to be used in logging).
Receive any message
A receive operation with no argument list for the type and value matching criteria of the message to be received shall remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
Receive on any port
To receive a message on any port, use the any port keywords.
Receive on any port from a port array
To receive a message on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Stand-alone receive
The receive operation can be used as a stand-alone statement in a behaviour description. In this latter case the receive operation is considered to be shorthand for an alt statement with the receive operation as the only alternative.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
a)	When defining the message in-line, the optional type part shall be present whenever the type of the message being received is ambiguous.
b)	The receive operation shall only be used on message-based ports and the type of the value to be received shall be included in the list of incoming types of the port type definition.
c)	No binding of the incoming values to the terms of the expression or to the template shall occur.
d)	A message received by receive any message shall not be stored, i.e. the value clause shall not be present.
e)	Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an error.
NOTE 6:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
f)	All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause C.5) of the port instance referenced in the receive operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
g)	The PortArrayRef shall be a reference to a completely initialized port array.
h)	The index redirection shall only be used when the operation is used on an any from port array construct.
i)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
j)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
k)	If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the receive operation i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the receive operation.
l)	If the receive operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
m)	When assigning implicitly decoded message fields (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the field to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
n)	The referenced value associated with ValueRef or the return type associated with FunctionInstance followed by the receive keyword, shall be of a port type.
o)	The @nodefault modifier is allowed only in stand-alone receive statements.
Examples
EXAMPLE 1:	Basic receive
	myPort.receive(mw_myTemplate(5, v_myVar));	// Matches a message that fulfils the conditions
												// defined by template mw_myTemplate at port myPort.

	myPort.receive(v_a<v_b);	// Matches a Boolean value that depends on the outcome of v_a<v_b

	myPort.receive(integer:v_myVar);	// Matches an integer value with the value of v_myVar
										// at port myPort

	myPort.receive(v_myVar);				// Is an alternative to the previous example

EXAMPLE 2:	Receiving from a sender, storing the message, parts of the message or the sender
	type MyPayloadType record {
	 integer		messageId,
	 ContentType	content
	}
	type MyType2 record {
	 Header		header,
	 octetstring	payload
	}

	template MyType mw_myTemplate := {
	 messageId := 42,
	 content := ?
	}
	...
	var MyPayloadType v_myVar;
	var integer v_myMessageIdVar, v_myIntegerVar;
	var charstring v_myCharstringVar;
	var address v_myPeer;
	var octetstring v_myVarOne := '00ff'O;

	MyPort.receive(charstring:"Hello")from v_myPeer;	// Matches charstring "Hello" from MyPeer

	MyPort.receive(MyType:?) -> value v_myVar;	// The value of the received message is
												// assigned to v_myVar.

	MyPort.receive(MyType:?) -> value (v_myVar, v_myMessageIdVar:= messageId)
								// The value of the received message is stored in the variable
								// v_myVar and the value of the messageId field of the received
								// message is stored in the variable v_myMessageIdVar.

	MyPort.receive(anytype:?) -> value (v_myIntegerVar:= integer)
								// If the received value is an integer, it is stored in the variable
								// v_myIntegerVar, a test case error otherwise.

	MyPort.receive(charstring:?) -> value (v_myCharstringVar)
								// The received value is stored in the variable v_myCharstringVar;
								// Note that it is the same as to write "value v_myCharstringVar"

	MyPort.receive(A<B) -> sender v_myPeer;		// The address of the sender is assigned to v_myPeer

	MyPort.receive(MyType:{5, v_myVarOne }) -> value v_myVar sender v_myPeer;
	// The received message value is stored in v_myVar and the sender address is stored in
 // v_myPeer.
	MyPort.receive(MyType2:{header := ?, payload := decmatch mw_myTemplate}) 									-> value (v_myVar := @decoded payload);
	// The encoded payload field of the received message is decoded and matched with
	// mw_myTemplate; if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3:	Receive any message
	myPort.receive;							// Removes the top value from myPort.

	myPort.receive from myPeer;				// Removes the top message from myPort if its sender is
											// myPeer

	myPort.receive -> sender v_mySenderVar;	// Removes the top message from myPort and assigns
											// the sender address to v_mySenderVar

EXAMPLE 4:	Receive on any port
	any port.receive(mw_myMessage);

EXAMPLE 5:	Receive on any port from a port array
 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.receive(mw_myMessage) -> @index value v_i;
 // checking receiving mw_myMessage on any port of the port array p and storing the index of the
 // port on which the matching was successful first; if, for example MyMessage is matched first
 // on p[4,2], the content of i will be {4,2}

[bookmark: _Toc7508727]22.2.3	The Trigger operation
The trigger operation is used to await a specific message on an incoming port queue.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." trigger
["(" TemplateInstance ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The trigger operation removes the top message from the associated incoming port queue. If that top message meets the matching criteria, the trigger operation behaves in the same manner as a receive operation. If that top message does not fulfil the matching criteria, it shall be removed from the queue without any further action.
The trigger operation requires the port name, matching criteria for type and value, an optional from restriction (i.e. selection of communication partner) and an optional assignment of the matching message and sender component to variables.
Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.
Trigger from a specific sender
In the case of one-to-many connections the trigger operation may be restricted to a certain communication partner. This restriction shall be denoted using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
Trigger on any message
A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical to the meaning of receive any message.
Trigger on any port
To trigger on a message at any port, use the any port keywords.
Trigger on any port from a port array
To trigger on a message at any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
If any port in the port array which is checked for matching contains a message that does not match, this message is removed and the containing alt statement is re-evaluated, regardless of whether or not other ports in the port array would meet the trigger criteria.
Stand-alone trigger
The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting the message and another alternative consuming all other messages and repeating the alt statement, see ETSI ES 201 873‑4 [1]).
Storing the received message, parts of the received message or the sender
Rules in clause 22.2.2 shall apply.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
a)	The trigger operation shall only be used on message-based ports and the type of the value to be received shall be included in the list of incoming types of the port type definition.
b)	A message received by TriggerOnAnyMessage shall not be assigned to a variable.
c)	Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an error.
NOTE 3:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
d)	All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause C.5) of the port instance referenced in the trigger operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
e)	The PortArrayRef shall be a reference to a completely initialized port array.
f)	The index redirection shall only be used when the operation is used on an any from port array construct.
g)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
h)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
i)	If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the trigger operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the trigger operation.
j)	If the trigger operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
k)	The ObjectReference shall be of a port type.
l)	The @nodefault modifier is allowed only in stand-alone trigger statements.
Examples
EXAMPLE 1:	Basic trigger
	myPort.trigger(MyType:?);
	// Specifies that the operation will trigger on the reception of the first message observed of
	// the type MyType with an arbitrary value at port myPort.

EXAMPLE 2:	Trigger from a sender and with storing message or sender
	myPort.trigger(MyType:?) from myPartner;
	// Triggers on the reception of the first message of type MyType at port myPort
	// received from myPartner.

	myPort.trigger(MyType:?) from myPartner -> value v_myRecMessage;
	// This example is almost identical to the previous example. In addition, the message which
	// triggers i.e. all matching criteria are met, is stored in the variable v_myRecMessage.

	myPort.trigger(MyType:?) -> sender myPartner;
	// This example is almost identical to the first example. In addition, the reference of the
	// sender component will be retrieved and stored in variable myPartner.

	myPort.trigger(integer:?) -> value v_myVar sender v_myPartner;
	// Trigger on the reception of an arbitrary integer value which afterwards is stored in
	// variable v_myVar. The reference of the sender component will be stored in variable MyPartner.

EXAMPLE 3:	Trigger on any message
	myPort.trigger;

	myPort.trigger from myPartner;

	myPort.trigger -> sender v_mySenderVar;

EXAMPLE 4:	Trigger on any port
	any port.trigger

EXAMPLE 5:	Trigger on any port from port array
 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
	var integer v_i[2];
 any from p.trigger(mw_myMessage) -> @index value v_i;
 // Checking if mw_myMessage has been received on any port of the port array p; if yes, the index
 // of the port on which the matching was first successful is stored in the array v_i; if no port
 // succeeds, the top messages are removed and the port array is re-checked.

[bookmark: clause_CommOps_GetcallOp][bookmark: _Toc7508731]22.3.2	The Getcall operation
The getcall operation is used to accept calls.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." getcall
["(" TemplateInstance ")"]
[from Address]
["->" [param "(" { (ValueRef":=" [@decoded ["(" Expression ")"]]												ParameterIdentifier) "," } |
 { (ValueRef| "-") "," }
 ")"]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getcall operation is used to specify that a test component accepts a call from the SUT, or another test component.
The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.
The assignment of in and inout parameter values to variables shall be made in the assignment part of the getcall operation. This allows the use of signature templates in getcall operations in the same manner as templates are used for types.
A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the parameter values of a call.
When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressing a reply or exception to the calling party in a one-to-many configuration).
Accepting any call
A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
Getcall on any port
To getcall on any port is denoted by the any keyword.
Getcall on any port from a port array
To getcall on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
a)	The getcall operation shall only be used on procedure-based ports. The type definition of the port shall include the name of the procedure to which the getcall operation belongs in its in or inout list.
b)	The signature argument of the getcall operation shall not be used to pass in variable names for in and inout parameters.
c)	The ParameterIdentifiers shall be from the corresponding signature definition.
d)	The value assignment part shall not be used with the getcall operation.
e)	Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause shall not be present.
f)	All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause C.5) of the port instance referenced in the getcall operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
g)	The PortArrayRef shall be a reference to a completely initialized port array.
h)	The index redirection shall only be used when the operation is used on an any from port array construct.
i)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
j)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
k)	If a variable referenced in the param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getcall operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getcall operation.
l)	If the getcall operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the type of the variable or parameter referenced in the sender clause.
NOTE 3:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
m)	When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
n)	The ObjectReference shall be of a port type.
o)	The @nodefault modifier is allowed only in stand-alone getcall statements.
Examples
EXAMPLE 1:	Basic getcall
	myPort.getcall(MyProc: s_myProcTemplate(5, v_myVar));	// accepts a call of MyProc at myPort

	myPort.getcall(MyProc:{5, v_myVar}) from myPeer; // accepts a call of MyProc at myPort from
													 // myPeer

EXAMPLE 2:	Getcall with matching and assignments of parameter values to variables
	myPort.getcall(MyProc:{?, ?}) from myPartner -> param (v_myPar1Var, v_myPar2Var);
	// The in or inout parameter values of MyProc are assigned to v_myPar1Var and v_myPar2Var.

	myPort.getcall(MyProc:{5, v_myVar}) -> sender v_mySenderVar;
	// Accepts a call of MyProc at myPort with the in or inout parameters 5 and v_myVar.
	// The address of the calling party is retrieved and stored in v_mySenderVar.

	// The following getcall examples show the possibilities to use matching attributes
	// and omit optional parts, which may be of no importance for the test specification.

	myPort.getcall(MyProc:{5, v_myVar}) -> param(v_myVar1, v_myVar2) sender v_mySenderVar;

	myPort.getcall(MyProc:{5, ?}) -> param(v_myVar1, v_myVar2);

	myPort.getcall(MyProc:{?, v_myVar}) -> param(- , v_myVar2);
	// The value of the first inout parameter is not important or not used

	// The following examples shall explain the possibilities to assign in and inout parameter
	// values to variables. The following signature is assumed for the procedure to be called:

	signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

	myPort.getcall(MyProc2:{?, ?, 3, - , ?}) -> param (v_myVarA, v_myVarB, - , -, v_myVarE);
	// The parameters A, B, and E are assigned to the variables v_myVarA, v_myVarB, and
	// v_myVarE. The out parameter D needs not to be considered.

	myPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (v_myVarA:= A, v_myVarB:= B, v_myVarE:= E);
	// Alternative notation for the value assignment of in and inout parameter to variables. Note,
	// the names in the assignment list refer to the names used in the signature of MyProc2

	myPort.getcall(MyProc2:{1, 2, 3, -, *}) -> param (v_myVarE:= E);
	// Only the inout parameter value is needed for the further test case execution

	// The following example demonstrates the use of encoded parameters:
	signature MyProc3(in integer paramType, octetstring encodedParam);
	template integer mw_int := ?;
	…
	var integer v_myVarX;
	myPort.getcall(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);
	// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:	Accepting any call
	myPort.getcall;					// Removes the top call from myPort.

	myPort.getcall from myPartner;	// Removes a call from myPartner from port myPort

	myPort.getcall -> sender v_mySenderVar;	// Removes a call from myPort and retrieves
											// the address of the calling entity

EXAMPLE 4:	Getcall on any port
	any port.getcall(MyProc:?)

EXAMPLE 5:	Getcall on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.getcall(MyProc:?) -> @index value v_i;
 // checking for an incoming call of the type MyProc on any port of the port array p and storing
 // the index of the port on which the matching was successful first
[bookmark: clause_CommOps_GetreplyOp][bookmark: _Toc7508733]22.3.4	The Getreply operation
The getreply operation is used to handle replies from a previously called procedure.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." getreply
["(" TemplateInstance [value TemplateInstance]")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]
 											 FieldOrTypeReference][","] } ")")
)]
 [param "(" { (ValueRef":=" [@decoded ["(" Expression ")"]]
												ParameterIdentifier) "," } |
 { (ValueRef| "-") "," }
 ")"]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getreply operation is used to handle replies from a previously called procedure.
The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the procedure to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.
Matching against a received return value can be specified by using the value keyword.
A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The assignment of out and inout parameter values to variables shall be made in the assignment part of the getreply operation. This allows the use of signature templates in getreply operations in the same manner as templates are used for types.
The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter values to variables and the retrieval of the address of the sender of the reply. The keyword value is used to retrieve return values and the keyword param is used to retrieve the parameter values of a reply. The keyword sender is used when it is required to retrieve the address of the sender.
When assigning individual parameters or referenced fields of the return value of a reply, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter or field of the return value on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the parameter or referenced field of the return value is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the parameter or referenced field of the return value is not a universal char string, the optional parameter shall not be present.
Get any reply
A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
If GetAnyReply is used in the response and exception handling part of a call operation, it shall only treat replies from the procedure invoked by the call operation.
Get a reply on any port
To get a reply on any port, use the any port keywords.
Get a reply on any port from a port array
To get a reply on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
a)	A getreply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the getreply operation belongs.
b)	The signature argument of the getreply operation shall not be used to pass in variable names for out and inout parameters.
c)	Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the param and value clause shall not be present.
d)	All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the getreply operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
e)	The PortArrayRef shall be a reference to a completely initialized port array.
f)	The index redirection shall only be used when the operation is used on an any from port array construct.
g)	If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
h)	If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
i)	If a variable referenced in the value, param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getreply operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getreply operation.
j)	If the getreply operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender clause.
NOTE 3:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
k)	When assigning implicitly decoded parameters or referenced fields of the return value (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
l)	The ObjectReference shall be of a port type.
m)	The @nodefault modifier is allowed only in stand-alone getreply statements.
Examples
EXAMPLE 1:	Basic getreply
	myPort.getreply(MyProc:{5, ?} value 20);	// Accepts a reply of MyProc with two out or
												// inout parameters and a return value of 20

	myPort.getreply(MyProc2:{ - , 5}) from myPeer;	// Accepts a reply of MyProc2 from myPeer

EXAMPLE 2:	Getreply with storing inout/out parameters and return values in variables
	myPort.getreply(MyProc1:{?, ?} value ?) -> value v_myRetValue param(v_myPar1, v_myPar2);
	// The returned value is assigned to variable v_myRetValue and the value
	// of the two out or inout parameters are assigned to the variables v_myPar1 and v_myPar2.

	myPort.getreply(MyProc1:{?, ?} value ?)-> value v_myRetValue param(- ,v_myPar2) sender mySender;
	// The value of the first parameter is not considered for the further test execution and
	// the address of the sender component is retrieved and stored in the variable mySender.

	// The following examples describe some possibilities to assign out and inout parameter values
	// to variables. The following signature is assumed for the procedure which has been called

	signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

	myPort.getreply(s_aTemplate) -> param(- , - , - , v_myVarOut1, v_myVarInout1);

	myPort.getreply(s_aTemplate) -> param(v_myVarOut1:=D, v_myVarOut2:=E);

	myPort.getreply(MyProc2:{ - , - , - , 3, ?}) -> param(v_myVarInout1:=E);

	// The following example demonstrates the use of encoded parameters:
	signature MyProc3(out integer paramType, out octetstring encodedParam);
	template integer mw_int := ?;
	…
	var integer v_myVarX;
	myPort.getreply(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);
	// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:	Get any reply
	myPort.getreply;				// Removes the top reply from myPort.

	myPort.getreply from myPeer;	// Removes the top reply received from myPeer from myPort.

	myPort.getreply -> sender v_mySenderVar;	// Removes the top reply from myPort and retrieves
												// the address of the sender entity

EXAMPLE 4:	Get a reply on any port
	any port.getreply(Myproc:?)

EXAMPLE 5:	Get a reply on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.getreply(MyProc:?) -> @index value v_i;
 // Getting a reply of the type MyProc on any port of the port array p and
 // storing the index of the port on which the matching was successful first
[bookmark: clause_CommOps_CatchOp][bookmark: _Toc7508735]22.3.6	The Catch operation
The catch operation is used to catch exceptions.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." catch
["(" (Signature ["," TemplateInstance]) | TimeoutKeyword ")"]
[from Address]
["->" [value (ValueRef|
 ("(" { ValueRef[":=" [@decoded ["(" Expression ")"]]												FieldOrTypeReference][","] } ")")
)]
 [sender ValueRef]
 [@index value ValueRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish between different values of the same exception type. If a Signature is given in the parameter list, it is possible to omit the TemplateInstance part if the catch operation shall match any exception value of any of the exception types declared in the definition of the referenced Signature.
The catch operation removes the top exception from the associated incoming port queue if, and only if, that top exception satisfies all the matching criteria associated with the catch operation.
A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the value of an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the sender.
When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the @decoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
The catch operation may be part of the response and exception handling part of a call operation or be used to determine an alternative in an alt statement. If the catch operation is used in the accepting part of a call operation, the information about port name and signature reference to indicate the procedure that raised the exception is redundant, because this information follows from the call operation. However, for readability reasons (e.g. in case of complex call statements) this information shall be repeated.
The Timeout exception
There is one special timeout exception that can be caught by the catch operation. The timeout exception is an emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time (see clause 22.3.1).
Catch any exception
A catch operation with no argument list allows any valid exception to be caught. The most general case is without using the from keyword. CatchAnyException will also catch the timeout exception.
Catch any exception for specific signature
A catch operation using only a Signature reference in the argument list allows any valid exception for that signature to be caught.
Catch on any port
To catch an exception on any port use the any keyword.
Catch on any port from a port array
To catch an exception on any port from a specific port array, indices use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
The catch on any port from a port array operation cannot be used to catch a call timeout.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
1. The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be specified in the signature of the procedure that raised the exception.
1. The type definition of the port shall include in its out or inout list the name of the procedure to which the exception belongs.
a) No binding of the incoming values to the terms of the expression or to the template shall occur. The assignment of the exception values to variables shall be made in the assignment part of the catch operation.
b) Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching criteria (including a from part) and no assignment part is allowed for a catch operation that handles a timeout exception.
c) Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall not be present.
d) If CatchAnyException is used in the response and exception handling part of a call operation, it shall only treat exceptions raised by the procedure invoked by the call operation.
e) All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the catch operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
f) The PortArrayRef shall be a reference to a completely initialized port array.
g) The index redirection shall only be used when the operation is used on an any from port array construct.
h) If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
i) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
j) If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the catch operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the catch operation.
k) If the catch operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender clause.
NOTE 3:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
l) When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
m) The referenced value associated with Ref or the return type associated with FunctionInstance followed by the catch keyword, shall be of a port type.
n) If no TemplateInstance is provided in the parameter list, then also no value clause shall be present in the redirection part.
o) The @nodefault modifier is allowed only in stand-alone catch statements.
Examples
EXAMPLE 1:	Basic catch
	myPort.catch(MyProc, integer: v_myVar);	 // Catches an integer exception of value
											 // v_myVar raised by MyProc at port myPort.

	myPort.catch(MyProc, v_myVar);			 // Is an alternative to the previous example.

	myPort.catch(MyProc, v_a<v_b);			 // Catches a boolean exception

	myPort.catch(MyProc, MyType:{5, v_myVar}); // In-line template definition of an exception value.

	myPort.catch(MyProc, charstring:"Hello")from myPeer;	// Catches "Hello" exception from myPeer

EXAMPLE 2:	Catch with storing value and/or sender in variables
	myPort.catch(MyProc, MyType:?) from myPartner -> value v_myVar;
	// Catches an exception from myPartner and assigns its value to v_myVar.

	myPort.catch(MyProc, s_myTemplate(5)) -> value v_myVarTwo sender myPeer;
	// Catches an exception, assigns its value to v_myVarTwo and retrieves the
	// address of the sender.

	myPort.catch(MyProc, s_myTemplate(5)) -> value (v_myVarThree:= f1)
										 	 sender myPeer;
	// Catches an exception, assigns the value of its field f1 to v_myVarThree and retrieves the
	// address of the sender.

	// Handling encoded exception payload:

	type MyException record {
	 ...
	}
	type CommonException record {
	 integer		exceptionId,
	 octetstring	payload
	}

	signature S() exception (CommonException);
	...

	var MyException v_myVar;

	myPort.catch (S, CommonException:{exceptionId := 25, payload := decmatch MyException:? }) 										-> value (v_myVar := @decoded payload);
	// The encoded payload field of the caught exception is decoded and matched with m_excTemplate;
 // if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3:	The Timeout exception
	myPort.call(MyProc:{5, v_myVar}, 20E-3) {
	 [] myPort.getreply(MyProc:{?, ?}) { }
	 [] myPort.catch(timeout) {				// timeout exception after 20ms
			setverdict(fail);
			stop;
	 }
	}

EXAMPLE 4:	Catch any exception
	myPort.catch;

	myPort.catch from myPartner;

	myPort.catch -> sender v_mySenderVar;

	myPort.catch(MyProc); // catch any exception raised by procedure MyProc

EXAMPLE 5:	Catch on any port
	any port.catch;

EXAMPLE 6:	Catch on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.catch(MyProc, MyType:?) -> @index value v_i;
 // Catching an incoming exception of type MyType on any port in the port array p and
 // storing the index of the port on which the matching was successful first

[bookmark: clause_CommOps_CheckOp][bookmark: _Toc7508736]22.4	The Check operation
The check operation allows reading the top element of a message‑based or procedure‑based incoming port queue.
Syntactical Structure
[@nodefault] (ObjectReference | any port | any from PortArrayRef) "." check
["("
		(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |
		([from Address]
 ["->" [sender ValueRef]
 [@index value ValueRef]])
 ")"]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The check operation is a generic operation that allows read access to the top element of message‑based and procedure‑based incoming port queues without removing the top element from the queue. The check operation has to handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be caught and replies from previous calls at procedure-based ports.
The receiving operations receive, getcall, getreply and catch together with their matching and value, sender or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the information to be optionally extracted.
It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the queue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the receiving operation specified in the check operation is performed on the copy. The check operation fails if the receiving operation fails i.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are stored in the associated variables.
If check is used as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check operation as the only alternative.
Check from a specific sender
In the case of one-to-many connections the check operation may be restricted to a certain communication partner. This restriction shall be denoted using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:	The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
Check any operation
A check operation with no argument list allows checking whether something waits for processing in an incoming port queue. The check any operation allows to distinguish between different senders (in case of one-to-many connections) by using a from clause and to retrieve the sender by using a shorthand assignment part with a sender clause.
Check on any port
To check on any port, use the any port keywords.
Check on any port from a port array
To check on any port from a specific port array, indices use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
1. Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall cause a test case error.
1. All AddressRef items in the from clause and all ValueRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause C.5) of the port instance referenced in the check operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.
1. The PortArrayRef shall be a reference to a completely initialized port array.
1. The index redirection shall only be used when the operation is used on an any from port array construct.
1. If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
1. If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
1. If a variable referenced in the sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the check operation.
1. If the check operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender clause.
1. The ObjectReference shall be of a port type.
1. The @nodefault modifier is allowed only in stand-alone check statements.
NOTE 3:	In most cases the correct usage of the check operation can be checked statically, i.e. before/during compilation.
NOTE 4:	An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.
Examples
EXAMPLE 1:	Basic check
	myPort1.check(receive(5));	// Checks for an integer message of value 5.

	myPort1.check(receive(charstring:?) -> value v_myCharVar);
	// Checks for a charstring message and stores the message if the message type is charstring

	myPort2.check(getcall(MyProc:{5, v_myVar}) from myPartner);
	// Checks for a call of MyProc at port myPort2 from myPartner

	myPort2.check(getreply(MyProc:{5, v_myVar} value 20));
	// Checks for a reply from procedure MyProc at myPort2 where the returned value is 20 and
	// the values of the two out or inout parameters are 5 and the value of v_myVar.

	myPort2.check(catch(MyProc, s_myTemplate(5, v_myVar)));

	myPort2.check(getreply(MyProc1:{?, v_myVar} value *)-> value v_myReturnValue param(v_myPar1,-));

	myPort.check(getcall(MyProc:{5, v_myVar}) from myPartner -> param (v_myPar1Var, v_myPar2Var));

	myPort.check(getcall(MyProc:{5, v_myVar}) -> sender v_mySenderVar);

EXAMPLE 2:	Check any operation
	myPort.check;

	myPort.check(from myPartner);

	myPort.check(-> sender v_mySenderVar);

EXAMPLE 3:	Check on any port
	any port.check;

EXAMPLE 4:	Check on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer v_i[2];
 any from p.check(catch(MyProc, MyType:?)) -> @index value v_i;
 // Checking for an incoming exception of the type MyType on any port of the port array p and
 // storing the index of the port on which the matching was successful first

23.6	The Timeout operation
The timeout operation allows to check the expiration of timers.
Syntactical Structure
[@nodefault] (ObjectReference | any timer | any from TimerArrayRef) "." timeout
["->" @index value ValueRef]

Semantic Description
The timeout operation allows to check the expiration of a specific timer in the scope unit of a test component or control component in which the timeout operation has been called or of any timer that has been started on a test component or control component before entering the scope in which the timeout operation has been called.
When a timeout operation is processed, if a timer name is indicated, the timeout-list is searched according to the TTCN‑3 scope rules. If there is a timeout event matching the timer name, that event is removed from the timeout-list, and the timeout operation succeeds.
The timeout can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour description. In the latter case a timeout operation is considered to be shorthand for an alt statement with the timeout operation as the only alternative. If the @nodefault modifier is placed before a stand-alone timeout operation, the implicit alt statement also contains the @nodefault modifier.
The any keyword used with the timeout operation succeeds if the timeout-list is not empty. In this case a randomly chosen timeout event is removed from the timeout-list.
When the any from TimerArrayRef notation is used, where TimerArrayRef shall be a timer array identifier, the timers from the referenced array are iterated over and individually checked for timeout from innermost to outermost dimension from lowest to highest index for each dimension. The first timer to be found in the timeout-list causes that timer to be removed from the list and the timeout operation succeeds. The index of the matched timer can be optionally stored in an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-dimensional timer arrays.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 16, the following restrictions apply:
1. The timeout operation does not return any value and therefore shall not be used in an expression.
1. TimerArrayRef shall be a reference to a completely initialized timer array.
1. The index redirection shall only be used for any from timer array timeout operations.
1. [bookmark: _GoBack]If the index redirection is used for single-dimensional timer arrays, the type of the integer variable shall allow storing the highest index of the respective timer array.
1. If the index redirection is used for multi-dimensional timer arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow storing the highest index (from all dimensions) of the timer array.
1. The ObjectReference shall be of the timer type.
1. The @nodefault modifier is allowed only in stand-alone timeout statements.
Examples
EXAMPLE 1:	Timeout of a specific timer
	t_myTimer1.timeout;	// checks for the timeout of the previously started timer MyTimer1

EXAMPLE 2:	Timeout of an arbitrary timer
	any timer.timeout; // checks for the timeout of any previously started timer

EXAMPLE 3:	Timeout of a timer from a timer array
 	timer t_myTimerArray[2][2];
 	var integer v_i[2];
	any from t_myTimerArray.timeout -> @index value v_i;
	// checks for the timeout of any timer from array
 // assigns index of matched timer to v_i
[bookmark: _Toc7508792][bookmark: _Toc7508790]A.1.5.0	General
TTCN‑3 terminal symbols and reserved words are listed in tables A.2 and A.3.
[bookmark: annex_BNF_SpecialTerminalSymbols]Table A.2: List of TTCN‑3 special terminal symbols
	Begin/end block symbols
	{ }

	Begin/end list symbols
	()

	Element specifier symbols
	[]

	Range symbol
	..

	Line and block comments
	/* */ //

	Statement separator symbol
	;

	Arithmetic operator symbols
	+ / - *

	Concatenation operator symbol
	&

	Relational operator symbols
	!= == >= <= < >

	Shift operator symbols
	<< >>

	Rotate operator symbols
	<@ @>

	String enclosure symbols
	" '

	Wildcard/matching symbols
	? *

	Assignment symbol
	:=

	Communication operation assignment
	->

	Bitstring, hexstring and Octetstring values
	B H O

	Float exponent
	E

	List element separator symbol
	,

	Field reference
	.

	Decoded field reference
	=>

The predefined function identifiers defined in table 15 and described in annex C shall also be treated as reserved words.
Table A.3: List of TTCN‑3 terminals which are reserved words
	action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
decmatch
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external
	fail
false
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc
	noblock
none
not
not_a_number
not4b
nowait
null

octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record

recursive
rem
repeat
reply
return
running
runs
	select
self
send
sender
set
setencode
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

The TTCN‑3 terminals listed in table A.3 shall not be used as identifiers in a TTCN‑3 module. These terminals shall be written in all lowercase letters.
Additionally, there are special TTCN-3 terminals consisting of an @-symbol, directly followed by an identifier. These terminals shall also be written in all lowercase letters.
NOTE:	These terminals can be used in combination with the @-symbol, which results in a specific semantics for the annotated language element. They can also be used like any other identifier without any special meaning.
Table A.4: List of TTCN‑3 terminals which are modifiers
	@decoded
@default
@deterministic
	@fuzzy
@index
	@lazy
@local
	@nocase
@nodefault

[bookmark: tab_Keywords_InExtensions]Table A.5: List of TTCN‑3 terminals which are reserved words in extension packages
	apply
assert
at

configuration
conjunct
cont

delta
disjunct
duration

finished

	history

implies
inv

mode

notinv
now

onentry
onexit

	par
prev

realtime

seq
setstate
static
stepsize
stream

	
timestamp

until

values

wait

The TTCN‑3 terminals listed in table A.5 are used as keywords inside the TTCN-3 extension packages. Using these terminals in the code is not recommended as it might lead to issues in the future.
These terminals shall be written in all lowercase letters.
A.1.6	TTCN-3 syntax BNF productions
[bookmark: _Toc7508793]A.1.6.0	TTCN-3 module
[bookmark: TTTCN3Module]TTCN3Module ::= TTCN3ModuleKeyword ModuleId "{" [ModuleDefinitionsList]
 "}" [WithStatement] [SemiColon]
[bookmark: TTTCN3ModuleKeyword]TTCN3ModuleKeyword ::= "module"
[bookmark: TModuleId]ModuleId ::= Identifier [LanguageSpec]
[bookmark: TLanguageSpec]LanguageSpec ::= LanguageKeyword FreeText {"," FreeText}
[bookmark: TLanguageKeyword]LanguageKeyword ::= "language"

[bookmark: _Toc7508794]A.1.6.1	Module definitions part
[bookmark: _Toc7508795]A.1.6.1.0	General
[bookmark: TModuleDefinitionsList]ModuleDefinitionsList ::= {ModuleDefinition [SemiColon]}+
[bookmark: TModuleDefinition]ModuleDefinition ::= (([Visibility] (TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 ExtFunctionDef |
										ModuleControlDef
)) |
 (["public"] GroupDef) |
 (["private"] FriendModuleDef)
) [WithStatement]
[bookmark: TVisibility]Visibility ::= "public" |
 "friend" |
 "private"

[bookmark: _Toc7508796]A.1.6.1.1	Typedef definitions
[bookmark: TTypeDef]TypeDef ::= TypeDefKeyword TypeDefBody
[bookmark: TTypeDefBody]TypeDefBody ::= StructuredTypeDef | SubTypeDef
[bookmark: TTypeDefKeyword]TypeDefKeyword ::= "type"
[bookmark: TStructuredTypeDef]StructuredTypeDef ::= RecordDef |
 UnionDef |
 SetDef |
 RecordOfDef |
 SetOfDef |
 EnumDef |
 PortDef |
 ComponentDef
[bookmark: TRecordDef]RecordDef ::= RecordKeyword StructDefBody
[bookmark: TRecordKeyword]RecordKeyword ::= "record"
[bookmark: TStructDefBody]StructDefBody ::= IdentifierOrAddr "{" [StructFieldDef
 {"," StructFieldDef}]
 "}"
[bookmark: TStructFieldDef]StructFieldDef ::= (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
 [OptionalKeyword]
[bookmark: TNestedTypeDef]NestedTypeDef ::= NestedRecordDef |
 NestedUnionDef |
 NestedSetDef |
 NestedRecordOfDef |
 NestedSetOfDef |
 NestedEnumDef
[bookmark: TNestedRecordDef]NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}]
 "}"
[bookmark: TNestedUnionDef]NestedUnionDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef}
 "}"
[bookmark: TNestedSetDef]NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}]
 "}"
[bookmark: TNestedRecordOfDef]NestedRecordOfDef ::= RecordKeyword [StringLength] OfKeyword (Type |
 NestedTypeDef)
[bookmark: TNestedSetOfDef]NestedSetOfDef ::= SetKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
[bookmark: TNestedEnumDef]NestedEnumDef ::= EnumKeyword "{" EnumerationList "}"
[bookmark: TOptionalKeyword]OptionalKeyword ::= "optional"
[bookmark: TUnionDef]UnionDef ::= UnionKeyword UnionDefBody
[bookmark: TUnionKeyword]UnionKeyword ::= "union"
[bookmark: TUnionDefBody]UnionDefBody ::= IdentifierOrAddr "{" UnionFieldDef {","
 UnionFieldDef}
 "}"
[bookmark: TUnionFieldDef]UnionFieldDef ::= [DefaultModifier] (Type | NestedTypeDef) Identifier [ArrayDef] [SubTypeSpec]
/** STATIC SEMANTICS: at most one UnionFieldDef of UnionDefBody or NestedUnionDef shall contain a DefaultModifier */
[bookmark: TSetDef]SetDef ::= SetKeyword StructDefBody
[bookmark: TSetKeyword]SetKeyword ::= "set"
[bookmark: TRecordOfDef]RecordOfDef ::= RecordKeyword [StringLength] OfKeyword StructOfDefBody
[bookmark: TOfKeyword]OfKeyword ::= "of"
[bookmark: TStructOfDefBody]StructOfDefBody ::= (Type | NestedTypeDef) IdentifierOrAddr
 [SubTypeSpec]
[bookmark: TSetOfDef]SetOfDef ::= SetKeyword [StringLength] OfKeyword StructOfDefBody
[bookmark: TEnumDef]EnumDef ::= EnumKeyword IdentifierOrAddr "{" EnumerationList
 "}"
[bookmark: TEnumKeyword]EnumKeyword ::= "enumerated"
[bookmark: TEnumerationList]EnumerationList ::= Enumeration {"," Enumeration}
[bookmark: TEnumeration]Enumeration ::= Identifier ["(" IntegerValueOrRange {"," IntegerValueOrRange } ")"]
[bookmark: TIntegerValueOrRange]IntegerValueOrRange ::= IntegerValue [".." IntegerValue]
[bookmark: TIntegerValue]IntegerValue ::= [Minus] Number
[bookmark: TSubTypeDef]SubTypeDef ::= Type IdentifierOrAddr [ArrayDef] [SubTypeSpec]
[bookmark: TSubTypeSpec]SubTypeSpec ::= AllowedValuesSpec [StringLength] | StringLength

/* STATIC SEMANTICS - AllowedValues shall be of the same type as the field being subtyped */
[bookmark: TAllowedValuesSpec]AllowedValuesSpec ::= "(" ((TemplateOrRange {"," TemplateOrRange}) |
 CharStringMatch) ")"
[bookmark: TTemplateOrRange]TemplateOrRange ::= RangeDef |
 TemplateBody |
 Type

/* STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal charstring or float based types */

/* STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not be mixed in the same SubTypeSpec */
[bookmark: TRangeDef]RangeDef ::= Bound ".." Bound
[bookmark: TStringLength]StringLength ::= LengthKeyword "(" SingleExpression [".."(SingleExpression | InfinityKeyword)] ")"

/* STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and record of. SingleExpression and Bound shall evaluate to non-negative integer values (in case of Bound including infinity) */
[bookmark: TLengthKeyword]LengthKeyword ::= "length"
[bookmark: TPortDef]PortDef ::= PortKeyword PortDefBody
[bookmark: TPortDefBody]PortDefBody ::= Identifier PortDefAttribs
[bookmark: TPortKeyword]PortKeyword ::= "port"
[bookmark: TPortDefAttribs]PortDefAttribs ::= MessageAttribs |
 ProcedureAttribs |
 MixedAttribs
[bookmark: TMessageAttribs]MessageAttribs ::= MessageKeyword "{" {(AddressDecl |
 MessageList |
 ConfigParamDef
) [SemiColon]}+ "}"
[bookmark: TConfigParamDef]ConfigParamDef ::= MapParamDef | UnmapParamDef
[bookmark: TMapParamDef]MapParamDef ::= MapKeyword ParamKeyword "(" FormalValuePar {"," FormalValuePar}
 ")"
[bookmark: TUnmapParamDef]UnmapParamDef ::= UnmapKeyword ParamKeyword "(" FormalValuePar {","
 FormalValuePar}
 ")"
[bookmark: TAddressDecl]AddressDecl ::= AddressKeyword Type
[bookmark: TMessageList]MessageList ::= Direction AllOrTypeList
[bookmark: TDirection]Direction ::= InParKeyword |
 OutParKeyword |
 InOutParKeyword
[bookmark: TMessageKeyword]MessageKeyword ::= "message"
[bookmark: TAllOrTypeList]AllOrTypeList ::= AllKeyword | TypeList

/* NOTE: The use of AllKeyword in port definitions is deprecated */
[bookmark: TAllKeyword]AllKeyword ::= "all"
[bookmark: TTypeList]TypeList ::= Type {"," Type}
[bookmark: TProcedureAttribs]ProcedureAttribs ::= ProcedureKeyword "{" {(AddressDecl |
 ProcedureList |
 ConfigParamDef
) [SemiColon]}+ "}"
[bookmark: TProcedureKeyword]ProcedureKeyword ::= "procedure"
[bookmark: TProcedureList]ProcedureList ::= Direction AllOrSignatureList
[bookmark: TAllOrSignatureList]AllOrSignatureList ::= AllKeyword | SignatureList
[bookmark: TSignatureList]SignatureList ::= Signature {"," Signature}
[bookmark: TMixedAttribs]MixedAttribs ::= MixedKeyword "{" {(AddressDecl |
 MixedList |
 ConfigParamDef
) [SemiColon]}+ "}"
[bookmark: TMixedKeyword]MixedKeyword ::= "mixed"
[bookmark: TMixedList]MixedList ::= Direction ProcOrTypeList
[bookmark: TProcOrTypeList]ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
[bookmark: TProcOrType]ProcOrType ::= Signature | Type
[bookmark: TComponentDef]ComponentDef ::= ComponentKeyword Identifier [ExtendsKeyword ComponentType
 {"," ComponentType}] "{"
 [ComponentDefList] "}"
[bookmark: TComponentKeyword]ComponentKeyword ::= "component"
[bookmark: TExtendsKeyword]ExtendsKeyword ::= "extends"
[bookmark: TComponentType]ComponentType ::= ExtendedIdentifier
[bookmark: TComponentDefList]ComponentDefList ::= {ComponentElementDef [WithStatement] [SemiColon]}
[bookmark: TComponentElementDef]ComponentElementDef ::= PortInstance |
 VarInstance |
 TimerInstance |
 ConstDef |
 TemplateDef
[bookmark: TPortInstance]PortInstance ::= PortKeyword ExtendedIdentifier PortElement {"," PortElement}
[bookmark: TPortElement]PortElement ::= Identifier [ArrayDef]

[bookmark: _Toc7508797]A.1.6.1.2	Constant definitions
[bookmark: TConstDef]ConstDef ::= ConstKeyword Type ConstList
[bookmark: TConstList]ConstList ::= SingleConstDef {"," SingleConstDef}
[bookmark: TSingleConstDef]SingleConstDef ::= Identifier [ArrayDef] AssignmentChar ConstantExpression
[bookmark: TConstKeyword]ConstKeyword ::= "const"

[bookmark: _Toc7508798]A.1.6.1.3	Template definitions
[bookmark: TTemplateDef]TemplateDef ::= TemplateKeyword [TemplateRestriction] [FuzzyModifier [DeterministicModifier]]
 BaseTemplate [DerivedDef] AssignmentChar BaseTemplateBody
[bookmark: TBaseTemplate]BaseTemplate ::= (Type | Signature) Identifier ["(" TemplateOrValueFormalParList
 ")"]
[bookmark: TTemplateKeyword]TemplateKeyword ::= "template"
[bookmark: TDerivedDef]DerivedDef ::= ModifiesKeyword ExtendedIdentifier
[bookmark: TModifiesKeyword]ModifiesKeyword ::= "modifies"
[bookmark: TTemplateOrValueFormalParList]TemplateOrValueFormalParList ::= TemplateOrValueFormalPar {"," TemplateOrValueFormalPar}
[bookmark: TTemplateOrValueFormalPar]TemplateOrValueFormalPar ::= FormalValuePar | FormalTemplatePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */
TemplateBody ::= DerivedTemplateBody | BaseTemplateBody
[bookmark: TTemplateBody]BaseTemplateBody ::= (SimpleSpec |
 FieldSpecList |
 ArrayValueOrAttrib
) [ExtraMatchingAttributes]

/* STATIC SEMANTICS - Within BaseTeplateBody the ArrayValueOrAttrib can be used for array, record, record of and set of types. */
[bookmark: TSimpleSpec]SimpleSpec ::= (SingleExpression ["&" SimpleTemplateSpec]) | SimpleTemplateSpec
[bookmark: TSimpleTemplateSpec]SimpleTemplateSpec ::= SingleTemplateExpression ["&" SimpleSpec]
[bookmark: TSingleTemplateExpression]SingleTemplateExpression ::= MatchingSymbol |
 ({TemplateRefWithParList [ExtendedFieldReference]) |
 ExtendedIdentifier EnumTemplateExtension
/** STATIC Semantics: ExtendedIdentifier shall refer to an enumerated value with associated value */
[bookmark: TEnumTemplateExtension]EnumTemplateExtension ::= "(" (BaseTemplateBody | Range) {"," (BaseTemplateBody | Range) } ")"
/** STATIC Semantics: each TemplateBody shall be an integer template template and the limits of each Range an integer value*/
[bookmark: TFieldSpecList]FieldSpecList ::= "{" FieldSpec {"," FieldSpec} "}"
[bookmark: TFieldSpec]FieldSpec ::= FieldReference AssignmentChar (TemplateBody | Minus)
[bookmark: TFieldReference]FieldReference ::= StructFieldRef |
 ArrayOrBitRef |
 ParRef
[bookmark: TStructFieldRef]StructFieldRef ::= Identifier |
 PredefinedType |
 TypeReference

/* STATIC SEMANTICS - PredefinedType and TypeReference shall be used for anytype value notation only. PredefinedType shall not be AnyTypeKeyword.*/
[bookmark: TParRef]ParRef ::= Identifier

/* STATIC SEMANTICS - Identifier in ParRef shall be a formal parameter identifier from the associated signature definition */
[bookmark: TArrayOrBitRef]ArrayOrBitRef ::= "[" FieldOrBitNumber "]"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set of. The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal charstring, bitstring, octetstring and hexstring type */
[bookmark: TFieldOrBitNumber]FieldOrBitNumber ::= SingleExpression

/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
[bookmark: TArrayValueOrAttrib]ArrayValueOrAttrib ::= "{" [ArrayElementSpecList] "}"
[bookmark: TArrayElementSpecList]ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}
[bookmark: TArrayElementSpec]ArrayElementSpec ::= Minus |
 PermutationMatch |
 TemplateBody
[bookmark: TMatchingSymbol]MatchingSymbol ::= Complement |
 (AnyValue [WildcardLengthMatch]) |
 (AnyOrOmit [WildcardLengthMatch]) |
 ListOfTemplates |
 Range |
 BitStringMatch |
 HexStringMatch |
 OctetStringMatch |
 CharStringMatch |
 SubsetMatch |
 SupersetMatch |
 DecodedContentMatch
[bookmark: TDecodedContentMatch]DecodedContentMatch ::= DecodedMatchKeyword ["(" [Expression] ")"] TemplateInstance
[bookmark: TDecodedMatchKeyword]DecodedMatchKeyword ::= "decmatch"

/* STATIC SEMANTIC – WildcardLengthMatch shall be used when MatchingSymbol is used in fractions of a concatenated string or list (see clause 15.11) and shall not be used in other cases. In this case, the Complement, ListOfTemplates, Range, BitStringMatch, HexStringMatch, OctetStringMatch, CharStringMatch, SubsetMatch and SupersetMatch productions shall not be used. */
[bookmark: TExtraMatchingAttributes]ExtraMatchingAttributes ::= StringLength |
 IfPresentKeyword |
 (StringLength IfPresentKeyword)
[bookmark: TBitStringMatch]BitStringMatch ::= "'" {BinOrMatch} "'" "B"
[bookmark: TBinOrMatch]BinOrMatch ::= Bin |
 AnyValue |
 AnyOrOmit
[bookmark: THexStringMatch]HexStringMatch ::= "'" {HexOrMatch} "'" "H"
[bookmark: THexOrMatch]HexOrMatch ::= Hex |
 AnyValue |
 AnyOrOmit
[bookmark: TOctetStringMatch]OctetStringMatch ::= "'" {OctOrMatch} "'" "O"
[bookmark: TOctOrMatch]OctOrMatch ::= Oct |
 AnyValue |
 AnyOrOmit
[bookmark: TCharStringMatch]CharStringMatch ::= PatternKeyword [CaseInsenModifier] PatternParticle {"&" PatternParticle}
[bookmark: TPatternParticle]PatternParticle ::= Pattern | ReferencedValue
[bookmark: TPatternKeyword]PatternKeyword ::= "pattern"
[bookmark: TPattern]Pattern ::= """ {PatternElement} """
[bookmark: TPatternElement]PatternElement ::= (("\" ("?" | "*" | "\" | "[" | "]" | "{" | "}" |
 """ | "|" | "(" | ")" | "#" | "+" | "d" |
 "w" | "t" | "n" | "r" | "s" | "b"
)) | ("?" | "*" | "\" | "|" | "+"
) | ("[" ["^"] [{PatternClassChar ["-"
 PatternClassChar]}]
 "]") |
 ("{" ["\"] ReferencedValue "}") | ("\" "N" "{"
 (ReferencedValue |
 Type) "}") |
 (""" """) |
 ("(" PatternElement ")") |
 ("#" (Num |
 ("(" Number "," [Number] ")") |
 ("(" "," Number ")") |
 ("(" [","] ")") Num ")"
))
) | PatternChar
[bookmark: TPatternChar]PatternChar ::= NonSpecialPatternChar | PatternQuadruple

/* STATIC SEMANTICS: Characters "?", "*", "\", "[", "]", "{", "}", """, "|", "(", ")", "#", "+", "d", "^", "N" have special semantics – they are metacharacters for the definition of pattern elements – only if they follow the BNF as defined above, if not they are interpreted like normal characters */
[bookmark: TNonSpecialPatternChar]NonSpecialPatternChar ::= Char
[bookmark: TPatternClassChar]PatternClassChar ::= NonSpecialPatternClassChar |
 PatternQuadruple |
 "\" EscapedPatternClassChar
[bookmark: TNonSpecialPatternClassChar]NonSpecialPatternClassChar ::= Char

/* STATIC SEMANTICS: Characters "[", "-", "^", "]", "\", "q", ","have special semantics – they are metacharacters for the definition of pattern class characters – only if they follow the BNF as defined above, if not they are interpreted like normal characters */
[bookmark: TEscapedPatternClassChar]EscapedPatternClassChar ::= "[" | "-" | "^" | "]"
[bookmark: TPatternQuadruple]PatternQuadruple ::= "\" "q" "(" Number "," Number "," Number ","
 Number ")"
[bookmark: TComplement]Complement ::= ComplementKeyword ListOfTemplates
[bookmark: TComplementKeyword]ComplementKeyword ::= "complement"
[bookmark: TListOfTemplates]ListOfTemplates ::= "(" TemplateListItem {"," TemplateListItem} ")"
[bookmark: TTemplateListItem]TemplateListItem ::= TemplateBody | AllElementsFrom
[bookmark: TAllElementsFrom]AllElementsFrom ::= AllKeyword FromKeyword TemplateBody
[bookmark: TSubsetMatch]SubsetMatch ::= SubsetKeyword ListOfTemplates
[bookmark: TSubsetKeyword]SubsetKeyword ::= "subset"
[bookmark: TSupersetMatch]SupersetMatch ::= SupersetKeyword ListOfTemplates
[bookmark: TSupersetKeyword]SupersetKeyword ::= "superset"
[bookmark: TPermutationMatch]PermutationMatch ::= PermutationKeyword ListOfTemplates

/* STATIC SEMANTICS: Restrictions on the content of TemplateBody within the ListOfTemplates are given in clause B.1.3.3. */
[bookmark: TPermutationKeyword]PermutationKeyword ::= "permutation"
[bookmark: TAnyValue]AnyValue ::= "?"
[bookmark: TAnyOrOmit]AnyOrOmit ::= "*"
[bookmark: TWildcardLengthMatch]WildcardLengthMatch ::= LengthKeyword "(" SingleExpression ")"

/* STATIC SEMANTICS: SingleExpression shall evaluate to type integer */
[bookmark: TIfPresentKeyword]IfPresentKeyword ::= "ifpresent"
[bookmark: TPresentKeyword]PresentKeyword ::= "present"
[bookmark: TRange]Range ::= "(" Bound ".." Bound ")"
[bookmark: TBound]Bound ::= (["!"] SingleExpression) | ([Minus] InfinityKeyword)

/* STATIC SEMANTICS - Bounds shall evaluate to types integer, charstring, universal charstring or float. In case they evaluate to types charstring or universal charstring, the string length shall be 1. infinity as lower bound and –infinity as upper bound are allowed for float types only. */
[bookmark: TInfinityKeyword]InfinityKeyword ::= "infinity"
[bookmark: TActualParAssignment]ActualParAssignment ::= Identifier ":=" TemplateInstance
[bookmark: TTemplateRefWithParList]/* STATIC SEMANTICS – if a value parameter is used, an in-line template shall evaluate to a value */ TemplateRefWithParList ::= ExtendedIdentifier [ActualParList]
[bookmark: TTemplateInstance]TemplateInstance ::= [(Type | Signature) Colon]
TemplateBody
[bookmark: TDerivedRefWithParList]DerivedTemplateBody ::= ModifiesKeyword BaseTemplateBody AssignmentChar BaseTemplateBody
[bookmark: TActualParList]ActualParList ::= "(" [(ActualPar {"," ActualPar })
 {"," ActualParAssignment} |
 (ActualParAssignment {"," ActualParAssignment})]
 ")"
[bookmark: TActualPar]ActualPar ::= TemplateInstance | Minus

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the TemplateInstance production shall resolve to one or more SingleExpressions */
[bookmark: TTemplateOps]TemplateOps ::= MatchOp | ValueofOp
[bookmark: TMatchOp]MatchOp ::= MatchKeyword "(" Expression "," TemplateInstance ")"
[bookmark: TMatchKeyword]MatchKeyword ::= "match"
[bookmark: TValueofOp]ValueofOp ::= ValueofKeyword "(" TemplateInstance")"
[bookmark: TValueofKeyword]ValueofKeyword ::= "valueof"

[bookmark: _Toc7508799]A.1.6.1.4	Function definitions
[bookmark: TFunctionDef]FunctionDef ::= FunctionKeyword [DeterministicModifier | ControlModifier]
					 IdentifierOrControl
 "(" [FunctionFormalParList] ")" [RunsOnSpec] [MtcSpec]
 [SystemSpec] [ReturnType] StatementBlock
[bookmark: TFunctionKeyword]FunctionKeyword ::= "function"
[bookmark: TFunctionFormalParList]FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
[bookmark: TFunctionFormalPar]FunctionFormalPar ::= FormalValuePar |
 FormalTemplatePar
[bookmark: TReturnType]ReturnType ::= ReturnKeyword [TemplateKeyword | RestrictedTemplate]
 Type [ArrayDef]
[bookmark: TReturnKeyword]ReturnKeyword ::= "return"
[bookmark: TRunsOnSpec]RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
[bookmark: TRunsKeyword]RunsKeyword ::= "runs"
[bookmark: TOnKeyword]OnKeyword ::= "on"
[bookmark: TMtcSpec]MtcSpec ::= MTCKeyword ComponentType
[bookmark: TMTCKeyword]MTCKeyword ::= "mtc"
[bookmark: TStatementBlock]StatementBlock ::= "{" [FunctionDefOrStatementList] "}"
[bookmark: TFunctionStatementList]FunctionDefOrStatementList ::= {(FunctionDef | FunctionStatement) [SemiColon]}+
FunctionDef ::= (FunctionLocalDef | FunctionLocalInst) [WithStatement]
[bookmark: TFunctionLocalInst]FunctionLocalInst ::= VarInstance | TimerInstance
[bookmark: TFunctionLocalDef]FunctionLocalDef ::= ConstDef | TemplateDef
[bookmark: TFunctionStatement]FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 SetLocalVerdict |
 SUTStatements |
 TestcaseOperation
[bookmark: TFunctionInstance]FunctionInstance ::= FunctionRef ["(" [ActualParList] ")"]
/* STATIC SEMANTICS – the part is only optional if the FunctionRef uses the ControlKeyword and the referenced control function has no formal parameters */
[bookmark: TFunctionRef]FunctionRef ::= [Identifier Dot] (Identifier | PreDefFunctionIdentifier | ControlKeyword)
[bookmark: TPreDefFunctionIdentifier]PreDefFunctionIdentifier ::= Identifier [CaseInsenModifier]

/* STATIC SEMANTICS - The Identifier shall be one of the pre-definedpredefined TTCN-3 function identifiers from Annex C of ES 201 873-1. CaseInsenModifier shall be present only if Identifier is "regexp". */
/* STATIC SEMANTICS – if a value parameter is used, an in-line template shall evaluate to a value */

[bookmark: _Toc7508800]A.1.6.1.5	Signature definitions
[bookmark: TSignatureDef]SignatureDef ::= SignatureKeyword Identifier "(" [SignatureFormalParList]
 ")" [ReturnType | NoBlockKeyword] [ExceptionSpec]
[bookmark: TSignatureKeyword]SignatureKeyword ::= "signature"
[bookmark: TSignatureFormalParList]SignatureFormalParList ::= FormalValuePar {"," FormalValuePar}
[bookmark: TExceptionSpec]ExceptionSpec ::= ExceptionKeyword "(" TypeList ")"
[bookmark: TExceptionKeyword]ExceptionKeyword ::= "exception"
[bookmark: TSignature]Signature ::= ExtendedIdentifier
[bookmark: TNoBlockKeyword]NoBlockKeyword ::= "noblock"

[bookmark: _Toc7508801]A.1.6.1.6	Testcase definitions
[bookmark: TTestcaseDef]TestcaseDef ::= TestcaseKeyword Identifier "(" [TemplateOrValueFormalParList]
 ")" ConfigSpec StatementBlock
[bookmark: TTestcaseKeyword]TestcaseKeyword ::= "testcase"
[bookmark: TConfigSpec]ConfigSpec ::= RunsOnSpec [SystemSpec]
[bookmark: TSystemSpec]SystemSpec ::= SystemKeyword ComponentType
[bookmark: TSystemKeyword]SystemKeyword ::= "system"
[bookmark: TTestcaseInstance]TestcaseInstance ::= ExecuteKeyword "(" ExtendedIdentifier "(" [ActualParList]
 ")" ["," (Expression | Minus) ["," SingleExpression]]
 ")"
[bookmark: TExecuteKeyword]ExecuteKeyword ::= "execute"

[bookmark: _Toc7508802]A.1.6.1.7	Altstep definitions
[bookmark: TAltstepDef]AltstepDef ::= AltstepKeyword [ControlModifier] Identifier "(" [FunctionFormalParList]
 ")" [RunsOnSpec] [MtcSpec] [SystemSpec] "{" AltstepLocalDefList
 AltGuardList "}"
[bookmark: TAltstepKeyword]AltstepKeyword ::= "altstep"
[bookmark: TAltstepLocalDefList]AltstepLocalDefList ::= {AltstepLocalDef [WithStatement] [SemiColon]}
[bookmark: TAltstepLocalDef]AltstepLocalDef ::= VarInstance |
 TimerInstance |
 ConstDef |
 TemplateDef
[bookmark: TAltstepInstance]AltstepInstance ::= ExtendedIdentifier "(" [ActualParList]
 ")"

[bookmark: _Toc7508803]A.1.6.1.8	Import definitions
[bookmark: TImportDef]ImportDef ::= ImportKeyword ImportFromSpec [PortRedirectSymbol Identifier]
 (AllWithExcepts | ("{" ImportSpec "}"))
[bookmark: TImportKeyword]ImportKeyword ::= "import"
[bookmark: TAllWithExcepts]AllWithExcepts ::= AllKeyword [ExceptsDef]
[bookmark: TExceptsDef]ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"
[bookmark: TExceptKeyword]ExceptKeyword ::= "except"
[bookmark: TExceptSpec]ExceptSpec ::= {ExceptElement [SemiColon]}
[bookmark: TExceptElement]ExceptElement ::= ExceptGroupSpec |
 ExceptTypeDefSpec |
 ExceptTemplateSpec |
 ExceptConstSpec |
 ExceptTestcaseSpec |
 ExceptAltstepSpec |
 ExceptFunctionSpec |
 ExceptSignatureSpec |
 ExceptModuleParSpec
[bookmark: TExceptGroupSpec]ExceptGroupSpec ::= GroupKeyword (QualifiedIdentifierList | AllKeyword)
[bookmark: TIdentifierListOrAll]IdentifierListOrAll ::= IdentifierList | AllKeyword
[bookmark: TTypeIdListOrAll]TypeIdListOrAll ::= TypeIdentifierList | AllKeyword
[bookmark: TFuncIdListOrAll]FuncIdListOrAll ::= FuncIdentifierList | AllKeyword
[bookmark: TExceptTypeDefSpec]ExceptTypeDefSpec ::= TypeDefKeyword TypeIdListOrAll
[bookmark: TExceptTemplateSpec]ExceptTemplateSpec ::= TemplateKeyword IdentifierListOrAll
[bookmark: TExceptConstSpec]ExceptConstSpec ::= ConstKeyword IdentifierListOrAll
[bookmark: TExceptTestcaseSpec]ExceptTestcaseSpec ::= TestcaseKeyword IdentifierListOrAll
[bookmark: TExceptAltstepSpec]ExceptAltstepSpec ::= AltstepKeyword IdentifierListOrAll
[bookmark: TExceptFunctionSpec]ExceptFunctionSpec ::= FunctionKeyword FuncIdListOrAll
[bookmark: TExceptSignatureSpec]ExceptSignatureSpec ::= SignatureKeyword IdentifierListOrAll
[bookmark: TExceptModuleParSpec]ExceptModuleParSpec ::= ModuleParKeyword IdentifierListOrAll
[bookmark: TImportSpec]ImportSpec ::= {ImportElement [SemiColon]}
[bookmark: TImportElement]ImportElement ::= ImportGroupSpec |
 ImportTypeDefSpec |
 ImportTemplateSpec |
 ImportConstSpec |
 ImportTestcaseSpec |
 ImportAltstepSpec |
 ImportFunctionSpec |
 ImportSignatureSpec |
 ImportModuleParSpec |
 ImportImportSpec
[bookmark: TImportFromSpec]ImportFromSpec ::= FromKeyword ModuleId
[bookmark: TImportGroupSpec]ImportGroupSpec ::= GroupKeyword (GroupRefListWithExcept | AllGroupsWithExcept)
[bookmark: TGroupRefListWithExcept]GroupRefListWithExcept ::= QualifiedIdentifierWithExcept {"," QualifiedIdentifierWithExcept}
[bookmark: TAllGroupsWithExcept]AllGroupsWithExcept ::= AllKeyword [ExceptKeyword QualifiedIdentifierList]
[bookmark: TQualifiedIdentifierWithExcept]QualifiedIdentifierWithExcept ::= QualifiedIdentifier [ExceptsDef]
[bookmark: TIdentifierListOrAllWithExcept]IdentifierListOrAllWithExcept ::= IdentifierList | AllWithExcept
[bookmark: TTypeIdListOrAllWithExcept]TypeIdListOrAllWithExcept ::= TypeIdentifierList | AllTypesExcept
[bookmark: TFuncIdListOrAllWithExcept]FuncIdListOrAllWithExcept ::= FuncIdentifierList | AllFunctionsExcept
[bookmark: TImportTypeDefSpec]ImportTypeDefSpec ::= TypeDefKeyword TypeIdListOrAllWithExcept
[bookmark: TAllWithExcept]AllWithExcept ::= AllKeyword [ExceptKeyword IdentifierList]
[bookmark: TAllTypesExcept]AllTypesExcept ::= AllKeyword [ExceptKeyword TypeIdentifierList]
[bookmark: TAllFunctionsExcept]AllFunctionsExcept ::= AllKeyword [ExceptKeyword FuncIdentifierList]
[bookmark: TImportTemplateSpec]ImportTemplateSpec ::= TemplateKeyword IdentifierListOrAllWithExcept
[bookmark: TImportConstSpec]ImportConstSpec ::= ConstKeyword IdentifierListOrAllWithExcept
[bookmark: TImportAltstepSpec]ImportAltstepSpec ::= AltstepKeyword IdentifierListOrAllWithExcept
[bookmark: TImportTestcaseSpec]ImportTestcaseSpec ::= TestcaseKeyword IdentifierListOrAllWithExcept
[bookmark: TImportFunctionSpec]ImportFunctionSpec ::= FunctionKeyword FuncIdListOrAllWithExcept
[bookmark: TImportSignatureSpec]ImportSignatureSpec ::= SignatureKeyword IdentifierListOrAllWithExcept
[bookmark: TImportModuleParSpec]ImportModuleParSpec ::= ModuleParKeyword IdentifierListOrAllWithExcept
[bookmark: TImportImportSpec]ImportImportSpec ::= ImportKeyword AllKeyword
[bookmark: TTypeIdentifierList]TypeIdentifierList ::= IdentifierOrAddr {"," IdentifierOrAddr }
[bookmark: TIdentifierOrAddr]IdentifierOrAddr ::= Identifier | AddressKeyword
[bookmark: TFuncIdentifierList]FuncIdentifierList ::= IdentifierOrControl {"," IdentifierOrControl }
[bookmark: TIdentifierOrControl]IdentifierOrControl ::= Identifier | ControlKeyword

[bookmark: _Toc7508804]A.1.6.1.9	Group definitions
[bookmark: TGroupDef]GroupDef ::= GroupKeyword Identifier "{" [ModuleDefinitionsList] "}"
[bookmark: TGroupKeyword]GroupKeyword ::= "group"

[bookmark: _Toc7508805]A.1.6.1.10	External function definitions
[bookmark: TExtFunctionDef]ExtFunctionDef ::= ExtKeyword FunctionKeyword [DeterministicModifier]
 Identifier "(" [FunctionFormalParList] ")" [ReturnType]
[bookmark: TExtKeyword]ExtKeyword ::= "external"

[bookmark: _Toc7508806]A.1.6.1.11	Void

[bookmark: _Toc7508807]A.1.6.1.12	Module parameter definitions
[bookmark: TModuleParDef]ModuleParDef ::= ModuleParKeyword (ModulePar | ("{" MultitypedModuleParList
 "}"))
[bookmark: TModuleParKeyword]ModuleParKeyword ::= "modulepar"
[bookmark: TMultitypedModuleParList]MultitypedModuleParList ::= {ModulePar [SemiColon]}
[bookmark: TModulePar]ModulePar ::= [(TemplateKeyword | RestrictedTemplate)] Type ModuleParList
[bookmark: TModuleParList]ModuleParList ::= Identifier [AssignmentChar TemplateBody] {","
 Identifier [AssignmentChar TemplateBody]}

[bookmark: _Toc7508808]A.1.6.1.13	Friend module definitions
[bookmark: TFriendModuleDef]FriendModuleDef ::= "friend" "module" IdentifierList [SemiColon]

[bookmark: _Toc7508809]A.1.6.2	Module control function
[bookmark: TModuleControlDef][bookmark: TModuleControlPart]ModuleControlDef ::= ControlKeyword StatementBlock
[bookmark: TControlKeyword]ControlKeyword ::= "control"

[bookmark: _Toc7508810]A.1.6.3	Local definitions
[bookmark: _Toc7508811]A.1.6.3.1	Variable instantiation
[bookmark: TVarInstance]VarInstance ::= VarKeyword (([(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type VarList) |
 ((TemplateKeyword | RestrictedTemplate)
 [(LazyModifier | FuzzyModifier)) [DeterministicModifier]]
 Type TempVarList))
[bookmark: TVarList]VarList ::= SingleVarInstance {"," SingleVarInstance}
[bookmark: TSingleVarInstance]SingleVarInstance ::= Identifier [ArrayDef] [AssignmentChar Expression]
[bookmark: TVarKeyword]VarKeyword ::= "var"
[bookmark: TTempVarList]TempVarList ::= SingleTempVarInstance {"," SingleTempVarInstance}
[bookmark: TSingleTempVarInstance]SingleTempVarInstance ::= Identifier [ArrayDef] [AssignmentChar TemplateBody]
[bookmark: TValueRef][bookmark: TVariableRef]ValueRef ::= Identifier [ExtendedFieldReference]

[bookmark: _Toc7508812]A.1.6.3.2	Timer instantiation
[bookmark: TTimerInstance]TimerInstance ::= TimerKeyword VarList
[bookmark: TTimerKeyword]TimerKeyword ::= "timer"
[bookmark: TArrayIdentifierRef]ArrayIdentifierRef ::= Identifier {ArrayOrBitRef}

[bookmark: _Toc7508813]A.1.6.4	Operations
[bookmark: _Toc7508814]A.1.6.4.1	Component operations
[bookmark: TConfigurationStatements]ConfigurationStatements ::= ConnectStatement |
 MapStatement |
 DisconnectStatement |
 UnmapStatement |
 [NoDefaultModifier] DoneStatement |
 [NoDefaultModifier] KilledStatement |
 StartTCStatement |
 StopTCStatement |
 KillTCStatement |
 SetEncodeStatement
[bookmark: TConfigurationOps]ConfigurationOps ::= CreateOp |
 SelfOp |
 SystemKeyword |
 MTCKeyword |
 RunningOp |
 AliveOp
[bookmark: TCreateOp]CreateOp ::= ComponentType Dot CreateKeyword ["(" (SingleExpression |
 Minus) ["," SingleExpression] ")"] [AliveKeyword]
[bookmark: TSelfOp]SelfOp ::= "self"
[bookmark: TDoneStatement]DoneStatement ::= ComponentOrAny Dot DoneKeyword [PortRedirectSymbol
 [ValueStoreSpec] [IndexSpec]]
/*STATIC SEMANTICS – If PortRedirectSymbol is present, at least one of ValueStoreSpec and IndexSpec shall be present*/
[bookmark: TComponentOrAny]ComponentOrAny ::= ObjectReference |
 (AnyKeyword (ComponentKeyword | FromKeyword ValueRef)) |
 (AllKeyword ComponentKeyword)
[bookmark: TValueStoreSpec]ValueStoreSpec ::= ValueKeyword ValueRef
[bookmark: TIndexAssignment]IndexAssignment ::= PortRedirectSymbol IndexSpec
[bookmark: TIndexSpec]IndexSpec ::= IndexModifier ValueStoreSpec
[bookmark: TKilledStatement]KilledStatement ::= ComponentOrAny Dot KilledKeyword [PortRedirectSymbol
 [ValueStoreSpec] [IndexSpec]]
/*STATIC SEMANTICS – If PortRedirectSymbol is present, at least one of ValueStoreSpec and IndexSpec shall be present*/
[bookmark: TDoneKeyword]DoneKeyword ::= "done"
[bookmark: TKilledKeyword]KilledKeyword ::= "killed"
[bookmark: TRunningOp]RunningOp ::= ComponentOrAny Dot RunningKeyword [IndexAssignment]
[bookmark: TRunningKeyword]RunningKeyword ::= "running"
[bookmark: TAliveOp]AliveOp ::= ComponentOrAny Dot AliveKeyword [IndexAssignment]
[bookmark: TCreateKeyword]CreateKeyword ::= "create"
[bookmark: TAliveKeyword]AliveKeyword ::= "alive"
[bookmark: TConnectStatement]ConnectStatement ::= ConnectKeyword SingleConnectionSpec
[bookmark: TConnectKeyword]ConnectKeyword ::= "connect"
[bookmark: TSingleConnectionSpec]SingleConnectionSpec ::= "(" PortRef "," PortRef ")"
[bookmark: TPortRef]PortRef ::= ComponentRef Colon ArrayIdentifierRef
[bookmark: TComponentRef]ComponentRef ::= ObjectReference |
 SystemKeyword |
 SelfOp |
 MTCKeyword
[bookmark: TDisconnectStatement]DisconnectStatement ::= DisconnectKeyword [SingleConnectionSpec |
 AllConnectionsSpec |
 AllPortsSpec |
 AllCompsAllPortsSpec
]
[bookmark: TAllConnectionsSpec]AllConnectionsSpec ::= "(" PortRef ")"
[bookmark: TAllPortsSpec]AllPortsSpec ::= "(" ComponentRef ":" AllKeyword PortKeyword ")"
[bookmark: TAllCompsAllPortsSpec]AllCompsAllPortsSpec ::= "(" AllKeyword ComponentKeyword ":" AllKeyword
 PortKeyword ")"
[bookmark: TDisconnectKeyword]DisconnectKeyword ::= "disconnect"
[bookmark: TMapStatement]MapStatement ::= MapKeyword SingleConnectionSpec [ParamClause]
[bookmark: TParamClause]ParamClause ::= ParamKeyword ActualParList
[bookmark: TMapKeyword]MapKeyword ::= "map"
[bookmark: TUnmapStatement]UnmapStatement ::= UnmapKeyword [SingleConnectionSpec [ParamClause] |
 AllConnectionsSpec [ParamClause] |
 AllPortsSpec |
 AllCompsAllPortsSpec
]
[bookmark: TUnmapKeyword]UnmapKeyword ::= "unmap"
[bookmark: TStartTCStatement]StartTCStatement ::= ObjectReference Dot StartKeyword
 "(" (FunctionInstance | AltstepInstance) ")"
[bookmark: TStartKeyword]StartKeyword ::= "start"
[bookmark: TStopTCStatement]StopTCStatement ::= StopKeyword | (ComponentReferenceOrLiteral | AllKeyword
 ComponentKeyword) Dot StopKeyword
[bookmark: TComponentReferenceOrLiteral]ComponentReferenceOrLiteral ::= ObjectReference |
 MTCKeyword |
 SelfOp
[bookmark: TKillTCStatement]KillTCStatement ::= KillKeyword | ((ComponentReferenceOrLiteral |
 AllKeyword ComponentKeyword) Dot KillKeyword)
[bookmark: TObjectReference][bookmark: TComponentOrDefaultReference]ObjectReference ::= ValueRef | FunctionInstance
[bookmark: TKillKeyword]KillKeyword ::= "kill"
SetEncodeStatement ::= (SingleExpression | (AllKeyword PortKeyword) | SelfOp) | "."
							SetEncodeKeyword "(" Type "," SingleExpression ")"
SetEncodeKeyword ::= "setencode"

[bookmark: _Toc7508815]A.1.6.4.2	Port operations
[bookmark: TCommunicationStatements]CommunicationStatements ::= SendStatement |
 CallStatement |
 ReplyStatement |
 RaiseStatement |
 [NoDefaultModifier] ReceivingCommunicationStatement ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 GetReplyStatement |
 CatchStatement |
 CheckStatement |
 ClearStatement |
 StartStatement |
 StopStatement |
 HaltStatement |
 CheckStateStatement
ReceivingCommunicationStatement ::= ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 GetReplyStatement |
 CatchStatement
[bookmark: TSendStatement]SendStatement ::= ObjectReference Dot PortSendOp
[bookmark: TPortSendOp]PortSendOp ::= SendOpKeyword "(" TemplateInstance")" [ToClause]
[bookmark: TSendOpKeyword]SendOpKeyword ::= "send"
[bookmark: TToClause]ToClause ::= ToKeyword (TemplateInstance|
 AddressRefList |
 AllKeyword ComponentKeyword
)
[bookmark: TAddressRefList]AddressRefList ::= "(" TemplateInstance{"," TemplateInstance} ")"
[bookmark: TToKeyword]ToKeyword ::= "to"
[bookmark: TCallStatement]CallStatement ::= ObjectReference Dot PortCallOp [PortCallBody]
[bookmark: TPortCallOp]PortCallOp ::= CallOpKeyword "(" CallParameters ")" [ToClause]
[bookmark: TCallOpKeyword]CallOpKeyword ::= "call"
[bookmark: TCallParameters]CallParameters ::= TemplateInstance ["," CallTimerValue]
[bookmark: TCallTimerValue]CallTimerValue ::= Expression | NowaitKeyword
[bookmark: TNowaitKeyword]NowaitKeyword ::= "nowait"
[bookmark: TPortCallBody]PortCallBody ::= "{" CallBodyStatementList "}"
[bookmark: TCallBodyStatementList]CallBodyStatementList ::= {CallBodyStatement [SemiColon]}+
[bookmark: TCallBodyStatement]CallBodyStatement ::= CallBodyGuard StatementBlock
[bookmark: TCallBodyGuard]CallBodyGuard ::= AltGuardChar CallBodyOps
[bookmark: TCallBodyOps]CallBodyOps ::= GetReplyStatement | CatchStatement
[bookmark: TReplyStatement]ReplyStatement ::= ObjectReference Dot PortReplyOp
[bookmark: TPortReplyOp]PortReplyOp ::= ReplyKeyword "(" TemplateInstance [ReplyValue] ")" [ToClause]
[bookmark: TReplyKeyword]ReplyKeyword ::= "reply"
[bookmark: TReplyValue]ReplyValue ::= ValueKeyword TemplateBody
/* STATIC SEMANTICS - TemplateBody shall be type compatible with the return type. It shall evaluate to a value or template (literal or template instance) conforming to the template(value) restriction. */
[bookmark: TRaiseStatement]RaiseStatement ::= ObjectReference Dot PortRaiseOp
[bookmark: TPortRaiseOp]PortRaiseOp ::= RaiseKeyword "(" Signature "," TemplateInstance")"
 [ToClause]
[bookmark: TRaiseKeyword]RaiseKeyword ::= "raise"
[bookmark: TNoDefaultModifier]NoDefaultModifier ::= "@nodefault"
[bookmark: TReceiveStatement]ReceiveStatement ::= PortOrAny Dot PortReceiveOp
[bookmark: TPortOrAny]PortOrAny ::= ObjectReference | (AnyKeyword (PortKeyword | FromKeyword ValueRef))
[bookmark: TPortReceiveOp]PortReceiveOp ::= ReceiveOpKeyword ["("TemplateInstance")"] [FromClause] [PortRedirect]
[bookmark: TReceiveOpKeyword]ReceiveOpKeyword ::= "receive"
[bookmark: TFromClause]FromClause ::= FromKeyword (TemplateInstance |
 AddressRefList |
 AnyKeyword ComponentKeyword
)
[bookmark: TFromKeyword]FromKeyword ::= "from"
[bookmark: TPortRedirect]PortRedirect ::= PortRedirectSymbol ((ValueSpec [SenderSpec] [IndexSpec]) |
 (SenderSpec [IndexSpec]) |
 IndexSpec
)
[bookmark: TPortRedirectSymbol]PortRedirectSymbol ::= "->"
[bookmark: TValueSpec]ValueSpec ::= ValueKeyword (ValueRef | ("(" SingleValueSpec {"," SingleValueSpec} ")"))
[bookmark: TSingleValueSpec]SingleValueSpec ::= ValueRef [AssignmentChar [DecodedModifier ["(" [Expression] ")"]]
 FieldReference ExtendedFieldReference]

/*STATIC SEMANTICS – FieldReference shall not be ParRef and ExtendedFieldReference shall not be TypeDefIdentifier*/
[bookmark: TValueKeyword]ValueKeyword ::= "value"
[bookmark: TSenderSpec]SenderSpec ::= SenderKeyword ValueRef
[bookmark: TSenderKeyword]SenderKeyword ::= "sender"
[bookmark: TTriggerStatement]TriggerStatement ::= PortOrAny Dot PortTriggerOp
[bookmark: TPortTriggerOp]PortTriggerOp ::= TriggerOpKeyword ["(" TemplateInstance ")"] [FromClause]
 [PortRedirect]
[bookmark: TTriggerOpKeyword]TriggerOpKeyword ::= "trigger"
[bookmark: TGetCallStatement]GetCallStatement ::= PortOrAny Dot PortGetCallOp
[bookmark: TPortGetCallOp]PortGetCallOp ::= GetCallOpKeyword ["(" TemplateInstance ")"] [FromClause]
 [PortRedirectWithParam]
[bookmark: TGetCallOpKeyword]GetCallOpKeyword ::= "getcall"
[bookmark: TPortRedirectWithParam]PortRedirectWithParam ::= PortRedirectSymbol RedirectWithParamSpec
[bookmark: TRedirectWithParamSpec]RedirectWithParamSpec ::= (ParamSpec [SenderSpec] [IndexSpec]) |
 (SenderSpec [IndexSpec]) |
 IndexSpec
[bookmark: TParamSpec]ParamSpec ::= ParamKeyword ParamAssignmentList
[bookmark: TParamKeyword]ParamKeyword ::= "param"
[bookmark: TParamAssignmentList]ParamAssignmentList ::= "(" (AssignmentList | VariableList) ")"
[bookmark: TAssignmentList]AssignmentList ::= VariableAssignment {"," VariableAssignment}
[bookmark: TVariableAssignment]VariableAssignment ::= ValueRef AssignmentChar [DecodedModifier ["(" Expression] ")"]
 Identifier
[bookmark: TVariableList]VariableList ::= VariableEntry {"," VariableEntry}
[bookmark: TVariableEntry]VariableEntry ::= ValueRef | Minus
[bookmark: TGetReplyStatement]GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
[bookmark: TPortGetReplyOp]PortGetReplyOp ::= GetReplyOpKeyword ["(" TemplateInstance [ValueMatchSpec]
 ")"] [FromClause] [PortRedirectWithValueAndParam]
[bookmark: TPortRedirectWithValueAndParam]PortRedirectWithValueAndParam ::= PortRedirectSymbol RedirectWithValueAndParamSpec
[bookmark: TRedirectWithValueAndParamSpec]RedirectWithValueAndParamSpec ::= (ValueSpec [ParamSpec] [SenderSpec]
 [IndexSpec]) | RedirectWithParamSpec
[bookmark: TGetReplyOpKeyword]GetReplyOpKeyword ::= "getreply"
[bookmark: TValueMatchSpec]ValueMatchSpec ::= ValueKeyword TemplateInstance
[bookmark: TCheckStatement]CheckStatement ::= PortOrAny Dot PortCheckOp
[bookmark: TPortCheckOp]PortCheckOp ::= CheckOpKeyword ["(" CheckParameter ")"]
[bookmark: TCheckOpKeyword]CheckOpKeyword ::= "check"
[bookmark: TCheckParameter]CheckParameter ::= CheckPortOpsPresent |
 FromClausePresent |
 RedirectPresent
[bookmark: TFromClausePresent]FromClausePresent ::= FromClause [PortRedirectSymbol ((SenderSpec
 [IndexSpec]) |
 IndexSpec)]
[bookmark: TRedirectPresent]RedirectPresent ::= PortRedirectSymbol ((SenderSpec [IndexSpec]) |
 IndexSpec)
[bookmark: TCheckPortOpsPresent]CheckPortOpsPresent ::= PortReceiveOp |
 PortGetCallOp |
 PortGetReplyOp |
 PortCatchOp
[bookmark: TCatchStatement]CatchStatement ::= PortOrAny Dot PortCatchOp
[bookmark: TPortCatchOp]PortCatchOp ::= CatchOpKeyword ["(" CatchOpParameter ")"] [FromClause] [PortRedirect]
[bookmark: TCatchOpKeyword]CatchOpKeyword ::= "catch"
[bookmark: TCatchOpParameter]CatchOpParameter ::= Signature ["," TemplateInstance] | TimeoutKeyword
[bookmark: TClearStatement]ClearStatement ::= PortOrAll Dot ClearOpKeyword
[bookmark: TPortOrAll]PortOrAll ::= ObjectReference | AllKeyword PortKeyword
[bookmark: TClearOpKeyword]ClearOpKeyword ::= "clear"
[bookmark: TStartStatement]StartStatement ::= PortOrAll Dot StartKeyword
[bookmark: TStopStatement]StopStatement ::= PortOrAll Dot StopKeyword
[bookmark: TStopKeyword]StopKeyword ::= "stop"
[bookmark: THaltStatement]HaltStatement ::= PortOrAll Dot HaltKeyword
[bookmark: THaltKeyword]HaltKeyword ::= "halt"
[bookmark: TAnyKeyword]AnyKeyword ::= "any"
[bookmark: TCheckStateStatement]CheckStateStatement ::= PortOrAllAny Dot CheckStateKeyword "(" SingleExpression
 ")"
[bookmark: TPortOrAllAny]PortOrAllAny ::= PortOrAll | AnyKeyword PortKeyword
[bookmark: TCheckStateKeyword]CheckStateKeyword ::= "checkstate"

[bookmark: _Toc7508816]A.1.6.4.3	Timer operations
[bookmark: TTimerStatements]TimerStatements ::= StartTimerStatement |
 StopTimerStatement |
 [NoDefaultModifier] TimeoutStatement
[bookmark: TTimerOps]TimerOps ::= ReadTimerOp | RunningTimerOp
[bookmark: TStartTimerStatement]StartTimerStatement ::= ObjectReference Dot StartKeyword ["(" Expression ")"]
[bookmark: TStopTimerStatement]StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
[bookmark: TTimerRefOrAll]TimerRefOrAll ::= ObjectReference | AllKeyword TimerKeyword
[bookmark: TReadTimerOp]ReadTimerOp ::= ObjectReference Dot ReadKeyword
[bookmark: TReadKeyword]ReadKeyword ::= "read"
[bookmark: TRunningTimerOp]RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword [IndexAssignment]
[bookmark: TTimeoutStatement]TimeoutStatement ::= TimerRefOrAny Dot TimeoutKeyword [IndexAssignment]
[bookmark: TTimerRefOrAny]TimerRefOrAny ::= ObjectReference |
 (AnyKeyword TimerKeyword) |
 (AnyKeyword FromKeyword Identifier)
[bookmark: TTimeoutKeyword]TimeoutKeyword ::= "timeout"

[bookmark: _Toc7508817]A.1.6.4.4	Testcase operation
[bookmark: TTestcaseOperation]TestcaseOperation ::= TestcaseKeyword "." StopKeyword ["(" { LogItem [","] } ")"]

[bookmark: _Toc7508818]A.1.6.5	Type
[bookmark: TType]Type ::= PredefinedType | ReferencedType
[bookmark: TPredefinedType]PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |
 TimerKeyword
[bookmark: TBitStringKeyword]BitStringKeyword ::= "bitstring"
[bookmark: TBooleanKeyword]BooleanKeyword ::= "boolean"
[bookmark: TIntegerKeyword]IntegerKeyword ::= "integer"
[bookmark: TOctetStringKeyword]OctetStringKeyword ::= "octetstring"
[bookmark: THexStringKeyword]HexStringKeyword ::= "hexstring"
[bookmark: TVerdictTypeKeyword]VerdictTypeKeyword ::= "verdicttype"
[bookmark: TFloatKeyword]FloatKeyword ::= "float"
[bookmark: TAddressKeyword]AddressKeyword ::= "address"
[bookmark: TDefaultKeyword]DefaultKeyword ::= "default"
[bookmark: TAnyTypeKeyword]AnyTypeKeyword ::= "anytype"
[bookmark: TCharStringKeyword]CharStringKeyword ::= "charstring"
[bookmark: TUniversalCharString]UniversalCharString ::= UniversalKeyword CharStringKeyword
[bookmark: TUniversalKeyword]UniversalKeyword ::= "universal"
[bookmark: TReferencedType]ReferencedType ::= ExtendedIdentifier [ExtendedTypeFieldReference]
[bookmark: TTypeReference]TypeReference ::= ExtendedIdentifier
[bookmark: TArrayDef]ArrayDef ::= {"[" SingleExpression [".." SingleExpression] "]"}+
[bookmark: TExtendedTypeFieldReference]ExtendedTypeFieldReference ::= {(Dot (Identifier | PredefinedType)) |
 ("[" Minus "]") }+
/* STATIC SEMANTICS - ArrayBounds will resolve to a non negative value of integer type */

[bookmark: _Toc7508819]A.1.6.6	Value
[bookmark: TValue]Value ::= PredefinedValue | ReferencedValue
[bookmark: TPredefinedValue]PredefinedValue ::= Bstring |
 BooleanValue |
 CharStringValue |
 Number | /* IntegerValue */
 Ostring |
 Hstring |
 VerdictTypeValue |
 FloatValue |
 AddressValue |
 OmitKeyword
[bookmark: TBooleanValue]BooleanValue ::= "true" | "false"
[bookmark: TVerdictTypeValue]VerdictTypeValue ::= "pass" |
 "fail" |
 "inconc" |
 "none" |
 "error"
[bookmark: TCharStringValue]CharStringValue ::= Cstring | Quadruple | USIlikeNotation
[bookmark: TQuadruple]Quadruple ::= CharKeyword "(" Number "," Number "," Number "," Number ")"
[bookmark: TUSIlikeNotation]USIlikeNotation ::= CharKeyword "(" UIDlike { "," UIDlike } ")"
[bookmark: TUIDlike]UIDlike ::= ("U"|"u") {"+"} {Hex}#(1,8)
[bookmark: TCharKeyword]CharKeyword ::= "char"
[bookmark: TFloatValue]FloatValue ::= FloatDotNotation |
 FloatENotation |
 NaNKeyword
[bookmark: TNaNKeyword]NaNKeyword ::= "not_a_number"
[bookmark: TFloatDotNotation]FloatDotNotation ::= Number Dot DecimalNumber
[bookmark: TFloatENotation]FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number
[bookmark: TExponential]Exponential ::= "E"
[bookmark: TReferencedValue]ReferencedValue ::= (ExtendedIdentifier [ExtendedFieldReference]) | ReferencedEnumValue
/* STATIC SEMANTICS – The second option is used only for referencing enumerated values, in all other cases, the first option is used.
ReferencedEnumValue ::= [ReferencedType Dot] Identifier [ExtendedEnumReference]
/** STATIC Semantics: ExtendedEnumReference shall be present if and only if Identifier refers to an enumerated value with an attached value list */
[bookmark: TExtendedEnumReference]ExtendedEnumReference ::= "(" IntegerValue ")"
[bookmark: TNumber]Number ::= (NonZeroNum {Num}) | "0"
[bookmark: TNonZeroNum]NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
[bookmark: TDecimalNumber]DecimalNumber ::= { Num }+
[bookmark: TNum]Num ::= "0" | NonZeroNum
[bookmark: TBstring]Bstring ::= "'" { Bin | BinSpace } "'" "B"
[bookmark: TBin]Bin ::= "0" | "1"
[bookmark: THstring]Hstring ::= "'" { Hex | BinSpace } "'" "H"
[bookmark: THex]Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" |
 "d" | "e" | "f"
[bookmark: TOstring]Ostring ::= "'" { Oct | BinSpace } "'" "O"
[bookmark: TOct]Oct ::= Hex Hex
[bookmark: TCstring]Cstring ::= """ {Char} """
[bookmark: TChar]Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring a character from the character set defined in ITU-T T.50. For universal charstring a character from any character set defined in ISO/IEC 10646 */
[bookmark: TIdentifier]Identifier ::= Alpha {AlphaNum | Underscore}
[bookmark: TAlpha]Alpha ::= UpperAlpha | LowerAlpha
[bookmark: TAlphaNum]AlphaNum ::= Alpha | Num
[bookmark: TUpperAlpha]UpperAlpha ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
[bookmark: TLowerAlpha]LowerAlpha ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
[bookmark: TExtendedAlphaNum]ExtendedAlphaNum ::= /* REFERENCE - A graphical character from the BASIC LATIN or from the LATIN-1 SUPPLEMENT character sets defined in ISO/IEC 10646 (characters from char (0,0,0,32) to char (0,0,0,126), from char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char (0,0,0,255) */
[bookmark: TFreeText]FreeText ::= """ {ExtendedAlphaNum} """
[bookmark: TAddressValue]AddressValue ::= "null"
[bookmark: TOmitKeyword]OmitKeyword ::= "omit"
[bookmark: TBinSpace] BinSpace ::= " " | "\" NLChar
[bookmark: TNLChar] NLChar ::= /* REFERENCE - Any sequence of newline characters that constitute a newline by using the following C0 control characters: LF(10), VT(11), FF(12), CR(13) (see Recommendation ITU‑T T.50 [4]) (jointly called newline characters, see clause A.1.5.1) from the character set defined in Recommendation ITU‑T T.50 [4].*/

[bookmark: _Toc7508820]A.1.6.7	Parameterization
[bookmark: TInParKeyword]InParKeyword ::= "in"
[bookmark: TOutParKeyword]OutParKeyword ::= "out"
[bookmark: TInOutParKeyword]InOutParKeyword ::= "inout"
[bookmark: TFormalValuePar]FormalValuePar ::= [InParKeyword | InOutParKeyword | OutParKeyword)]
 [(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type Identifier [ArrayDef] [":=" (Expression | Minus)]
[bookmark: TFormalTemplatePar]FormalTemplatePar ::= [(InParKeyword | OutParKeyword | InOutParKeyword)]
 (TemplateKeyword | RestrictedTemplate)
 [(LazyModifier | FuzzyModifier) [DeterministicModifier]]
 Type Identifier [ArrayDef] [":=" (TemplateInstance | Minus)]
[bookmark: TRestrictedTemplate]RestrictedTemplate ::= OmitKeyword | (TemplateKeyword TemplateRestriction)
[bookmark: TTemplateRestriction]TemplateRestriction ::= "(" (OmitKeyword |
 ValueKeyword |
 PresentKeyword
) ")"

[bookmark: _Toc7508821]A.1.6.8	Statements
[bookmark: _Toc7508822]A.1.6.8.1	With statement
[bookmark: TWithStatement]WithStatement ::= WithKeyword WithAttribList
[bookmark: TWithKeyword]WithKeyword ::= "with"
[bookmark: TWithAttribList]WithAttribList ::= "{" MultiWithAttrib "}"
[bookmark: TMultiWithAttrib]MultiWithAttrib ::= {SingleWithAttrib [SemiColon]}
[bookmark: TSingleWithAttrib]SingleWithAttrib ::= 	StandardAttribute |
							VariantAttribute
StandardAttribute ::= AttribKeyword [OverrideKeyword | LocalModifier] [AttribQualifier]
 FreeText
 VariantAttribute ::= VariantKeyword [(OverrideKeyword | LocalModifier)]
						[AttribQualifier] [RelatedEncoding "."] FreeText
[bookmark: TRelatedEncoding] RelatedEncoding ::= FreeText | ("{" FreeText { "," FreeText } "}")

[bookmark: TAttribKeyword]AttribKeyword ::= EncodeKeyword |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword
[bookmark: TEncodeKeyword]EncodeKeyword ::= "encode"
[bookmark: TVariantKeyword]VariantKeyword ::= "variant"
[bookmark: TDisplayKeyword]DisplayKeyword ::= "display"
[bookmark: TExtensionKeyword]ExtensionKeyword ::= "extension"
[bookmark: TOverrideKeyword]OverrideKeyword ::= "override"
LocalModifier ::= "@local"
[bookmark: TAttribQualifier]AttribQualifier ::= "(" DefOrFieldRefList ")"
[bookmark: TDefOrFieldRefList]DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
[bookmark: TDefOrFieldRef]DefOrFieldRef ::= QualifiedIdentifier |
 ((FieldReference | "[" Minus "]") [ExtendedFieldOrTypeReference]) |
 AllRef
[bookmark: TQualifiedIdentifier]QualifiedIdentifier ::= {Identifier Dot} Identifier
[bookmark: TExtendedFieldOrTypeReference]ExtendedFieldOrTypeReference ::= {(Dot (Identifier | PredefinedType)) |
 ArrayOrBitRef | ("[" Minus "]") }+
/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the VarInstance or ReferencedValue in which the ExtendedFieldOrReference is used is anytype. ArrayOrBitRef shall be used when referencing elements of values or arrays. The square brackets with dash shall be used when referencing inner types of a record of, set of or array type. */
[bookmark: TAllRef]AllRef ::= (GroupKeyword AllKeyword [ExceptKeyword "{" QualifiedIdentifierList
 "}"]) | ((TypeDefKeyword |
 TemplateKeyword |
 ConstKeyword |
 AltstepKeyword |
 TestcaseKeyword |
 FunctionKeyword |
 SignatureKeyword |
 ModuleParKeyword
) AllKeyword [ExceptKeyword
 "{" IdentifierList
 "}"])

[bookmark: _Toc7508823]A.1.6.8.2	Behaviour statements
[bookmark: TBehaviourStatements]BehaviourStatements ::= TestcaseInstance |
 FunctionInstance |
 ReturnStatement |
 AltConstruct |
 InterleavedConstruct |
 LabelStatement |
 GotoStatement |
 RepeatStatement |
 DeactivateStatement |
 AltstepInstance |
 ActivateOp |
 BreakStatement |
 ContinueStatement
[bookmark: TSetLocalVerdict]SetLocalVerdict ::= SetVerdictKeyword "(" SingleExpression {"," LogItem}
 ")"
[bookmark: TSetVerdictKeyword]SetVerdictKeyword ::= "setverdict"
[bookmark: TGetLocalVerdict]GetLocalVerdict ::= "getverdict"
[bookmark: TSUTStatements]SUTStatements ::= ActionKeyword "(" ActionText {StringOp ActionText}
 ")"
[bookmark: TActionKeyword]ActionKeyword ::= "action"
[bookmark: TActionText]ActionText ::= FreeText | Expression
[bookmark: TReturnStatement]ReturnStatement ::= ReturnKeyword [TemplateInstance]
/* STATIC SEMANTICS - TemplateInstance shall evaluate to a value of a type compatible with the return type for functions returning a value. It shall evaluate to a value, template (literal or template instance), or a matching mechanism compatible with the return type for functions returning a template. */
[bookmark: TAltConstruct]AltConstruct ::= AltKeyword "{" AltGuardList "}"
[bookmark: TAltKeyword]AltKeyword ::= "alt"
[bookmark: TAltGuardList]AltGuardList ::= {GuardStatement | ElseStatement [SemiColon]}
[bookmark: TGuardStatement]GuardStatement ::= AltGuardChar (AltstepInstance [StatementBlock] |
 GuardOp StatementBlock)
[bookmark: TElseStatement]ElseStatement ::= "[" ElseKeyword "]" StatementBlock
[bookmark: TAltGuardChar]AltGuardChar ::= "[" [BooleanExpression] "]"
[bookmark: TGuardOp]GuardOp ::= TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement
[bookmark: TInterleavedConstruct]InterleavedConstruct ::= InterleavedKeyword "{" InterleavedGuardList
 "}"
[bookmark: TInterleavedKeyword]InterleavedKeyword ::= "interleave"
[bookmark: TInterleavedGuardList]InterleavedGuardList ::= {InterleavedGuardElement [SemiColon]}+
[bookmark: TInterleavedGuardElement]InterleavedGuardElement ::= InterleavedGuard StatementBlock
[bookmark: TInterleavedGuard]InterleavedGuard ::= "[" "]" GuardOp
[bookmark: TLabelStatement]LabelStatement ::= LabelKeyword Identifier
[bookmark: TLabelKeyword]LabelKeyword ::= "label"
[bookmark: TGotoStatement]GotoStatement ::= GotoKeyword Identifier
[bookmark: TGotoKeyword]GotoKeyword ::= "goto"
[bookmark: TRepeatStatement]RepeatStatement ::= "repeat"
[bookmark: TActivateOp]ActivateOp ::= ActivateKeyword "(" AltstepInstance ")"
[bookmark: TActivateKeyword]ActivateKeyword ::= "activate"
[bookmark: TDeactivateStatement]DeactivateStatement ::= DeactivateKeyword ["(" ObjectReference ")"]
[bookmark: TDeactivateKeyword]DeactivateKeyword ::= "deactivate"
[bookmark: TBreakStatement]BreakStatement ::= "break"
[bookmark: TContinueStatement]ContinueStatement ::= "continue"

[bookmark: _Toc7508824]A.1.6.8.3	Basic statements
[bookmark: TBasicStatements]BasicStatements ::= Assignment |
 LogStatement |
 LoopConstruct |
 ConditionalConstruct |
 SelectCaseConstruct |
 StatementBlock
[bookmark: TExpression]Expression ::= SingleExpression | CompoundExpression
[bookmark: TCompoundExpression]CompoundExpression ::= FieldExpressionList | ArrayOrMixedExpression

/* STATIC SEMANTICS - Within CompoundExpression the ArrayOrMixedExpression can be used for Arrays, record, record of, set and set of types. */
[bookmark: TFieldExpressionList]FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec}
 "}"
[bookmark: TFieldExpressionSpec]FieldExpressionSpec ::= FieldReference AssignmentChar NotUsedOrExpression
[bookmark: TArrayExpression]ArrayOrMixedExpression ::= "{" [ArrayElementExpressionList {"," FieldExpressionSpec}] "}"
[bookmark: TArrayElementExpressionList]ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}
[bookmark: TNotUsedOrExpression]NotUsedOrExpression ::= Expression | Minus
[bookmark: TConstantExpression]ConstantExpression ::= SingleExpression | CompoundConstExpression
[bookmark: TBooleanExpression]BooleanExpression ::= SingleExpression

/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
[bookmark: TCompoundConstExpression]CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression

/* STATIC SEMANTICS - Within CompoundConstExpression the ArrayConstExpression can be used for arrays, record, record of and set of types. */
[bookmark: TFieldConstExpressionList]FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"
[bookmark: TFieldConstExpressionSpec]FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression
[bookmark: TArrayConstExpression]ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"
[bookmark: TArrayElementConstExpressionList]ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}
[bookmark: TAssignment]Assignment ::= ValueRef AssignmentChar TemplateBody
/* STATIC SEMANTICS - The Templatebody on the right hand side of Assignment shall evaluate to an explicit value of a type compatible with the type of the left hand side for value variables and shall evaluate to an explicit value, template (literal or a template instance) or a matching mechanism compatible with the type of the left hand side for template variables. */
[bookmark: TSingleExpression]SingleExpression ::= XorExpression {"or" XorExpression}

/* STATIC SEMANTICS - If more than one XorExpression exists, then the XorExpressions shall evaluate to specific values of compatible types */
[bookmark: TXorExpression]XorExpression ::= AndExpression {"xor" AndExpression}

/* STATIC SEMANTICS - If more than one AndExpression exists, then the AndExpressions shall evaluate to specific values of compatible types */
[bookmark: TAndExpression]AndExpression ::= NotExpression {"and" NotExpression}

/* STATIC SEMANTICS - If more than one NotExpression exists, then the NotExpressions shall evaluate to specific values of compatible types */
[bookmark: TNotExpression]NotExpression ::= ["not"] EqualExpression

/* STATIC SEMANTICS - Operands of the not operator shall be of type boolean or derivatives of type Boolean. */
[bookmark: TEqualExpression]EqualExpression ::= RelExpression {EqualOp RelExpression}

/* STATIC SEMANTICS - If more than one RelExpression exists, then the RelExpressions shall evaluate to specific values of compatible types. If only one RelExpression exists, it shall not derive to a CompoundExpression. */
[bookmark: TRelExpression]RelExpression ::= ShiftExpression [RelOp ShiftExpression] | CompoundExpression

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a specific integer, Enumerated or float Value or derivatives of these types */
[bookmark: TShiftExpression]ShiftExpression ::= BitOrExpression {ShiftOp BitOrExpression}

/* STATIC SEMANTICS - Each Result shall resolve to a specific Value. If more than one Result exists the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>" then the left-hand operand shall resolve to either bitstring, hexstring or octetstring type or derivatives of these types. If the shift op is " */
[bookmark: TBitOrExpression]BitOrExpression ::= BitXorExpression {"or4b" BitXorExpression}

/* STATIC SEMANTICS - If more than one BitXorExpression exists, then the BitXorExpressions shall evaluate to specific values of compatible types */
[bookmark: TBitXorExpression]BitXorExpression ::= BitAndExpression {"xor4b" BitAndExpression}

/* STATIC SEMANTICS - If more than one BitAndExpression exists, then the BitAndExpressions shall evaluate to specific values of compatible types */
[bookmark: TBitAndExpression]BitAndExpression ::= BitNotExpression {"and4b" BitNotExpression}

/* STATIC SEMANTICS - If more than one BitNotExpression exists, then the BitNotExpressions shall evaluate to specific values of compatible types */
[bookmark: TBitNotExpression]BitNotExpression ::= ["not4b"] AddExpression

/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring, octetstring or hexstring or derivatives of these types. */
[bookmark: TAddExpression]AddExpression ::= MulExpression {AddOp MulExpression}

/* STATIC SEMANTICS - Each MulExpression shall resolve to a specific Value. If more than one MulExpression exists and the AddOp resolves to StringOp then the MulExpressions shall be valid operands for StringOp. If more than one MulExpression exists and the AddOp does not resolve to StringOp then the MulExpression shall both resolve to type integer or float or derivatives of these types. If only one MulExpression exists, it shall not derive to a CompoundExpression. */
[bookmark: TMulExpression]MulExpression ::= UnaryExpression {MultiplyOp UnaryExpression} | CompoundExpression

/* STATIC SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one UnaryExpression exists then the UnaryExpressions shall resolve to type integer or float or derivatives of these types. */
[bookmark: TUnaryExpression]UnaryExpression ::= [UnaryOp] Primary

/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or derivatives of these types.*/
[bookmark: TPrimary]Primary ::= OpCall |
 Value |
 "(" SingleExpression ")"
[bookmark: TExtendedFieldReference]ExtendedFieldReference ::= {(Dot (Identifier | PredefinedType)) |
 ArrayOrBitRef |
 DecodedFieldReference
 }+

/* STATIC SEMANTIC - The Identifier refers to a type definition if the type of the VarInstance or ReferencedValue in which the ExtendedFieldReference is used is anytype. ArrayOrBitRef shall be used when referencing elements of values or arrays. DecodedFieldReference shall not appear on the LHS of assignments and in type references*/
[bookmark: TDecodedFieldReference] DecodedFieldReference ::= "=>" DecodedFieldType
[bookmark: TDecodedFieldType] DecodedFieldType ::= PredefinedType |
							Identifier |
							"(" Type ["," Expression] ")"

/* The Identifier shall resolve into a type */

[bookmark: TOpCall]OpCall ::= ConfigurationOps |
 GetLocalVerdict |
 TimerOps |
 TestcaseInstance |
 (FunctionInstance [ExtendedFieldReference]) |
 (TemplateOps [ExtendedFieldReference]) |
 ActivateOp |
 GetAttributeOp

[bookmark: TAddOp]AddOp ::= "+" |
 "-" |
 StringOp

/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or derivations of integer or float (i.e. subrange) */
[bookmark: TMultiplyOp]MultiplyOp ::= "*" | "/" | "mod" | "rem"

/* STATIC SEMANTICS - Operands of the "*", "/", rem or mod operators shall be of type integer or float or derivations of integer or float (i.e. subrange) */
[bookmark: TUnaryOp]UnaryOp ::= "+" | "-"

/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or derivations of integer or float (i.e. subrange) */
[bookmark: TRelOp]RelOp ::= "<" | ">" | ">=" | "<="

/* STATIC SEMANTICS - the precedence of the operators is defined in Table 6 */
[bookmark: TEqualOp]EqualOp ::= "==" | "!="
[bookmark: TStringOp]StringOp ::= "&"

/* STATIC SEMANTICS - Operands of the list operator shall be bitstring, hexstring, octetstring, (universal) character string, record of, set of, or array types, or derivates of these types */
[bookmark: TShiftOp]ShiftOp ::= "<<" | ">>" | "<@" | "@>"
[bookmark: TLogStatement]LogStatement ::= LogKeyword "(" LogItem {"," LogItem} ")"
[bookmark: TLogKeyword]LogKeyword ::= "log"
[bookmark: TLogItem]LogItem ::= FreeText | TemplateInstance
[bookmark: TLoopConstruct]LoopConstruct ::= ForStatement |
 WhileStatement |
 DoWhileStatement
[bookmark: TForStatement]ForStatement ::= ForKeyword "(" Initial SemiColon BooleanExpression
 SemiColon Assignment ")" StatementBlock
[bookmark: TForKeyword]ForKeyword ::= "for"
[bookmark: TInitial]Initial ::= VarInstance | Assignment
[bookmark: TWhileStatement]WhileStatement ::= WhileKeyword "(" BooleanExpression ")" StatementBlock
[bookmark: TWhileKeyword]WhileKeyword ::= "while"
[bookmark: TDoWhileStatement]DoWhileStatement ::= DoKeyword StatementBlock WhileKeyword "(" BooleanExpression
 ")"
[bookmark: TDoKeyword]DoKeyword ::= "do"
[bookmark: TConditionalConstruct]ConditionalConstruct ::= IfKeyword "(" BooleanExpression ")" StatementBlock
 {ElseIfClause} [ElseClause]
[bookmark: TIfKeyword]IfKeyword ::= "if"
[bookmark: TElseIfClause]ElseIfClause ::= ElseKeyword IfKeyword "(" BooleanExpression ")" StatementBlock
[bookmark: TElseKeyword]ElseKeyword ::= "else"
[bookmark: TElseClause]ElseClause ::= ElseKeyword StatementBlock
[bookmark: TSelectCaseConstruct]SelectCaseConstruct ::= SelectKeyword [UnionKeyword] "(" SingleExpression ")" SelectCaseBody
[bookmark: TSelectKeyword]SelectKeyword ::= "select"
[bookmark: TSelectCaseBody]SelectCaseBody ::= "{" {SelectCase}+ [CaseElse] "}"
[bookmark: TSelectCase]SelectCase ::= CaseKeyword ("("TemplateInstance {"," TemplateInstance}
 ")" | ElseKeyword) StatementBlock
/** STATIC SEMANTICS TemplateInstance-s shall be Identifier-s if the UnionKeyword is present in the surrounding SelectCaseConstruct (see clause 19.3.2)*/
[bookmark: TCaseElse]CaseElse ::= CaseKeyword ElseKeyword StatementBlock
[bookmark: TCaseKeyword]CaseKeyword ::= "case"
[bookmark: TExtendedIdentifier]ExtendedIdentifier ::= [Identifier Dot] Identifier
[bookmark: TIdentifierList]IdentifierList ::= Identifier {"," Identifier}
[bookmark: TQualifiedIdentifierList]QualifiedIdentifierList ::= QualifiedIdentifier {"," QualifiedIdentifier}
[bookmark: TGetAttributeOp]GetAttributeOp ::= (Type | TemplateInstance) "." GetAttributeSpec
[bookmark: TGetAttributeSpec]GetAttributeSpec ::= EncodeKeyword |
 VariantKeyword ["(" FreeText ")"] |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword

[bookmark: _Toc7508825]A.1.6.9	Miscellaneous productions
[bookmark: TDot]Dot ::= "."
[bookmark: TMinus]Minus ::= "-"
[bookmark: TSemiColon]SemiColon ::= ";"
[bookmark: TColon]Colon ::= ":"
[bookmark: TUnderscore]Underscore ::= "_"
[bookmark: TAssignmentChar]AssignmentChar ::= ":="
[bookmark: TIndexModifier]IndexModifier ::= "@index"
[bookmark: TDeterministicModifier]DeterministicModifier ::= "@deterministic"
[bookmark: TLazyModifier]LazyModifier ::= "@lazy"
[bookmark: TFuzzyModifier]FuzzyModifier ::= "@fuzzy"
[bookmark: TCaseInsenModifier]CaseInsenModifier ::= "@nocase"
[bookmark: TDecodedModifier]DecodedModifier ::= "@decoded"
[bookmark: TDefaultModifier]DefaultModifier ::= "@default"
[bookmark: TControlModifier]ControlModifier ::= "@control"

ETSI
image1.jpeg

