6.2.9
Communication port types
Ports facilitate communication between test components and between test components and the test system interface.
TTCN‑3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be identified by the keyword procedure within the associated port type definition.
Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out direction) and inout (for both directions). Operations allowed on a procedure present in the incoming port list are getcall, reply and raise. Operations allowed on a procedure present in the outcoming port list are call, getreply and catch. Directions shall be seen from the point of view of the test component owning the port with the exception of the test system interface, where directions shall be seen from the point of view of the test component port mapped to the test system interface port. The in list of the test system interface port contains message or procedure for which the mapped test component port allows the following operations: receive, trigger, getcall, reply or raise. The out list of the test system interface port contains message or procedure for which the mapped test component port allow the folowing operations: send, call, getreplay or catch..

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

Whenever a signature (see also clause Erreur : source de la référence non trouvée) is defined in the out direction of a procedure-based port, the types of all its inout and out parameters, its return type and its exception types are automatically part of the in direction of this port. Whenever a signature is defined in the in direction for a procedure-based port, the types of all its inout and out parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition, several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3 allows to bind an address type to a port. Values of this type may be used for addressing purposes in communication operations (see clause Erreur : source de la référence non trouvée) and be stored in variables. The handling of address types bound to different ports by means of the dot notation is explained in clause Erreur : source de la référence non trouvée.
Syntactical Structure
Message-based port:
type port PortTypeIdentifier message "{"

{ (address Type ";") |

 (map param "(" { FormalValuePar [","] }+ ")") |

 (unmap param "(" { FormalValuePar [","] }+ ")") |

 ((in | out | inout) { MessageType [","] }+ ";") }
"}"

Procedure-based port:
type port PortTypeIdentifier procedure "{"

{ (address Type ";") |

 (map param "(" { FormalValuePar [","] }+ ")") |

 (unmap param "(" { FormalValuePar [","] }+ ")") |

 ((in | out | inout) { Signature [","] }+ ";") }
"}"

Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée, the following restrictions apply:

a)
At most one address type shall be bound to a port type.

b)
At most one map parameter list shall be defined for a port type.

c)
At most one unmap parameter list shall be defined for a port type.

d)
Formal parameters of map param and unmap param declarations shall be value parameters and not be of port, component, timer or default type or of structured types having fields of port, component, timer or default type.

e)
MessageType shall be a data type as defined in clause 3.1.
Examples
EXAMPLE 1:
Message-based port

// Message-based port which allows types MsgType1 and MsgType2 to be received at, MsgType3 to be

// sent via and any integer value to be send and received over the port

type port MyMessagePortTypeOne message

{

in

MsgType1, MsgType2;

out

MsgType3;

inout
integer

}

EXAMPLE 2:
Procedure-based port

// Procedure-based port which allows the remote call of the procedures Proc1, Proc2 and Proc3.

// Note that Proc1, Proc2 and Proc3 are defined as signatures

type port MyProcedurePortType procedure

{

out

Proc1, Proc2, Proc3

}

EXAMPLE 3:
Message-based port with address type definition

type port MyMessagePortTypeTwo message

{

address
integer;

// if addressing is used on ports of type MyMessagePortTypeTwo

 // the addresses have to be of type integer

inout
MsgType1, MsgType2;

}

NOTE:
The term message is used to mean both messages as defined by templates and actual values resulting from expressions. Thus, the list restricting what may be used on a message-based port is simply a list of type names.
EXAMPLE 4:
Usage of param in port declaration

// Message based port which allows MsgType4 to be send and received over the port

// and MsgType5 and MsgType6 as configuration parameter type

type port MyMessagePortType message

{

inout
MsgType4;

map param
(in MsgType5 p_p1, out MsgType6 p_p2);

}

// Procedure based port which allows the remote call of the procedure Proc1

// and MsgType5 as configuration parameter type

type port MyProcedurePortType procedure

{

out

Proc1;

unmap param
(MsgType5 p_p1);

}

22.3
Procedure-based communication

22.3.0
General

The operations for procedure-based communication via synchronous ports are summarized in table 1.
Table 1: Overview of procedure-based communication

	Communication operation
	Keyword

	Invoke procedure call
	call

	Accept procedure call from remote entity
	getcall

	Reply to procedure call from remote entity
	reply

	Raise exception (to an accepted call)
	raise

	Handle response from a previous call
	getreply

	Catch exception (from called entity)
	catch

	Check call/exception/reply received
	check

22.3.1
The Call operation
The call operation specifies the call of a remote operation on another test component or within the SUT.
Syntactical Structure
Port "." call "(" TemplateInstance ["," CallTimerValue] ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the call operation is a signature that may either be defined in the form of a signature template or be defined in-line.
Handling responses and exceptions to a call
In case of non-blocking procedure-based communication the handling of exceptions to call operations is done by using catch (see clause 22.3.6) operations as alternatives in alt statements.

If the nowait option is used, the handling of responses or exceptions to call operations is done by using getreply (see clause 22.3.4) and catch (see clause 22.3.6) operations as alternatives in alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch (see clause 22.3.6) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the "[]" brackets of the alternative.
The response and exception handling part of a call operation is executed like an alt statement without any active default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean guards, may include the top element (if any) of the port over which the procedure has been called and may include a timeout exception generated by the (optional) timer that supervises the call.
Handling timeout exceptions to a call
The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type and defines the length of time after the call operation has started that a timeout exception shall be generated by the test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.
Nowait calls of blocking procedures
Using the keyword nowait instead of a timeout exception value in a call operation allows calling a procedure to continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If the nowait keyword is used, a possible response or exception of the called procedure has to be removed from the port queue by using a getreply or a catch operation in a subsequent alt statement.
Calling blocking procedures without return value, out parameters, inout parameters and exceptions
A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call operation for such a procedure shall also have a response and exception handling part to handle the blocking in a uniform manner.
Calling non-blocking procedures
A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated in the corresponding signature definition by means of a noblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch operations in subsequent alt or interleave statements.
Unicast, multicast and broadcast calls of procedures
Like for the send operation, TTCN‑3 also supports unicast, multicast and broadcast calls of procedures. This can be done in the same manner as described in clause Erreur : source de la référence non trouvée, i.e. the argument of the to clause of a call operation is for unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls a list of addresses of a set of receivers and for broadcast calls the all component keyword. In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in this clause under "Handling timeout exceptions to a call". A multicast or broadcast call operation may cause several responses and exceptions from different communication partners.

In case of a multicast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised from the different communication partners can be handled in subsequent catch, alt or interleave statements.

In case of a multicast or broadcast call operation of a blocking procedure, two options exist. Either, only one response or exception is handled in the response and exception handling part of the call operation. Then, further responses and exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling part of the call operation: the execution of a repeat statement causes the re-evaluation of the call body.
NOTE 2:
In the second case, the user needs to handle the number of repetitions.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a)
The call operation shall only be used on procedure-based ports. The type definition of the port shall include the name of the procedure to which the call operation belongs in its out or inout list i.e. it shall be allowed to call this procedure at this port.

b)
All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

c)
Only out parameters may be omitted or specified with a matching attribute.

d)
The signature arguments of the call operation are not used to retrieve variable names for out and inout parameters. The actual assignment of the procedure return value and out and inout parameter values to variables shall explicitly be made in the response and exception handling part of the call operation by means of getreply and catch operations. This allows the use of signature templates in call operations in the same manner as templates can be used for types.

e)
A to clause shall be present in case of one-to-many connections.

f)
All AddressRef items in the to clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the call operation. No AddressRef in the to clause shall contain the special value null at the time of the operation.

g)
CallTimerValue shall be of type float.

h)
The selection of the alternatives to a call shall only be based on getreply and catch operations for the called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions raised by the called procedure. The use of else branches and the invocation of altsteps is not allowed.

i)
The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards in alt statements shall be applied (see clause Erreur : source de la référence non trouvée).

j)
The call operation for a blocking procedures without return value, out parameters, inout parameters and exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k)
In case of a multicast or broadcast call operation of a blocking procedure, where the nowait keyword is used, all responses and exceptions have to be handled in subsequent alt or interleave statements.

l)
The call operation for a non-blocking procedure shall have no response and exception handling part, shall raise no timeout exception and shall not use the nowait keyword.
m)
Applying a call operation to an unmapped or disconnected port shall cause a test case error.
Examples
EXAMPLE 1:
Blocking call with getreply

// Given …

signature MyProc (out integer MyPar1, inout boolean MyPar2);

 :

// a call of MyProc

myPort.call(MyProc:{ -, v_myVar2}) {

// in-line signature template for the call of MyProc

[] myPort.getreply(MyProc:{?, ?}) { }

}

// … and another call of MyProc

myPort.call(s_myProcTemplate) {

// using signature template for the call of MyProc

[] myPort.getreply(MyProc:{?, ?}) { }

}

myPort.call(s_myProcTemplate) to myPeer {

// calling MyProc at myPeer

[] myPort.getreply(MyProc:{?, ?}) { }

}

EXAMPLE 2:
Blocking call with getreply and catch

// Given

signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType

exception (ExceptionTypeOne, ExceptionTypeTwo);

 :

// Call of MyProc3

myPort.call(MyProc3:{ -, true }) to myPartner {

 [] myPort.getreply(MyProc3:{?, ?}) -> value v_myResult param (v_myPar1Var,v_myPar2Var) { }

 [] myPort.catch(MyProc3, MyExceptionOne) {

setverdict(fail);

stop;

 }

 [] myPort.catch(MyProc3, ExceptionTypeTwo : ?) {

setverdict(inconc);

 }

 [MyCondition] myPort.catch(MyProc3, MyExceptionThree) { }

}

EXAMPLE 3:
Blocking call with timeout exception

myPort.call(MyProc:{5,v_myVar}, 20E-3) {

 [] myPort.getreply(MyProc:{?, ?}) { }

 [] myPort.catch(timeout) {

// timeout exception after 20ms

setverdict(fail);

stop;

 }

}

EXAMPLE 4:
Nowait call

myPort.call(MyProc:{5, v_myVar}, nowait);
// The calling test component will continue

// its execution without waiting for the

// termination of MyProc

EXAMPLE 5:
Blocking call without return value, out parameters, inout parameters and exceptions

// Given …

signature MyBlockingProc (in integer MyPar1, in boolean MyPar2);

 :

// a call of MyBlockingProc

myPort.call(MyBlockingProc:{ 7, false }) {

 [] myPort.getreply(MyBlockingProc:{ -, - }) { }

}

EXAMPLE 6:
Broadcast call

var boolean v_first:= true;

myPort.call(MyProc:{5,v_myVar}, 20E-3) to all component {
// Broadcast call of MyProc

// Handles the response from myPeerOne

[v_first] myPort.getreply(MyProc:{?, ?}) from myPeerOne {

if (v_first) { v_first := false; repeat; }

:

}

// Handles the response from myPeerTwo

[v_first] myPort.getreply(MyProc:{?, ?}) from myPeerTwo {

if (v_first) { v_first := false; repeat; }

:

}

[] myPort.catch(timeout) {

// timeout exception after 20ms

setverdict(fail);

stop;

}

}

alt {

 [] myPort.getreply(MyProc:{?, ?}) {

// Handles all other responses to the broadcast call

repeat

 }

}

EXAMPLE 7:
Multicast call

myPort.call(MyProc:{5,v_myVar}, nowait) to (myPeer1, myPeer2);
// Multicast call of MyProc

interleave {

 [] myPort.getreply(MyProc:{?, ?}) from myPeer1 { }
// Handles the response of myPeer1

 [] myPort.getreply(MyProc:{?, ?}) from myPeer2 { }
// Handles the response of myPeer2

}

22.3.2
The Getcall operation

The getcall operation is used to accept calls.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." getcall

["(" TemplateInstance ")"]

[from Address]

["->" [param "(" { (VariableRef ":=" [@decoded ["(" Expression ")"]]

ParameterIdentifier) "," } |

 { (VariableRef | "-") "," }

 ")"]

 [sender VariableRef]

 [@index value VariableRef]]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getcall operation is used to specify that a test component accepts a call from the SUT, or another test component.
The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.

The assignment of in and inout parameter values to variables shall be made in the assignment part of the getcall operation. This allows the use of signature templates in getcall operations in the same manner as templates are used for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:
The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the parameter values of a call.

When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.

The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressing a reply or exception to the calling party in a one-to-many configuration).
Accepting any call
A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
Getcall on any port
To getcall on any port is denoted by the any keyword.
Getcall on any port from a port array
To getcall on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a)
The getcall operation shall only be used on procedure-based ports. The type definition of the port shall include the name of the procedure to which the getcall operation belongs in its in or inout list.
b)
The signature argument of the getcall operation shall not be used to pass in variable names for in and inout parameters.

c)
The ParameterIdentifiers shall be from the corresponding signature definition.

d)
The value assignment part shall not be used with the getcall operation.

e)
Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause shall not be present.

f)
All AddressRef items in the from clause and all VariableRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause Erreur : source de la référence non trouvée) of the port instance referenced in the getcall operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.

g)
The PortArrayRef shall be a reference to a completely initialized port array.

h)
The index redirection shall only be used when the operation is used on an any from port array construct.

i)
If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.

j)
If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.

k)
If a variable referenced in the param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getcall operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getcall operation.

l)
If the getcall operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the type of the variable or parameter referenced in the sender clause.

NOTE 3:
An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.

m)
When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:
Basic getcall

myPort.getcall(MyProc: s_myProcTemplate(5, v_myVar));
// accepts a call of MyProc at myPort

myPort.getcall(MyProc:{5, v_myVar}) from myPeer; // accepts a call of MyProc at myPort from

 // myPeer
EXAMPLE 2:
Getcall with matching and assignments of parameter values to variables

myPort.getcall(MyProc:{?, ?}) from myPartner -> param (v_myPar1Var, v_myPar2Var);

// The in or inout parameter values of MyProc are assigned to v_myPar1Var and v_myPar2Var.

myPort.getcall(MyProc:{5, v_myVar}) -> sender v_mySenderVar;

// Accepts a call of MyProc at myPort with the in or inout parameters 5 and v_myVar.

// The address of the calling party is retrieved and stored in v_mySenderVar.

// The following getcall examples show the possibilities to use matching attributes

// and omit optional parts, which may be of no importance for the test specification.

myPort.getcall(MyProc:{5, v_myVar}) -> param(v_myVar1, v_myVar2) sender v_mySenderVar;

myPort.getcall(MyProc:{5, ?}) -> param(v_myVar1, v_myVar2);

myPort.getcall(MyProc:{?, v_myVar}) -> param(- , v_myVar2);

// The value of the first inout parameter is not important or not used

// The following examples shall explain the possibilities to assign in and inout parameter

// values to variables. The following signature is assumed for the procedure to be called:

signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

myPort.getcall(MyProc2:{?, ?, 3, - , ?}) -> param (v_myVarA, v_myVarB, - , -, v_myVarE);

// The parameters A, B, and E are assigned to the variables v_myVarA, v_myVarB, and

// v_myVarE. The out parameter D needs not to be considered.

myPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (v_myVarA:= A, v_myVarB:= B, v_myVarE:= E);

// Alternative notation for the value assignment of in and inout parameter to variables. Note,

// the names in the assignment list refer to the names used in the signature of MyProc2

myPort.getcall(MyProc2:{1, 2, 3, -, *}) -> param (v_myVarE:= E);

// Only the inout parameter value is needed for the further test case execution

// The following example demonstrates the use of encoded parameters:

signature MyProc3(in integer paramType, octetstring encodedParam);

template integer mw_int := ?;

…

var integer v_myVarX;

myPort.getcall(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);

// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:
Accepting any call

myPort.getcall;

// Removes the top call from myPort.

myPort.getcall from myPartner;
// Removes a call from myPartner from port myPort

myPort.getcall -> sender v_mySenderVar;
// Removes a call from myPort and retrieves

// the address of the calling entity

EXAMPLE 4:
Getcall on any port

any port.getcall(MyProc:?)

EXAMPLE 5:
Getcall on any port from port array

 type port MyPort procedure { inout MyProc }

 type component MyComponent {

 port MyPort p[10][10];

 }

 var integer v_i[2];

 any from p.getcall(MyProc:?) -> @index value v_i;

 // checking for an incoming call of the type MyProc on any port of the port array p and storing

 // the index of the port on which the matching was successful first

22.3.3
The Reply operation
The reply operation is used to reply to a call.
Syntactical Structure
Port "." reply "(" TemplateInstance [value TemplateBody] ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2:
The relation between an accepted call and a reply operation cannot always be checked statically. For testing it is allowed to specify a reply operation without an associated getcall operation.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and (optional) return value. The signature may either be defined in the form of a signature template or it may be defined in‑line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause Erreur : source de la référence non trouvée. This means, the argument of the to clause of a reply operation is for unicast responses the address of one receiving entity, for multicast responses a list of addresses of a set of receivers and for broadcast responses the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.
A return value or template shall be explicitly stated with the value keyword and is first evaluated before returning.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a)
A reply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the reply operation belongs in its in or inout list.

b)
All out and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

c)
A to clause shall be present in case of one-to-many connections.

d)
All AddressRef items in the to clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the reply operation. No AddressRef in the to clause shall contain the special value null at the time of the operation.

e)
If a value is to be returned to the calling party, this shall be explicitly stated using the value keyword. The TemplateBody in the value clause shall conform to the template(value) restriction.

f)
Applying a reply operation to an unmapped or disconnected port shall cause a test case error.
Examples

myPort.reply(MyProc2:{ - ,5});

// Replies to an accepted call of MyProc2.

myPort.reply(MyProc2:{ - ,5}) to myPeer; // Replies to an accepted call of MyProc2 from myPeer

myPort.reply(MyProc2:{ - ,5}) to (myPeer1, myPeer2); // Multicast reply to myPeer1 and myPeer2

myPort.reply(MyProc2:{ - ,5}) to all component;
// Broadcast reply to all entities connected

// to myPort

myPort.reply(MyProc3:{5, v_myVar} value 20);
// Replies to an accepted call of MyProc3.

22.3.4
The Getreply operation

The getreply operation is used to handle replies from a previously called procedure.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." getreply

["(" TemplateInstance [value TemplateInstance]")"]

[from Address]

["->" [value (VariableRef |

 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]

 FieldOrTypeReference][","] } ")")

)]

 [param "(" { (VariableRef ":=" [@decoded ["(" Expression ")"]]

ParameterIdentifier) "," } |

 { (VariableRef | "-") "," }

 ")"]

 [sender VariableRef]

 [@index value VariableRef]]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getreply operation is used to handle replies from a previously called procedure.
The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the procedure to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using the value keyword.

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component..
NOTE 2:
The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The assignment of out and inout parameter values to variables shall be made in the assignment part of the getreply operation. This allows the use of signature templates in getreply operations in the same manner as templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter values to variables and the retrieval of the address of the sender of the reply. The keyword value is used to retrieve return values and the keyword param is used to retrieve the parameter values of a reply. The keyword sender is used when it is required to retrieve the address of the sender.

When assigning individual parameters or referenced fields of the return value of a reply, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter or field of the return value on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the parameter or referenced field of the return value is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the parameter or referenced field of the return value is not a universal char string, the optional parameter shall not be present.
Get any reply
A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of a call operation, it shall only treat replies from the procedure invoked by the call operation.
Get a reply on any port
To get a reply on any port, use the any port keywords.
Get a reply on any port from a port array
To get a reply on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a)
A getreply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the getreply operation belongs in its out or inout list.

b)
The signature argument of the getreply operation shall not be used to pass in variable names for out and inout parameters.

c)
Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the param and value clause shall not be present.

d)
All AddressRef items in the from clause and all VariableRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the getreply operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.

e)
The PortArrayRef shall be a reference to a completely initialized port array .

f)
The index redirection shall only be used when the operation is used on an any from port array construct.

g)
If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.

h)
If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.

i)
If a variable referenced in the value, param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getreply operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getreply operation.

j)
If the getreply operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender clause.

NOTE 3:
An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.

k)
When assigning implicitly decoded parameters or referenced fields of the return value (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:
Basic getreply

myPort.getreply(MyProc:{5, ?} value 20);
// Accepts a reply of MyProc with two out or

// inout parameters and a return value of 20

myPort.getreply(MyProc2:{ - , 5}) from myPeer;
// Accepts a reply of MyProc2 from myPeer

EXAMPLE 2:
Getreply with storing inout/out parameters and return values in variables

myPort.getreply(MyProc1:{?, ?} value ?) -> value v_myRetValue param(v_myPar1, v_myPar2);

// The returned value is assigned to variable v_myRetValue and the value

// of the two out or inout parameters are assigned to the variables v_myPar1 and v_myPar2.

myPort.getreply(MyProc1:{?, ?} value ?)-> value v_myRetValue param(- ,v_myPar2) sender mySender;

// The value of the first parameter is not considered for the further test execution and

// the address of the sender component is retrieved and stored in the variable mySender.

// The following examples describe some possibilities to assign out and inout parameter values

// to variables. The following signature is assumed for the procedure which has been called

signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

myPort.getreply(s_aTemplate) -> param(- , - , - , v_myVarOut1, v_myVarInout1);

myPort.getreply(s_aTemplate) -> param(v_myVarOut1:=D, v_myVarOut2:=E);

myPort.getreply(MyProc2:{ - , - , - , 3, ?}) -> param(v_myVarInout1:=E);

// The following example demonstrates the use of encoded parameters:

signature MyProc3(out integer paramType, out octetstring encodedParam);

template integer mw_int := ?;

…

var integer v_myVarX;

myPort.getreply(MyProc3:{1, decmatch mw_int}) -> param (v_myVarX := @decoded encodedParam);

// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:
Get any reply

myPort.getreply;

// Removes the top reply from myPort.

myPort.getreply from myPeer;
// Removes the top reply received from myPeer from myPort.

myPort.getreply -> sender v_mySenderVar;
// Removes the top reply from myPort and retrieves

// the address of the sender entity

EXAMPLE 4:
Get a reply on any port

any port.getreply(Myproc:?)

EXAMPLE 5:
Get a reply on any port from port array

 type port MyPort procedure { inout MyProc }

 type component MyComponent {

 port MyPort p[10][10];

 }

 var integer v_i[2];

 any from p.getreply(MyProc:?) -> @index value v_i;

 // Getting a reply of the type MyProc on any port of the port array p and

 // storing the index of the port on which the matching was successful first

22.3.5
The Raise operation

Exceptions are raised with the raise operation.
Syntactical Structure
Port "." raise "(" Signature "," TemplateInstance ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The raise operation is used to raise an exception.
NOTE 2:
The relation between an accepted call and a raise operation cannot always be checked statically. For testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from a template conforming to the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value). The optional type field in the value specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause Erreur : source de la référence non trouvée. This means, the argument of the to clause of a raise operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of addresses of a set of receivers and for broadcast exceptions the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a)
An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted procedure call the result of which leads to an exceptional event.

b)
The type of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include in its in or inout list the name of the procedure to which the exception belongs.

c)
A to clause shall be present in case of one-to-many connections.

d)
All AddressRef items in the to clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the raise operation. No AddressRef in the to clause shall contain the special value null at the time of the operation.

e)
Applying a raise operation to an unmapped or disconnected port shall cause a test case error.

f)
The TemplateInstance shall conform to the template(value) restriction (see clause Erreur : source de la référence non trouvée).
Examples

myPort.raise(MySignature, v_myVariable + v_yourVariable - 2);

// Raises an exception with a value which is the result of the arithmetic expression

// at myPort

myPort.raise(MyProc, integer:5});
// Raises an exception with the integer value 5 for MyProc

myPort.raise(MySignature, "My string") to myPartner;

// Raises an exception with the value "My string" at myPort for MySignature and

// send it to myPartner

myPort.raise(MySignature, "My string") to (myPartnerOne, myPartnerTwo);

// Raises an exception with the value "My string" at myPort and sends it to myPartnerOne and

// myPartnerTwo (i.e. multicast communication)

myPort.raise(MySignature, "My string") to all component;

// Raises an exception with the value "My string" at myPort for MySignature and sends it

// to all entites connected to myPort (i.e. broadcast communication)

22.3.6
The Catch operation
The catch operation is used to catch exceptions.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." catch

["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"]

[from Address]

["->" [value (VariableRef |

 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]

FieldOrTypeReference][","] } ")")

)]

 [sender VariableRef]

 [@index value VariableRef]]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish between different values of the same exception type.

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top exception satisfies all the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword followed by a specification of an address or component reference, a list of address or component references or any component.
NOTE 2:
The one-to-one connection is considered to be a simple case of the one-to-many connections and allows the usage of the from-clause.
The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the value of an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the sender.

When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the @decoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.

The catch operation may be part of the response and exception handling part of a call operation or be used to determine an alternative in an alt statement. If the catch operation is used in the accepting part of a call operation, the information about port name and signature reference to indicate the procedure that raised the exception is redundant, because this information follows from the call operation. However, for readability reasons (e.g. in case of complex call statements) this information shall be repeated.
The Timeout exception
There is one special timeout exception that can be caught by the catch operation. The timeout exception is an emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time (see clause 22.3.1).
Catch any exception
A catch operation with no argument list allows any valid exception to be caught. The most general case is without using the from keyword. CatchAnyException will also catch the timeout exception.
Catch on any port
To catch an exception on any port use the any keyword.
Catch on any port from a port array
To catch an exception on any port from a specific port array, indices use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.

The catch on any port from a port array operation can not be used to catch a call timeout.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause Erreur : source de la référence non trouvée and shown in table Erreur : source de la référence non trouvée, the following restrictions apply:

a) The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be specified in the signature of the procedure that raised the exception.

b) The type definition of the port shall include in its out or inout list the name of the procedure to which the exception belongs.
c) No binding of the incoming values to the terms of the expression or to the template shall occur. The assignment of the exception values to variables shall be made in the assignment part of the catch operation.

d) Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching criteria (including a from part) and no assignment part is allowed for a catch operation that handles a timeout exception.

e) Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall not be present.

f) If CatchAnyException is used in the response and exception handling part of a call operation, it shall only treat exceptions raised by the procedure invoked by the call operation.

g) All AddressRef items in the from clause and all VariableRef items in the sender clause shall be of type address, component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the catch operation. No AddressRef in the from clause shall contain the special value null at the time of the operation.

h) The PortArrayRef shall be a reference to a completely initialized port array.

i) The index redirection shall only be used when the operation is used on an any from port array construct.

j) If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.

a) If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.

k) If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the catch operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the catch operation.

l) If the catch operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause. If the operation contains a sender clause but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender clause.

NOTE 3:
An error due to a type mismatch may happen if the types in the receive part are not compatible to the types in the assignment part or, if the from clause is missing, but the type of the sender can be determined and it is not type compatible with the type in the sender clause.

m) When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:
Basic catch

myPort.catch(MyProc, integer: v_myVar);
 // Catches an integer exception of value

 // v_myVar raised by MyProc at port myPort.

myPort.catch(MyProc, v_myVar);

 // Is an alternative to the previous example.

myPort.catch(MyProc, v_a<v_b);

 // Catches a boolean exception

myPort.catch(MyProc, MyType:{5, v_myVar}); // In-line template definition of an exception value.

myPort.catch(MyProc, charstring:"Hello")from myPeer;
// Catches "Hello" exception from myPeer

EXAMPLE 2:
Catch with storing value and/or sender in variables

myPort.catch(MyProc, MyType:?) from myPartner -> value v_myVar;

// Catches an exception from myPartner and assigns its value to v_myVar.

myPort.catch(MyProc, s_myTemplate(5)) -> value v_myVarTwo sender myPeer;

// Catches an exception, assigns its value to v_myVarTwo and retrieves the

// address of the sender.

myPort.catch(MyProc, s_myTemplate(5)) -> value (v_myVarThree:= f1)

 sender myPeer;

// Catches an exception, assigns the value of its field f1 to v_myVarThree and retrieves the

// address of the sender.

// Handling encoded exception payload:

type MyException record {

 ...

}

type CommonException record {

 integer

exceptionId,

 octetstring
payload

}

signature S() exception (CommonException);

...

var MyException v_myVar;

myPort.catch (S, CommonException:{exceptionId := 25, payload := decmatch MyException:? })

-> value (v_myVar := @decoded payload);

// The encoded payload field of the caught exception is decoded and matched with m_excTemplate;

 // if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3:
The Timeout exception

myPort.call(MyProc:{5, v_myVar}, 20E-3) {

 [] myPort.getreply(MyProc:{?, ?}) { }

 [] myPort.catch(timeout) {

// timeout exception after 20ms

setverdict(fail);

stop;

 }

}

EXAMPLE 4:
Catch any exception

myPort.catch;

myPort.catch from myPartner;

myPort.catch -> sender v_mySenderVar;

EXAMPLE 5:
Catch on any port

any port.catch;
EXAMPLE 6:
Catch on any port from port array

 type port MyPort procedure { inout MyProc }

 type component MyComponent {

 port MyPort p[10][10];

 }

 var integer v_i[2];

 any from p.catch(MyProc, MyType:?) -> @index value v_i;

 // Catching an incoming exception of type MyType on any port in the port array p and

 // storing the index of the port on which the matching was successful first
