ETSI ES 202 781 V1.6.1 (2018-05)
2

ETSI ES 202 781 V1.6.1 (2018-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:
Configuration and Deployment Support

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-202781ConfDepled161
Keywords
protocol, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

[bookmark: _Toc513471538]5.2.4	Translation state
In addition to port state dimensions defined ETSI ES 201 873-1 [1], all ports working in translation mode have an additional port state dimension called translation state. The translation state always contains the result of the last executed translation function performed by the port.
There are five possible translation states:
unset is the default state before invoking a translation error. If a translation function ends with this state, an error is generated;
not translated means that the translation function has not been successful;
fragmented indicates the translation function did not finish translation, because the input data did not contain a complete message (i.e. more fragments are needed to finish translation);
translated means that the translation function successfully performed translation and there are no non‑translated data left;
partially translated is used when the translation function successfully performed translation, but there are additional data which has not been translated yet (i.e. the input data contained more than one message).
discarded is used when the translation function finished successfully, by discarding the message.
Translation state is set implicitly to unset whenever a translation function is called to translate a sent or received message. The translation state can be changed by a setstate operation.
Syntactical Structure
	port.setstate"("SingleExpression { "," (FreeText | TemplateInstance) } ")"
	
Semantic Description
The setstate operation can be used only inside a function that is called during a translation procedure to translate a sent or received a message. It changes the translation state of the related port.
The optional parameters allow to provide information that explains the reasons for setting a port translation state. This information is composed to a string and might be used for logging purposes.
Restrictions
1. The value passed to the setstate operation in the first parameter shall be of the integer type and shall have one of the following values:
0 (meaning translated)
1 (meaning not translated)
2 (meaning fragmented)
3 (meaning partially translated)
4 (meaning discarded)
NOTE 1:	Numeric parameter values 0, 1 and 2 are the same as results of the predefined decvalue function.
NOTE 2:	Clause B.2.1 of the present document includes the type definition translation state and the constant definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED, DISCARDED.
Calling the setstate operation with an integer not listed in da) in the first parameter shall lead to an error.
Calling the setstate operation outside of a translation function or in a translation function translating an address shall cause a runtime error.
For FreeText and TemplateInstance, the same rules and restrictions apply as for the parameters of the log statement. See clause 19.11 of ETSI ES 201 873-1 [1] for more details.
NOTE 3:	The unset state cannot be set by the setstate operation, it is reserved for TE internal use only.
[bookmark: clause_translationPort_Send][bookmark: _Toc513471539]5.2.5	Sending
When a message is to be sent over a port, working in translation mode, the following shall apply:
If no OutFunction is specified for the given InnerOutType, it is simply sent over the port transparently.
If an OutFunction is specified for the InnerOutType, the translation procedure first sets the translation state to Unset. Then the OutFunction is automatically invoked to translate the InnerOutType to the OuterOutType. When the function execution is finished, then depending on the current translation state one of the following actions is taken:
The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation function).
If the state is not translated, the translation procedure tries to translate the message using the next OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual order in the port type definition. If there is no such a function, an error is generated.
If the state is fragmented, the translation procedure ends but no data is sent to the connected or mapped port (the port will wait for the next fragment to complete translation). The to clause of the following send operation shall be the same as the to clause of the current send operation or missing if the current send operation does not contain any to clause.
If the state is translated, the translation procedure sends the translated message (retrieved from the out parameter of the OutFunction) to the port it is mapped or connected to.
If the state is partially translated, the sent message of theInnerOutType contains several messages (or message fragments) of theOuterOutType. In this case, the translation procedure sends the translated message to the mapped or connected port. The translation function is then called again, with the same in parameter value, to enable sending of the remaining messages.
If the state is discarded, the translation procedure ends, with no data sent to the connected or mapped port (the message was intentionally discarded).
NOTE:	In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port variables.
[bookmark: clause_translationPort_Receive][bookmark: _Toc513471540]5.2.6	Receiving
Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer queue is used to keep not translated messages that are either enqueued or sent to the port working in translation mode. The inner message queue contains already translated messages. Receiving operations access this inner queue. In case of successful receiving (see clause 22.2.2 of ETSI ES 201 873-1 [1]), the successfully received message is removed from the inner queue. Messages stored in the outer queue can be removed from it only by the translation procedure as described below.
The TTCN‑3 Executable (TE, see ETSI ES 201 873-6 [4]) shall control the translation process and the normal decoding algorithm (see note 1) in co-operation, as specified below. But yet, the normal decoding algorithm itself is not changed.
decode (TRI message, decoding hypothesis: B)
TE
Port in translation mode
System
adaptor
TRI message
p.receive(A:?)
Codec
decoded value
Outer queue
Inner queue
InFunction
 (in B, out A)

Figure 2: Illustration of the interworking of decoding and translation procedure during receiving
NOTE 1:	In this clause the "normal decoding algorithm" refers to the process that the TE invokes decoding the received bitstring as specified in clauses 7.3.2 and C.5.4 of ETSI ES 201 873-6 [4].
The translation procedure for receiving operations is invoked by the snapshot mechanism. This procedure iterates through all in clauses (InnerInType -s) defined in the port type definition. The in clauses are iterated according to their textual order. During this iteration, the following shall apply:
If no InFunction is specified for the given InnerInType, the translation procedure checks, if the top item of the outer queue is of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the decoding is successful). If the result of the check is positive, the message is moved from the outer queue into the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and iteration ends.
Otherwise (if the InFunction is present for the InnerInType), then the translation procedure checks if the top item of the outer queue is of the OuterInType, by invoking the normal decoding algorithm, as described above. If the check is successful, the translation procedure automatically executes the InFunction: first sets the translation state to Unset and passes the message of the OuterInType to it, in the first parameter. When the function execution is finished, the translation procedure checks the translation state of the port:
The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation function).
If the state is not translated, the iteration shall continue with the next InFunction for the same OuterInType. If there is no more such InFunction, the translation procedure shall continue with the next OuterInType. If there is no more OuterInType -s for the given InnerInType, the iteration process shall continue with the next InnerInType. The order is determined by the textual order in the port type definition.
If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to process the next message in the outer queue. The next message shall have the same address as the current one (including a missing address). If there is no such message, the iteration shall continue with the next InnerInType.
If the state is translated, the top item of the outer queue is removed and the translated message (retrieved from the out parameter of the InFunction) is inserted into the inner queue. This ends the whole iteration.
If the state is partially translated, the received message of the OuterInType contains several messages (or message fragments) of the InnerInType. In this case, the translated message (retrieved from the out parameter of the InFunction) is inserted into the inner queue. Unlike in the translated case, the top message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to enable translation of the remaining messages embedded in the outer message in subsequent receive calls.
[bookmark: _GoBack]If the state is discarded, the top item of the outer queue is removed. No new message is inserted into the inner queue. The iteration shall be restarted to process the next message in the outer queue.
NOTE 2:	In the fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port variables.
If the iteration has processed all in clauses without any success (no transparently relayed message was successfully moved from the outer to inner queue and all InFunction calls ended with the not translated state), the iteration process returns.
In case the iteration produces a successful result, the translation procedure might restart the iteration in order to translate the remaining messages in the outer queue (if there are any), or it might for performance consideration postpone this translation to the moment when the next snapshot is taken. For the same performance reasons, the snapshot mechanism is not required to start the translation procedure in case the inner queue already contains some messages.
[bookmark: clause_translationPort_Address][bookmark: _Toc513471541]5.2.7	Address
When an address type associated with a mapped port working in the translation mode contains a to or from clause and one of the OuterAddrType-s is the same as the address type of the mapped TSI port, the translation procedure is applied to all addresses used by sending or receiving calls of the port.
In case of sending a message, the translation procedure automatically invokes the AddrOutFunction passing the address value defined in the to clause to it, in its first parameter. In case of receiving a message, the translation procedure automatically invokes the AddrInFunction passing the received address value to it, in its first parameter. When the function execution is over, the translation procedure retrieves the translated address from the out parameter of the translation function and the control is returned to the calling sending or receiving procedure to finish the operation using the translated address value.
NOTE:	Unlike translation functions used for translating sent or received messages, the translation functions for addresses do not use translation states.
EXAMPLE:
	type port TransportPort
	{
		...
		address TransportAddress;
	}

	type port DataPort map to TransportPort
	{
		...
		address DataAddress to TransportAddress with toTransportAddress()
			from TransportAddress with fromTransportAddress;
	}

	function toTransportAddress(DataAddress p_addr, out TransportAddress p_translated) { ...}
	function fromTransportAddress(TransportAddress p_addr, out DataAddress p_translated) { ... }

[bookmark: _Toc513471542]5.2.8	Clear, start, stop and halt operation
The clear and start operations clean messages both from inner and outer message queues. In addition to that, all port variables are reset in the following way: if a variable declaration contains an assignment, the assignment operation will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or start operation.
The halt operation affects the outer queue only. The translation procedure can still insert translated messages into the inner queue of a halted port, provided that there are available messages in the outer queue.
Since the stop port operation requires all communication operations to cease before the port is stopped, all unfinished translation operations shall be completely performed before the working of the port is suspended.
[bookmark: _Toc513471620]B.2	Useful TTCN‑3 types
[bookmark: annex_UsefulTypes_CharString_StatusValue][bookmark: _Toc513471621][bookmark: annex_UsefulTypes_Struct]B.2.1	Status values for port states
Type and constants defined in this clause support the secure usage of the setstate port operation defined in clause 5.10.4 of ETSI ES 201 873‑1 [1].
The type definition for this type is:
	type integer translationState(0..43);

Useful constant definitions for working with object states are:
	const translationState TRANSLATED := 0;
	const translationState NOT_TRANSLATED := 1;
	const translationState FRAGMENTED := 2;
	const translationState PARTIALLY_TRANSLATED :=3;
	const translationState DISCARDED := 4;

ETSI
image1.jpeg

