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[bookmark: clause_Types_Struct_Arrays][bookmark: _Toc420661213]6.2.7	Arrays
Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the point of a variable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be specified using constant expressions, which shall evaluate to a positive integer values. Constants used in the constant expressions shall meet with the restrictions in clause 10.
EXAMPLE 1:
	type integer MyArrayType1[3];                      // A type with 3 integer elements
	type record length (3) of integer MyRecordOfType1; // The corresponding record of

	var MyArrayType1 a1:= { 7, 8, 9 };
	var MyRecordOfType1 r1:= a1;	// MyArrayType1 and MyRecordOfType1 are compatible

	var integer myArray1[3]:= r1; 	// Instantiates an integer array of 3 elements 
                                    // with the index 0 to 2
                                    // being compatible to MyArrayType1 and MyRecordOfType1

	var integer myArray2[2][3];	// Instantiates a two-dimensional integer array of 2 × 3 elements 									// with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which shall specify a valid index within the array's range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation. An array or record of integer restricted to a single size can be used in the index notation as a short-hand for the repeated index notation. Accessing elements outside the array's range will cause a compile-time or test case error.
EXAMPLE 2:
	MyArray1[1] := 5;
	MyArray2[1][2] := 12;

	MyArray1[4] := 12;    // ERROR: index shall be between 0 and 2
	MyArray2[3][2] := 15; // ERROR: first index shall be 0 or 1

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and upper values of the range define the lower and upper index values. Such an array is corresponding to a record of with a fixed length restriction computed as the difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array definition.
EXAMPLE 3:
	type integer MyArrayType2[2 .. 5]; // A type with 4 integer elements, indices starting with 2
	type record length (4) of integer MyRecordOfType2; // The corresponding record of
	
	var integer MyArray3[1 .. 5];	// Instantiates an integer array of 5 elements
									// with the index 1 to 5
	MyArray3[1] := 10; // Lowest index
	MyArray3[5] := 50; // Highest index

	var integer MyArray4[1 .. 5][2 .. 3 ];	// Instantiates a two-dimensional integer array of
											// 5 × 2 elements with indexes from (1,2) to (5,3)

NOTE:	It is not possible to define an array type with a variable amount of elements. Neither is it possible to define an unlimited array with a lower bound on the array index.
The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be assigned individually by a value list notation or index notation or more than one or all at once by a value list notation or index assignment notation. When the value list notation is used, the first value of the list is assigned to the first element of the array (the element with index 0 or the lower bound if an index range has been given), the second value to the next element, etc. Elements to be left out from the assignment shall be explicitly skipped in the list by using dash. For using the valu list or assignment notation for arrays, the rules described in clause 6.2.3 are valid for arrays as well.
Index notation can be used on both the right-hand side and left-hand side of assignments. The index of the first element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations given by either the length or the upper bound of the index. If the value of the element indicated by the index at the right‑hand of an assignment is undefined or if the index notation is applied to an uninitialized or omitted array value on the right hand side of an assignment, error shall be caused. Sending an array value with undefined elements shall cause an error. All elements in an array value that are not set explicitly are undefined. When referencing an element of an uninitialized array value or field or omitted field on the left hand side of an assignment, the rules for record of values specified in clause 6.2.3 apply.
For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array slices of multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensions in the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice indexes shall conform to the related array definition dimensions.
EXAMPLE 4:
	MyArray1[0]:= 10;
	MyArray1[1]:= 20;
	MyArray1[3]:= 30;

	// or using an value list 
	MyArray1:= {10, 20, -, 30};

	MyArray4:= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
	// the array value is completely defined

	var integer MyArray5[2][3][4] :=
	{
		{
			{1, 2, 3, 4}, // assigns a value to MyArray5 slice [0][0]
			{5, 6, 7, 8}, // assigns a value to MyArray5 slice [0][1]
			{9, 10, 11, 12} // assigns a value to MyArray5 slice [0][2]
		}, // end assignments to MyArray5 slice [0] 
		{
			{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
		} // assigns a value to MyArray5 slice [1]
	};

	MyArray4[2] := {20, 20};
		// yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
	MyArray5[1] := { {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}};
		// yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
		//         {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

	MyArray5[0][2] := {3, 3, 3, 3};
		// yields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}},
		//         {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}};

	var integer MyArrayInvalid[2][2];
	MyArrayInvalid := { 1, 2, 3, 4 }
		// causes an error as the dimension of the value notation 
		// does not correspond to the dimensions of the definition
	MyArrayInvalid[2] := { 1, 2 }
		// causes an error as the index of the slice should be 0 or 1
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