Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
2
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

[bookmark: _Toc514235004][bookmark: _GoBack]27.1.2.0	General
An attribute definition that is directly attached to a lower scope unit will override a general attribute definition in a higher scope and a type-specific attribute inherited from a type reference. Attributes inherited from a type reference will override general attributes from a higher scope unit containing the type reference. Additional overwriting rules for variant attributes are defined in clause 27.1.2.1.
EXAMPLE 1:
	type record MyRecordA
	{
		:
	} with { encode "RuleA" }

	// In the following, MyRecordA is encoded according to "RuleA" and not according to
	// "RuleB" because the attribute from the referenced type MyRecordA overrides
	// the attribute from higher scope unit (surrounding MyRecordB type).

	type record MyRecordB
	{
		 :
		MyRecordA 	field	
	} with { encode "RuleB" }

A with statement that is placed inside the scope of another with statement shall override the outermost with. This shall also apply to the use of the with statement with groups. If multiple attributes of the same type are allowed, all of them are overridden unless specified otherwise.
EXAMPLE 2:
	// Example of the use of the overwriting scheme of the with statement
	group myPDUs
	{
		type record MyPDU1 { … }
		type record MyPDU2 { … }

		group mySpecialPDUs
		{
			type record MyPDU3 { … }
			type record MyPDU4 { … }
		}	
		with {extension "MySpecialRule"}	// MyPDU3 and MyPDU4 will have the application
											// specific extension attribute MySpecialRule
	}
	with
	{
		display "PDU";		// All types of group myPDUs will be displayed as PDU and	
		extension "MyRule";	// (if not overwritten) have the extension attribute MyRule	
	}

	// is identical to …
	group myPDUs
	{
		type record MyPDU1 { … } with {display "PDU"; extension "MyRule" }
		type record MyPDU2 { … } with {display "PDU"; extension "MyRule" }
		group mySpecialPDUs {
			type record MyPDU3 { … } with {display "PDU"; extension "MySpecialRule" }
			type record MyPDU4 { … } with {display "PDU"; extension "MySpecialRule" }
		}
	}

Attributes defined for a synonym type don't override existing attributes of fields or elements of this synonym type. The attributes are applied to the fields or elements of synonym types only if the fields or elements have no valid attributes.
EXAMPLE 3:
	// Example of the use of attributes in synonym types
	type record SourceType1 {
		integer field1,
		integer field2
	} // neither the record nor its fields have a valid attribute

	type record SourceType2 {
		integer field1,
		integer field2
	} with { encode "Rule1" }
	// the record and its fields have a valid encode attribute "Rule1"

	type SourceType1 SynonymType1 with { encode "Rule2" }
	// SynonymType1 and all its fields will be encoded with Rule2

	type SourceType2 SynonymType2 with { encode "Rule3" }
	// SynonymType2 will be encoded with Rule3, but field1 and field2 will be encoded with
	// Rule1 as SourceType2 definition already specifies the encode attribute of these fields

Attributes with the @local modifier override attributes from higher scope, but they are valid for the associated language element only. They do not affect definitions inside the associated language element as the @local attribute is completely transparent to lower scopes. Attributes from higher scope will still affect attributes in lower scopes even if the @local attribute is between them.
NOTE:	Attributes with the @local modifier associated to modules and groups are valid, but do not affect the definitions inside them.
EXAMPLE 4:
	module M {
		type record MyRec {
			integer field1,
			integer field1,
		} with { encode @local "CodecB" }
		// the record type MyRec will be encoded with CodecB, but its fields with CodecA,
		// because the local attribute CodecB doesn't affect fields of the MyRec type.
	} with { encode "CodecA" }

An attribute definition in a lower scope or those inherited from a referenced type can be overwritten in a higher scope by using the override directive.
EXAMPLE 5:
	type record MyRecordA
	{
		 :
	} with { encode "RuleA" }

	// In the following, fieldA of a MyRecordB instance is encoded according to RuleB
	type record MyRecordB
	{
		 :
		MyRecordA 	fieldA
	} with { encode override (fieldA) "RuleB" }

The override directive overrides the specified attribute for all declarations at all lower scopes that do not also declare the specified attribute. If the override directive is applied to a type reference, it doesn't affect the attributes of the original referenced type.
An attribute definition directly attached to a field or element of a structured type overrides the corresponding attribute of the structured type, as regards the identified field or element. Override attribute applied to a synonym type (clause 6.4) overrides attributes of all fields or elements of the synonym type unless the synonym type definition contains an explicit attribute definition for the field or element.
EXAMPLE 6:
	// An instance of MyRecordA is encoded according to RuleA.
	type record MyRecordA
	{
		 :
	} with { encode override "RuleA" }

	// In the following, fieldA of a MyRecordB instance (and all its sub-fields) is encoded
	// according to "RuleB".
	type record MyRecordB
	{
		 :
		MyRecordA 	fieldA
	} with { encode override "RuleB" }

	// The following template will use "RuleA" as the override directive for MyRecordB affects only
	// MyRecordB.fieldA, but not the original MyRecordA.
	template MyRecordA mw_msg;

	// In the following, rule "RuleB" is overridden by "RuleC" for fieldC, but it is
	// not overridden by "RuleA" of the group because the direct attachment to fieldC and
	// MyRecordC override the encode of the outer scope.
	group myGroup {
	 type record MyRecordC
	 {
		 :
	 } with { encode override "RuleB" }

	 type record MyRecordD
	 {
		 :
		 MyRecordC 	fieldC
	 } with { encode override (fieldC) "RuleC" }
	} with { encode override "RuleA" }

	// In the following, the template mw_msg will be encoded with "RuleB", because the
	// override directive doesn't override the encode attribute in references. However,
	// all fields of the mw_msg_ template will be encoded with "RuleA", because the attributes
	// from the references have higher precedence than attributes from a higher scope.
	type record MyRecordE
	{
	 :
	} with { encode override "RuleA" }

	template MyRecordE mw_msg :=
	{
	 :
	} with { encode "RuleB" }

	// MyRecordG and its "field1" member will be encoded with "RuleB", but its field2 member
	// will be encoded with "RuleA", because there's an encode attribute explicitly declared
	// for this field.
	type record MyRecordF {
		integer field1,
		integer field2
	} with { encode "RuleA" }

	type MyRecordF MyRecordG with {
		encode override "RuleB";
		encode(field2) "RuleA"
	}

ETSI
