Final draft ETSI ES 201 873-1 V4.8.1 (2016-05)
5

Final draft ETSI ES 201 873-1 V4.8.1 (2016-05)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN‑3 Core Language

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-201873-1 T3ed481
Keywords
language, methodology, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

[bookmark: _Toc444778836][bookmark: _Toc444781361][bookmark: _Toc444853470][bookmark: _Toc445290200][bookmark: _Toc446334492][bookmark: _Toc447891465][bookmark: _Toc450656341][bookmark: _Toc450656836][bookmark: _Toc450814623][bookmark: _Toc450815122][bookmark: _Toc450815617][bookmark: _Toc450816119][bookmark: _Toc450816616][bookmark: _Toc450827058]6.2.1	Record type and values
[bookmark: _Toc446334493][bookmark: _Toc447891466][bookmark: _Toc450656342][bookmark: _Toc450656837][bookmark: _Toc450814624][bookmark: _Toc450815123][bookmark: _Toc450815618][bookmark: _Toc450816120][bookmark: _Toc450816617][bookmark: _Toc450827059]6.2.1.0	General
TTCN‑3 supports ordered structured types known as record. The elements of a record type may be any of the basic types or user-defined data types (such as other records, sets or arrays). The values of a record shall be compatible with the types of the record fields. The element identifiers are local to the record and shall be unique within the record (but do not have to be globally unique).
EXAMPLE 1:
	type record MyRecordType
	{	
		integer 			field1,
		MyOtherRecordType 	field2 optional,
		charstring 			field3
	}

	type record MyOtherRecordType
	{	
		bitstring 	field1,
		boolean 	field2
	}

Records may be defined with no fields, i.e. as empty records.
EXAMPLE 2:
	type record MyEmptyRecord {}

A record value is assigned on an individual element basis. The order of field values in the value list notation shall be the same as the order of fields in the related type definition.
EXAMPLE 3:
	var integer v_myIntegerValue := 1;

	const MyOtherRecordType c_myOtherRecordValue:=
	{	
		field1 := '11001'B,
		field2 := true
	}

	var MyRecordType v_myRecordValue :=
	{	
		field1 := v_myIntegerValue,
		field2 := c_myOtherRecordValue,
		field3 := "A string"
	}

The same value specified with a value list.
EXAMPLE 4:
	v_myRecordValue:= {v_myIntegerValue, {'11001'B, true}, "A string"};

When the assignment notation is used for record‑s, fields wished to be changed shall be identified explicitly and a value, the not used symbol "-" or the omit keyword can be associated with them. The omit keyword shall only be used for optional fields. Its result is that the given field is not present in the given value.
NOTE:	Please note the difference between omitted and uninitialized fields. Omitted optional fields are not present in the record or set value intentionally, i.e. the field is initialized and it does not prevent the whole record or set from being completely initialized.
When the assignment notation is used in a scope, where the optional attribute is implicitly or explicitly set to "explicit omit", fields, not explicitly referred to in the notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, for example, at initialization, only the fields or elements to be assigned values shall be specified. Fields or elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly unspecified using the not used symbol "-". When re-assigning a previously initialized value, using the not used symbol or just skipping a field or element in an assignment notation, will cause that field or element to remain unchanged.
EXAMPLE 5:
	type record MyRecordType
	{	
		bitstring 		field1,
		boolean			field2 optional,
		charstring 		field3
	}

	var MyRecordType v_myVariable :=
	{
		field1 := '111'B,
		field2 := false,
		field3 := -
	}

	v_myVariable := { '10111'B, -, - };
	// after this, v_myVariable contains:
	//	{ '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

	v_myVariable :=
	{
		field2 := true
	}
	// after this, v_myVariable contains:
	//	{ '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

	v_myVariable :=
	{
		field1 := -,
		field2 := false,
		field3 := -
	}
	// after this, v_myVariable contains:
	//	{ '10111'B /* unchanged */, false, <undefined> /* unchanged */}

When the assignment notation is used in a scope, where the optional attribute is set to "implicit omit", optional fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall remain unchanged (see also clause 27.7).

When using the value list notation, all fields in the structure notation shall be specified either with a value, the not used symbol "‑" or the omit keyword. The omit keyword shall only be used for optional fields. Its result is that the given field is not present in the given value. The first component of the list (a value, a "-" or omit) is associated with the first field, the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two commas, the second immediately following the first or only with white space between them). Fields or elements to be left unchanged shall be explicitly skipped in the list by using the not-used-symbol "-".
When the value list notation is used in a scope, where the optional attribute is implicitly or explicitly set to "explicit omit, already initialized fields or elements left without an associated component in a value list notation (i.e. at the end of a value) are becoming uninitialized. In this way, a value with initialized fields or elements can be made empty by using an empty pair of curly brackets ("{}").
When using value list notation in a scope where the optional attribute is set to "implicit omit", optional fields wished to be omitted by the implicit mechanism, but followed by fields to which a value or template is assigned explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for some or all of them or they can simply be left out from the notation.
	
EXAMPLE 6:
[bookmark: _GoBack]	type record R {
		integer f1,
		integer f2 optional,
		integer f3,
		integer f4 optional,
		integer f5 optional
	}

	constvar R vc_x := { 1, -, 2 } with { optional "implicit omit" }
	// after the assignment vc_x contains { 1, omit, 2, omit, omit }
	var const R vc_x2 := { 1, 2, 3, - } with { optional "implicit omit" }
	// after the assignment vc_x2 contains { 1, 2, <undefined>3, omit, omit }

When using direct assignment notation in a scope where the optional attribute is set to "implicit omit", the uninitialized optional fields in the referenced value, shall implicitly be set to omit after the assignment in the new value, while mandatory fields shall remain unchanged (see also clause 27.7)
EXAMPLE 7:
const R c_x3 := { 1, -, 2 }
// after the assignment c_x3 contains { 1, <undefined>, 2, <undefined>, <undefined>}
const R c_x4 := c_x3 with { optional "implicit omit" }
// after the assignment c_x4 contains { 1, omit, 2, omit, omit }

[bookmark: clause_Attributes_Optional][bookmark: _Toc444779044][bookmark: _Toc444781569][bookmark: _Toc444853678][bookmark: _Toc445290408][bookmark: _Toc446334738][bookmark: _Toc447891711][bookmark: _Toc450656587][bookmark: _Toc450657082][bookmark: _Toc450814869][bookmark: _Toc450815368][bookmark: _Toc450815863][bookmark: _Toc450816366][bookmark: _Toc450816863][bookmark: _Toc450827305]27.7	Optional attributes
The optional attribute can be used to indicate that optional fields of constants, module parameters or templates of record and set types are implicitly set to omit.
Syntactical Structure
optional

Semantic Description
TTCN‑3 constants, module parameters, and templates can have an optional attribute. Also, TTCN-3 language elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type definitions can have an optional attribute. When an optional attribute is associated to a function, altstep, test case, control or component type definitions, it shall have effect on all the constants, module parameters, and templates declared within these definitions and not on the enframing definition itself.
Special optional strings:
The following strings are the predefined (standardized) optional attributes.
a)	"implicit omit" means that all optional fields, that have no assigned value definition in the statement on which the attribute operates, are set to omit. This applies recursively to the optional fields of the entity and to subfields of the mandatory fields.
b)	"explicit omit" means that all optional fields, that have no assigned value definition in the statement on which the attribute operates, are left undefined. This applies recursively to the optional fields of the entity and to subfields of the mandatory fields.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
a)	Data type, port type, procedure signature and variable definitions and import statements shall not have an optional attribute associated to them directly. When an optional attribute is associated to module, group, function, altstep, test case, control or component type containing such definitions, it shall not have any effect on the included data type, port type, procedure signature, variable or import statement.
Examples
type record MyRecord1 {
 integer a,
 boolean b optional
}
type record MyRecord2 {
 MyRecord1 m
}

// reference templates with explicitly set fields
template MyRecord1 mw_myTemplate1 := { a := ?, b := omit }
template MyRecord2 mw_myTemplate2 := { m := { a := ?, b := omit }}

// reference templates
template MyRecord1 mw_myTemplate1a := {a := ? } // b is undefined
template MyRecord1 mw_myTemplate1b := {a := ? } with {optional "explicit omit"} // b is undefined

template MyRecord2 mw_myTemplate2a := {} // m and its subfields are undefined
template MyRecord2 mw_myTemplate2b := { m := { a := ?}}; // m.b is undefined

// templates with attribute

template MyRecord1 mw_myTemplate11 := { a := ? } with {optional "implicit omit"}
 // same as mw_myTemplate1, b is set to omit

template MyRecord2 mw_myTemplate21 := { m := { a := ?}} with {optional "implicit omit"}
 // same as mw_myTemplate2, by recursive application of the attribute
template MyRecord2 mw_myTemplate22 := { m := mw_myTemplate1a } with {optional "implicit omit"}
 // same as mw_myTemplate2, by recursive application of the attribute

template MyRecord2 mw_myTemplate23 := {} with {optional "implicit omit"}
 // same as mw_myTemplate2a, m remains undefined

template MyRecord2 mw_myTemplate24 := { m := mw_myTemplate1b } with {optional "implicit omit"}
 // same as mw_myTemplate2b, the attribute on the lower scope is not overwritten
template MyRecord2 mw_myTemplate25 := { m := MyTemplate1b }
 with {optional override "implicit omit"}
 // same as mw_myTemplate2, the attribute on the lower scope is overwritten

 // implicitly omitted fields stay omitted after assignment
template MyRecord1 mw_myTemplate3a := mw_myTemplate1a with {optional "implicit omit"}
 // same as mw_myTemplate1, b is set to omit
template MyRecord1 mw_myTemplate3b := mw_myTemplate3a;
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a
template MyRecord1 mw_myTemplate3c := mw_myTemplate3a with {optional "explicit omit"}
 // same as mw_myTemplate1, b is set to omit, by implicit omit attribute of mw_myTemplate3a

ETSI
image1.jpeg

