[bookmark: clause_Statements_Interleave][bookmark: _Toc420661329]20.4	The Interleave statement
The interleave statement allows to specify the interleaved occurrence and handling of receiving events including done, killed, timeout, receive, trigger, getcall, getreply, catch and check.
Syntactical Structure
interleave "{"
		{ "[]" (TimeoutStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 CatchStatement |
 CheckStatement |
 GetReplyStatement |
 DoneStatement |
 KilledStatement) StatementBlock
		}
"}"

Semantic Description
The interleave statement allows to specify the interleaved occurrence and handling of the statements done, killed, timeout, receive, trigger, getcall, getreply, catch and check.
Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this replacement and the operational semantics of interleaving are described in part 4 of the TTCN‑3 standard (ETSI ES 201 873‑4 [1]).
The rules for the evaluation of an interleaving statement are the following:
1. Whenever a reception statement is executed, the following non-reception statements are subsequently executed until the next reception statement is reached, a break statement is reached, or the interleaved sequence ends.
NOTE 1:	Reception statements are TTCN‑3 statements which may occur in sets of alternatives, i.e. receive, check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception statements denote all other non-control-transfer statements which can be used within the interleave statement.
If none of the alternatives of the interleave statement can be executed, the default mechanism will be invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to evaluate those altsteps that have been activated before entering the interleave statement.
NOTE 2:	The complete semantics of the default mechanism within an interleave statement is given by replacing the interleave statement by an equivalent set of nested alt statements. The default mechanism applies for each of these alt statements.
The evaluation then continues by taking the next snapshot if no break statement was encountered.
The evaluation of the interleave statement is terminated if a break statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN‑3 standard (ETSI ES 201 873‑4 [1]).
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
1. [bookmark: _GoBack]Control transfer statements for, while, do-while, goto, activate, deactivate, stop, repeat, return, direct all calls of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which include reception statements, shall not be used in interleave statements.
1. In addition, it is not allowed to guard branches of an interleave statement with Boolean expressions (i.e. the '[]' shall always be empty). It is also not allowed to specify else branches in interleaved behaviour.
1. An interleave statement used within the module control part shall only contain timeout statements.
1. The restricted use of the control transfer statements for, while, do-while, and goto within interleave statements is allowed under the following conditions:
3. The loop statements for, while, and do-while can be used within statements blocks that do not contain reception statements.
3. The goto statement can be used for defining unconditional jumps within statements blocks that do not contain reception statements and for specifying unconditional jumps out of interleave statements.
Examples
	// The following TTCN‑3 code fragment
	interleave {
	[]	pCO1.receive(mw_mySig1) {
			PCO1.send(m_mySig2);
			PCO1.receive(mw_mySig3);
		}
	[]	pCO2.receive(mw_mySig4) {
			pCO2.send(m_mySig5);
			pCO2.send(m_mySig6);
			pCO2.receive(mw_mySig7);
		}
	}

	// is a shorthand for
	alt {
	[]	PCO1.receive(mw_mySig1) {
			PCO1.send(m_mySig2);
			alt {
			[]	PCO1.receive(mw_mySig3) {
					alt {
					[]	PCO2.receive(mw_mySig4) {
							PCO2.send(m_mySig5);
							PCO2.send(m_mySig6);
							PCO2.receive(mw_mySig7)
						}
					}
				}
			[]	PCO2.receive(mw_mySig4) {
					PCO2.send(m_mySig5);
					PCO2.send(m_mySig6);
					alt {
					[]	PCO1.receive(mw_mySig3) {
							PCO2.receive(mw_mySig7);
						}
					[]	PCO2.receive(mw_mySig7) {
							PCO1.receive(mw_mySig3);
						}
					}
				}
			}
		}
	[]	pCO2.receive(mw_mySig4) {
			pCO2.send(m_mySig5);
			pCO2.send(m_mySig6);
			alt {
			[]	pCO1.receive(mw_mySig1) {
					pCO1.send(m_mySig2);
					alt {
					[]	pCO1.receive(mw_mySig3) {
							pCO2.receive(mw_mySig7);
						}
					[]	pCO2.receive(mw_mySig7) {
							pCO1.receive(mw_mySig3);
						}
					}
				}
			[]	pCO2.receive(mw_mySig7) {
					alt {
					[]	pCO1.receive(mw_mySig1) {
							pCO1.send(m_mySig2);
							pCO1.receive(mw_mySig3);
						}
					}
				}
			}
		}
	}

