Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
8
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

[bookmark: clause_CommOps][bookmark: _Toc420661350]22	Communication operations
TTCN‑3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore, TTCN‑3 allows to examine the top element of incoming port queues and to control the access to ports by means of controlling operations. The communication operations and restrictions on their usage are summarized in table 21.
[bookmark: tab_Comm_Oper]Table 21: Overview of TTCN‑3 communication operations
	Communication operations

	Communication operation
	Keyword
	Can be used at message-based ports
	Can be used at procedure-based ports

	Message-based communication

	Send message
	send
	Yes
	

	Receive message
	receive
	Yes
	

	Trigger on message
	trigger
	Yes
	

	Procedure-based communication

	Invoke procedure call
	call
	
	Yes

	Accept procedure call from remote entity
	getcall
	
	Yes

	Reply to procedure call from remote entity
	reply
	
	Yes

	Raise exception (to an accepted call)
	raise
	
	Yes

	Handle response from a previous call
	getreply
	
	Yes

	Catch exception (from called entity)
	catch
	
	Yes

	Examine top element of incoming port queues

	Check msg/call/exception/reply received
	check
	Yes
	Yes

	Controlling operations

	Clear port queue
	clear
	Yes
	Yes

	Clear queue and enable sending and receiving at a port
	start
	Yes
	Yes

	Disable sending and disallow receiving operations to match at a port
	stop
	Yes
	Yes

	Disable sending and disallow receiving operations to match new messages/calls
	halt
	Yes
	Yes

	Check the state of a port
	checkstate
	Yes
	Yes

[bookmark: clause_CommOps_Mechanisms][bookmark: _Toc420661351]22.1	The communication mechanisms
This clause explains the principles of TTCN‑3 communication for message-based communication (see clause 22.1.1), for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication (see clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).
[bookmark: clause_Principle_MsgComm][bookmark: _Toc420661352]22.1.1	Principles of message-based communication
Message-based communication is communication based on an asynchronous message exchange. Message-based communication is non-blocking on the send operation, as illustrated in figure 11, where processing in the SENDER continues immediately after the send operation occurs. The RECEIVER is blocked on the receive operation until it processes the received message.
In addition to the receive operation, TTCN‑3 provides a trigger operation that filters messages with certain matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that do not fulfil the matching criteria are removed from the port without any further action.

[bookmark: fig_SendAndReceive]Figure 11: Illustration of the asynchronous send and receive
[bookmark: clause_Principle_ProcComm][bookmark: _Toc420661353]22.1.2	Principles of procedure-based communication
The principle of procedure-based communication is to call procedures in remote entities. TTCN‑3 supports blocking and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling and the called side, whereas non-blocking procedure-based communication is only blocking on the called side. Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to the rules in clause 13.
The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER calls a remote procedure in the CALLEE by using the call operation. The CALLEE accepts the call by means of a getcall operation and reacts by either using a reply operation to answer the call or by raising (raise operation) an exception. The CALLER handles the reply or exception by using getreply or catch operations. In figure 12, the blocking of CALLER and CALLEE is indicated by means of dashed lines.

[bookmark: fig_BlockingCall]Figure 12: Illustration of blocking procedure-based communication
The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER calls a remote procedure in the CALLEE by using the call operation and continues its execution, i.e. does not wait for a reply or exception. The CALLEE accepts the call by means of a getcall operation and executes the requested procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The CALLER may handle the exception by using a catch operation in an alt statement. In figure 13, the blocking of the CALLEE until the end of the call handling and possible raise of an exception is indicated by means of a dashed line.

[bookmark: fig_NonBlockingCall]Figure 13: Illustration of non-blocking procedure-based communication
[bookmark: clause_Principle_UCMCBCComm][bookmark: _Toc420661354]22.1.3	Principles of unicast, multicast and broadcast communication
TTCN‑3 supports unicast, multicast and broadcast communication:
Unicast communication means one sender to one receiver.
Multicast communication is from one sender to a list of receivers.
Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).
The terms unicast, multicast and broadcast communication are related to port communication. This means, it is only possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and broadcast can also be used for mapped ports. In this case, one, several or all entities within the SUT can be reached via the specified mapped port.
[bookmark: clause_Format_CommOper][bookmark: _Toc420661355]22.1.4	General format of communication operations
Operations such as send and call are used for the exchange of information among test components and between an SUT and test components. For explaining the general format of these operations, they can be structured into two groups:
a)	a test component sends a message (send operation), calls a procedure (call operation), or replies to an accepted call (reply operation) or raises an exception (raise operation). These actions are collectively referred to as sending operations;
b)	a component receives a message (receive operation), awaits a message (trigger operation),accepts a procedure call (getcall operation), receives a reply for a previously called procedure (getreply operation) or catches an exception (catch operation). These actions are collectively referred to as receiving operations.
[bookmark: _Toc420661356]22.1.4.1	General format of the sending operations
Sending operations consist of a send part and, in the case of a blocking procedure-based call operation, a response and exception handling part.
The send part:
specifies the port at which the specified operation shall take place;
defines the message or procedure call to be transmitted;
gives an (optional) address part that uniquely identifies one or more communication partners to which a message, call, reply or exception shall be send.
The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to keyword) is optional and need only be specified in cases of one-to-many connections where:
unicast communication is used and one receiving entity shall be explicitly identified;
multicast communication is used and a set of receiving entities has to be explicitly identified;
broadcast communication is used and all entities connected to the specified port have to be addressed.
EXAMPLE 1:
	Send part
	(Optional) response and exception

	Port and operation
	Value part
	(Optional) address part
	handling part

	MyP1.send
	(MyVariable + YourVariable - 2)
	to MyPartner;
	

Response and exception handling is only needed in cases of procedure-based communication. The response and exception handling part of the call operation is optional and is required for cases where the called procedure returns a value or has out or inout parameters whose values are needed within the calling component and for cases where the called procedure may raise exceptions which need to be handled by the calling component.
The response and exception handling part of the call operation makes use of getreply and catch operations to provide the required functionality.
EXAMPLE 2:
	Send part
	(Optional) response and exception handling part

	Port and operation
	Value part
	(Optional) address part
	

	MyP1.call
	(MyProc:{MyVar1})
	
	{
 [] MyP1.getreply(MyProc:{MyVar2}) {}
 [] MyP1.catch(MyProc, ExceptionOne) {}
}

[bookmark: _Toc420661357]22.1.4.2	General format of the receiving operations
A receiving operation consists of a receive part and an (optional) assignment part.
The receive part:
a)	specifies the port at which the operation shall take place;
b)	defines a matching part which specifies the acceptable input which will match the statement;
c)	gives an (optional) address expression that uniquely identifies the communication partner (in case of one‑to‑many connections).
The port name, operation name and value part of all receiving operations shall be present. The identification of the communication partner (denoted by the from keyword) is optional and need only be specified in cases of one‑to‑many connections where the receiving entity needs to be explicitly identified.
The assignment part in a receiving operation is optional. For message-based ports it is used when it is required to store received messages. In the case of procedure-based ports it is used for storing the in and inout parameters of an accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required, e.g. the variable used for storing a message shall have the same type as the incoming message.
In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or call to a variable. This is useful for one-to-many connections where, for example, the same message or call can be received from different components, but the message, reply or exception shall be sent back to the original sending component.
NOTE:	An error due to a type mismatch may happen if the types in the receive part are not present or not compatible to the types in the assignment part.
For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may also be used to store the indices that identify the specific port instance where the receiving operation matched.
EXAMPLE:
	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment

	MyP1.getreply
	(AProc:{?} value 5)
	
	->
	
	param (V1)
	sender APeer

	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment

	MyP2.receive
	(MyTemplate(5,7))
	from APeer
	->
	value MyVar
	
	

	Receive part
	
	(Optional) assignment part

	Port and operation
	Matching part
	(Optional) address expression
	
	(Optional) value assignment
	(Optional) parameter value assignment
	(Optional) sender value assignment
	(Optional)
port index assignment

	any from P.receive
	(MyTemplate(5,7))
	
	->
	
	
	
	@index value I

[bookmark: _Toc420661358]22.2	Message-based communication
The operations for message-based communication via asynchronous ports are summarized in table 22.
[bookmark: tab_MsgComm_Oper]Table 22: Overview of TTCN‑3 message-based communication
	Communication operation
	Keyword

	Send message
	send

	Receive message
	receive

	Trigger on message
	trigger

	Check message received
	check

[bookmark: clause_CommOps_SendOp][bookmark: _Toc420661359]22.2.1	The Send operation
The send operation is used to place a message on an outgoing message port.
Syntactical Structure
Port "." send "(" TemplateInstance ")"
[to Address]

NOTE:	Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The send operation places a message on an outgoing message port. The message may be specified by referencing a defined template or can be defined as an in-line template.
Sending unicast, multicast or broadcast
Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message receiver is uniquely determined by the test system structure.
Unicast communication is specified, if the to clause addresses one communication partner only. Multicast communication is used, if the to clause includes a list of communication partners. Broadcast is defined by using the to clause with all component keyword.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	The TemplateInstance (and all parts of it) shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.
b)	When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the message being sent.
c)	The send operation shall only be used on message-based ports and the type of the template to be sent shall be in the list of outgoing types of the port type definition.
d)	A to clause shall be present in case of one-to-many connections.
e)	AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the send operation. No AddressRef shall contain the special value null at the time of the operation.
f)	Applying a send operation to an unmapped or disconnected port shall cause a test case error.
Examples
EXAMPLE 1:	Simple send (receiver is determined from the test configuration)
	MyPort.send(MyTemplate(5,MyVar));	// Sends the template MyTemplate with the actual
										// parameters 5 and MyVar via MyPort.
	
	MyPort.send(5);						// Sends the integer value 5 (which is an in-line template)

[bookmark: clause_CommOps_SendOp_UniMultiBroadcast]EXAMPLE 2:	Sending with explicit to clause
	MyPort.send(charstring:"My string") to MyPartner;	
											// Sends the string "My string" to a component with a
											// component reference stored in variable MyPartner
	
	MyPCO.send(MyVariable + YourVariable - 2) to MyPartner;
									// Sends the result of the arithmetic expression to MyPartner.
	
	MyPCO2.send(MyTemplate) to (MyPeerOne, MyPeerTwo);
									// Specifies a multicast communication, where the value of
									// MyTemplate is sent to the two component references stored
									// in the variables MyPeerOne and MyPeerTwo.

	MyPCO3.send(MyTemplate) to all component;
									// Broadcast communication: the value of Mytemplate is send to
									// all components which can be addressed via this port. If
									// MyPCO3 is a mapped port, the components may reside inside
									// the SUT.

[bookmark: clause_MsgComm_Receive][bookmark: _Toc420661360]22.2.2	The Receive operation
The receive operation is used to receive a message from an incoming message port queue.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." receive
["(" TemplateInstance ")"]
[from Address]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]
 [@index value VariableRef]]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The receive operation is used to receive a message from an incoming message port queue. The message may be specified by referencing a defined template or can be defined as an in-line template.
The receive operation removes the top message from the associated incoming port queue if, and only if, that top message satisfies all the matching criteria associated with the receive operation.
If the match is not successful, the top message shall not be removed from the port queue i.e. if the receive operation is used as an alternative of an alt statement and it is not successful, the execution of the test case shall continue with the next alternative of the alt statement.
Matching criteria
The matching criteria are related to the type and value of the message to be received. The type and value of the message to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined template or be specified in-line. An optional type field in the matching criteria to the receive operation shall be used to avoid any ambiguity of the type of the value being received.
NOTE 2:	Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce an abstract value from the received message encoded in a different way than specified by the attributes.
Receiving from a specific sender
In the case of one-to-many connections the receive operation may be restricted to a certain communication partner. This restriction shall be denoted using the from keyword.
Storing the received message and parts of the received message
If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or formal parameters. This is denoted by the symbol '->' and the keyword value.
When the keyword value is followed by a name of a variable or formal parameter, the whole received message shall be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the received message.
When the keyword value is followed by an assignment list enframed by a pair of parentheses, the whole received message and/or one or more parts of it can be stored. In a single assignment within the list, on the left hand side of the assignment symbol (":=") a field of the template type shall be referenced, on the right hand side the name of the variable or a formal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible with the type on the left hand side of the assignment symbol. As a special case the field reference can be absent to indicate that the whole message shall be stored in a variable.
When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the @decoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
NOTE 3:	The model of the behaviour of this implicit decoding is defined in clause B.1.2.9.
NOTE 4:	The @decoded clause is typically used together with the decmatch matching mechanism in the matching part of the receive statement. Since the decoding procedures for assignment and matching are virtually the same, TTCN-3 tools can be optimized in such a way that only one call to the decoder is made when the receiving statement contains both decmatch matching mechanism and @decoded assignment for the same payload field.
Storing the sender
It is also possible to retrieve and store the component reference or address of the sender of a message. This is denoted by the keyword sender.
When the message is received on a connected port, only the component reference is stored in the following the sender keyword, but the test system shall internally store the component name too, if any (to be used in logging).
Receive any message
A receive operation with no argument list for the type and value matching criteria of the message to be received shall remove the message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
Receive on any port
To receive a message on any port, use the any port keywords.
Receive on any port from a port array
To receive a message on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Stand-alone receive
The receive operation can be used as a stand-alone statement in a behaviour description. In this latter case the receive operation is considered to be shorthand for an alt statement with the receive operation as the only alternative.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	When defining the message in-line, the optional type part shall be present whenever the type of the message being received is ambiguous.
b)	The receive operation shall only be used on message-based ports and the type of the value to be received shall be included in the list of incoming types of the port type definition.
c)	No binding of the incoming values to the terms of the expression or to the template shall occur.
d)	A message received by receive any message shall not be stored, i.e. the value clause shall not be present.
e)	Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an error.
f)	AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the receive operation. No AddressRef shall contain the special value null at the time of the operation.
g)	The PortArrayRef shall be a reference to a completely initialized port array.
h)	The index redirection shall only be used when the operation is used on an any from port array construct.
i)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
[bookmark: _GoBack]j)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
k)	If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the receive operation i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the receive operation.
l)	If the receive operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
m)	When assigning implicitly decoded message fields (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the field to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:	Basic receive
	MyPort.receive(MyTemplate(5, MyVar));	// Matches a message that fulfils the conditions
											// defined by template MyTemplate at port MyPort.

	MyPort.receive(A<B);	// Matches a Boolean value that depends on the outcome of A<B

	MyPort.receive(integer:MyVar);	// Matches an integer value with the value of MyVar
									// at port MyPort

	MyPort.receive(MyVar);			// Is an alternative to the previous example

EXAMPLE 2:	Receiving from a sender, storing the message, parts of the message or the sender
	type MyPayloadType record {
	 integer		messageId,
	 ContentType	content
	}
	type MyType2 record {
	 Header		header,
	 octetstring	payload
	}

	template MyType MyTemplate := {
	 messageId := 42,
	 content := ?
	}
	...
	var MyPayloadType MyVar;
	var integer MyMessageIdVar, MyIntegerVar;
	var charstring MyCharstringVar;
	var address MyPeer;
	var octetstring MyVarOne := '00ff'O;

	MyPort.receive(charstring:"Hello")from MyPeer;	// Matches charstring "Hello" from MyPeer

	MyPort.receive(MyType:?) -> value MyVar;	// The value of the received message is
												// assigned to MyVar.

	MyPort.receive(MyType:?) -> value (MyVar, MyMessageIdVar:= MyType.messageId)
								// The value of the received message is stored in the variable
								// MyVar and the value of the messageId field of the received
								// message is stored in the variable MyMessageIdVar.

	MyPort.receive(anytype:?) -> value (MyIntegerVar := integer)
								// If the received value is an integer, it is stored in the variable
								// MyIntegerVar, a test case error otherwise.

	MyPort.receive(charstring:?) -> value (MyCharstringVar)
								// The received value is stored in the variable MyCharstringVar;
								// Note that it is the same as to write "value MyCharstringVar"

	MyPort.receive(A<B) -> sender MyPeer;		// The address of the sender is assigned to MyPeer

	MyPort.receive(MyType:{5, MyVarOne}) -> value MyVar sender MyPeer;
	// The received message value is stored in MyVarTwo and the sender address is stored in MyPeer.
	MyPort.receive(MyType2:{header := ?, payload := decmatch MyTemplate }) 									-> value (MyVar := @decoded payload);
	// The encoded payload field of the received message is decoded and matched with
	// MyTemplate; if the matching is successful the decoded payload is stored in MyVar.

EXAMPLE 3:	Receive any message
	MyPort.receive;							// Removes the top value from MyPort.

	MyPort.receive from MyPeer;				// Removes the top message from MyPort if its sender is
											MyPeer

	MyPort.receive -> sender MySenderVar;	// Removes the top message from MyPort and assigns
											// the sender address to MySenderVar

EXAMPLE 4:	Receive on any port
	any port.receive(MyMessage);

EXAMPLE 5:	Receive on any port from a port array
 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer i[2];
 any from p.receive(MyMessage) -> @index value i;
 // checking receiving MyMessage on any port of the port array p and storing the index of the
 // port on which the matching was successful first; if, for example MyMessage is matched first
 // on p[4,2], the content of i will be {4,2}

[bookmark: _Toc420661361]22.2.3	The Trigger operation
The trigger operation is used to await a specific message on an incoming port queue.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." trigger
["(" TemplateInstance ")"]
[from Address]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]
 FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]
 [@index value VariableRef]]

NOTE:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The trigger operation removes the top message from the associated incoming port queue. If that top message meets the matching criteria, the trigger operation behaves in the same manner as a receive operation. If that top message does not fulfil the matching criteria, it shall be removed from the queue without any further action.
The trigger operation requires the port name, matching criteria for type and value, an optional from restriction (i.e. selection of communication partner) and an optional assignment of the matching message and sender component to variables.
Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.
Trigger on any message
A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical to the meaning of receive any message.
Trigger on any port
To trigger on a message at any port, use the any port keywords.
Trigger on any port from a port array
To trigger on a message at any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
If any port in the port array which is checked for matching contains a message that does not match, this message is removed and the containing alt statement is re-evalutated, regardless of whether or not other ports in the port array would meet the trigger criteria.
Stand-alone trigger
The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting the message and another alternative consuming all other messages and repeating the alt statement, see ETSI ES 201 873‑4 [1]).
Storing the received message, parts of the received message or the sender
Rules in clause 22.2.2 shall apply.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	The trigger operation shall only be used on message-based ports and the type of the value to be received shall be included in the list of incoming types of the port type definition.
b)	A message received by TriggerOnAnyMessage shall not be assigned to a variable.
c)	Type mismatch at storing the received value or parts of the received value and storing the sender shall cause an error.
d)	AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the trigger operation. No AddressRef shall contain the special value null at the time of the operation.
e)	The PortArrayRef shall be a reference to a completely initialized port array .
f)	The index redirection shall only be used when the operation is used on an any from port array construct.
g)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
h)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
i)	If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the trigger operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the trigger operation.
j)	If the trigger operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
Examples
EXAMPLE 1:	Basic trigger
	MyPort.trigger(MyType:?);
	// Specifies that the operation will trigger on the reception of the first message observed of
	// the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2:	Trigger from a sender and with storing message or sender
	MyPort.trigger(MyType:?) from MyPartner;
	// Triggers on the reception of the first message of type MyType at port MyPort
	// received from MyPartner.

	MyPort.trigger(MyType:?) from MyPartner -> value MyRecMessage;
	// This example is almost identical to the previous example. In addition, the message which
	// triggers i.e. all matching criteria are met, is stored in the variable MyRecMessage.

	MyPort.trigger(MyType:?) -> sender MyPartner;
	// This example is almost identical to the first example. In addition, the reference of the
	// sender component will be retrieved and stored in variable MyPartner.

	MyPort.trigger(integer:?) -> value MyVar sender MyPartner;
	// Trigger on the reception of an arbitrary integer value which afterwards is stored in
	// variable MyVar. The reference of the sender component will be stored in variable MyPartner.

EXAMPLE 3:	Trigger on any message
	MyPort.trigger;

	MyPort.trigger from MyPartner;

	MyPort.trigger -> sender MySenderVar;

EXAMPLE 4:	Trigger on any port
	any port.trigger

EXAMPLE 5:	Trigger on any port from port array
 type port MyPort message { inout integer }
 type component MyComponent {
 port MyPort p[10][10];
 }
	var integer i[2];
 any from p.trigger(MyMessage) -> @index value i;
 // Checking if MyMessage has been received on any port of the port array p; if yes, the index
 // of the port on which the matching was first successful is stored in the array i; if no port
 // succeeds, the top messages are removed and the port array is re-checked.

[bookmark: clause_ProcComm][bookmark: _Toc420661362]22.3	Procedure-based communication
The operations for procedure-based communication via synchronous ports are summarized in table 23.
[bookmark: tab_SignComm_Oper]Table 23: Overview of procedure-based communication
	Communication operation
	Keyword

	Invoke procedure call
	call

	Accept procedure call from remote entity
	getcall

	Reply to procedure call from remote entity
	reply

	Raise exception (to an accepted call)
	raise

	Handle response from a previous call
	getreply

	Catch exception (from called entity)
	catch

	Check call/exception/reply received
	check

[bookmark: clause_CommOps_Call][bookmark: _Toc420661363]22.3.1	The Call operation
The call operation specifies the call of a remote operation on another test component or within the SUT.
Syntactical Structure
Port "." call "(" TemplateInstance ["," CallTimerValue] ")"
[to Address]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.
The information to be transmitted in the send part of the call operation is a signature that may either be defined in the form of a signature template or be defined in-line.
Handling responses and exceptions to a call
In case of non-blocking procedure-based communication the handling of exceptions to call operations is done by using catch (see clause 22.3.6) operations as alternatives in alt statements.
If the nowait option is used, the handling of responses or exceptions to call operations is done by using getreply (see clause 22.3.4) and catch (see clause 22.3.6) operations as alternatives in alt statements.
In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch (see clause 22.3.6) operations.
The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines a set of alternatives, describing the possible responses and exceptions to the call.
If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the "[]" brackets of the alternative.
The response and exception handling part of a call operation is executed like an alt statement without any active default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean guards, may include the top element (if any) of the port over which the procedure has been called and may include a timeout exception generated by the (optional) timer that supervises the call.
Handling timeout exceptions to a call
The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type and defines the length of time after the call operation has started that a timeout exception shall be generated by the test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.
Nowait calls of blocking procedures
Using the keyword nowait instead of a timeout exception value in a call operation allows calling a procedure to continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.
If the nowait keyword is used, a possible response or exception of the called procedure has to be removed from the port queue by using a getreply or a catch operation in a subsequent alt statement.
Calling blocking procedures without return value, out parameters, inout parameters and exceptions
A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call operation for such a procedure shall also have a response and exception handling part to handle the blocking in a uniform manner.
Calling non-blocking procedures
A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated in the corresponding signature definition by means of a noblock keyword.
Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch operations in subsequent alt or interleave statements.
Unicast, multicast and broadcast calls of procedures
Like for the send operation, TTCN‑3 also supports unicast, multicast and broadcast calls of procedures. This can be done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of a call operation is for unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls a list of addresses of a set of receivers and for broadcast calls the all component keyword. In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.
The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in this clause under "Handling timeout exceptions to a call". A multicast or broadcast call operation may cause several responses and exceptions from different communication partners.
In case of a multicast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised from the different communication partners can be handled in subsequent catch, alt or interleave statements.
In case of a multicast or broadcast call operation of a blocking procedure, two options exist. Either, only one response or exception is handled in the response and exception handling part of the call operation. Then, further responses and exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling part of the call operation: the execution of a repeat statement causes the re-evaluation of the call body.
NOTE 2:	In the second case, the user needs to handle the number of repetitions.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	The call operation shall only be used on procedure-based ports. The type definition of the port at which the call operation takes place shall include the procedure name in its out or inout list i.e. it shall be allowed to call this procedure at this port.
b)	All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.
c)	Only out parameters may be omitted or specified with a matching attribute.
d)	The signature arguments of the call operation are not used to retrieve variable names for out and inout parameters. The actual assignment of the procedure return value and out and inout parameter values to variables shall explicitly be made in the response and exception handling part of the call operation by means of getreply and catch operations. This allows the use of signature templates in call operations in the same manner as templates can be used for types.
e)	A to clause shall be present in case of one-to-many connections.
f)	AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the call operation. No AddressRef shall contain the special value null at the time of the operation.
g)	CallTimerValue shall be of type float.
h)	The selection of the alternatives to a call shall only be based on getreply and catch operations for the called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions raised by the called procedure. The use of else branches and the invocation of altsteps is not allowed.
i)	The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards in alt statements shall be applied (see clause 20.2).
j)	The call operation for a blocking procedures without return value, out parameters, inout parameters and exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.
k)	In case of a multicast or broadcast call operation of a blocking procedure, where the nowait keyword is used, all responses and exceptions have to be handled in subsequent alt or interleave statements.
l)	The call operation for a non-blocking procedure shall have no response and exception handling part, shall raise no timeout exception and shall not use the nowait keyword.
m)	Applying a call operation to an unmapped or disconnected port shall cause a test case error.
Examples
EXAMPLE 1:	Blocking call with getreply
	// Given …
	signature MyProc (out integer MyPar1, inout boolean MyPar2);
	 :
	// a call of MyProc
	MyPort.call(MyProc:{ -, MyVar2}) {		// in-line signature template for the call of MyProc
		[] MyPort.getreply(MyProc:{?, ?}) { }
	}

	// … and another call of MyProc
	MyPort.call(MyProcTemplate) {			// using signature template for the call of MyProc
		[] MyPort.getreply(MyProc:{?, ?}) { }
	}

	MyPort.call(MyProcTemplate) to MyPeer {			// calling MyProc at MyPeer
		[] MyPort.getreply(MyProc:{?, ?}) { }
	}

EXAMPLE 2:	Blocking call with getreply and catch
	// Given
	signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType
		exception (ExceptionTypeOne, ExceptionTypeTwo);
	 :

	// Call of MyProc3
	MyPort.call(MyProc3:{ -, true }) to MyPartner {

	 [] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult param (MyPar1Var,MyPar2Var) { }

	 [] MyPort.catch(MyProc3, MyExceptionOne) {
			setverdict(fail);
			stop;
	 }
	 [] MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {
			setverdict(inconc);
	 }
	 [MyCondition] MyPort.catch(MyProc3, MyExceptionThree) { }
	}

EXAMPLE 3:	Blocking call with timeout exception
	MyPort.call(MyProc:{5,MyVar}, 20E-3) {

	 [] MyPort.getreply(MyProc:{?, ?}) { }

	 [] MyPort.catch(timeout) {				// timeout exception after 20ms
			setverdict(fail);
			stop;
	 }
	}

EXAMPLE 4:	Nowait call
	MyPort.call(MyProc:{5, MyVar}, nowait);		// The calling test component will continue
												// its execution without waiting for the
												// termination of MyProc

EXAMPLE 5:	Blocking call without return value, out parameters, inout parameters and exceptions
	// Given …
	signature MyBlockingProc (in integer MyPar1, in boolean MyPar2);
	 :
	// a call of MyBlockingProc
	MyPort.call(MyBlockingProc:{ 7, false }) {
	 [] MyPort.getreply(MyBlockingProc:{ -, - }) { }
	}

EXAMPLE 6:	Broadcast call
	var boolean first:= true;
	MyPort.call(MyProc:{5,MyVar}, 20E-3) to all component {	// Broadcast call of MyProc
		// Handles the response from MyPeerOne
		[first] MyPort.getreply(MyProc:{?, ?}) from MyPeerOne {
			if (first) { first := false; repeat; }
			:
		}
		// Handles the response from MyPeerTwo
		[first] MyPort.getreply(MyProc:{?, ?}) from MyPeerTwo {
			if (first) { first := false; repeat; }
			:
		}
		[] MyPort.catch(timeout) {				// timeout exception after 20ms
			setverdict(fail);
			stop;
		}
	}

	alt {
	 [] MyPort.getreply(MyProc:{?, ?}) {		// Handles all other responses to the broadcast call
			repeat
	 }
	}

EXAMPLE 7:	Multicast call
	MyPort.call(MyProc:{5,MyVar}, nowait) to (MyPeer1, MyPeer2);	// Multicast call of MyProc

	interleave {
	 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer1 { }	// Handles the response of MyPeer1
	 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer2 { }	// Handles the response of MyPeer2
	}

[bookmark: clause_CommOps_GetcallOp][bookmark: _Toc420661364]22.3.2	The Getcall operation
The getcall operation is used to accept calls.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." getcall
["(" TemplateInstance ")"]
[from Address]
["->" [param "(" { (VariableRef ":=" [@decoded ["(" Expression ")"]]												ParameterIdentifier) "," } |
 { (VariableRef | "-") "," }
 ")"]
 [sender VariableRef]
 [@index value VariableRef]]

NOTE:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getcall operation is used to specify that a test component accepts a call from the SUT, or another test component.
The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.
The assignment of in and inout parameter values to variables shall be made in the assignment part of the getcall operation. This allows the use of signature templates in getcall operations in the same manner as templates are used for types.
A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword.
The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the parameter values of a call.
When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
The keyword sender is used when it is required to retrieve the address of the sender (e.g. for addressing a reply or exception to the calling party in a one-to-many configuration).
Accepting any call
A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
Getcall on any port
To getcall on any port is denoted by the any keyword.
Getcall on any port from a port array
To getcall on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching calls, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	The getcall operation shall only be used on procedure-based ports and the signature of the procedure call to be accepted shall be included in the list of allowed incoming procedures of the port type definition.
b)	The signature argument of the getcall operation shall not be used to pass in variable names for in and inout parameters.
c)	The ParameterIdentifiers shall be from the corresponding signature definition.
d)	The value assignment part shall not be used with the getcall operation.
e)	Parameters of calls accepted by accepting any call shall not be assigned to a variable, i.e. the param clause shall not be present.
f)	AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the getcall operation. No AddressRef shall contain the special value null at the time of the operation.
g)	The PortArrayRef shall be a reference to a completely initialized port array.
h)	The index redirection shall only be used when the operation is used on an any from port array construct.
i)	If the index redirection is used for single-dimensional port arrays, the type of the integer variable shall allow storing the highest index of the respective array.
j)	If the index redirection is used for multi-dimensional port arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing the highest index (from all dimensions) of the array.
k)	If a variable referenced in the param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getcall operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getcall operation.
l)	If the getcall operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
m)	When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:	Basic getcall
	MyPort.getcall(MyProc: MyProcTemplate(5, MyVar));	// accepts a call of MyProc at MyPort

	MyPort.getcall(MyProc:{5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2:	Getcall with matching and assignments of parameter values to variables
	MyPort.getcall(MyProc:{?, ?}) from MyPartner -> param (MyPar1Var, MyPar2Var);
	// The in or inout parameter values of MyProc are assigned to MyPar1Var and MyPar2Var.

	MyPort.getcall(MyProc:{5, MyVar}) -> sender MySenderVar;
	// Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.
	// The address of the calling party is retrieved and stored in MySenderVar.

	// The following getcall examples show the possibilities to use matching attributes
	// and omit optional parts, which may be of no importance for the test specification.

	MyPort.getcall(MyProc:{5, MyVar}) -> param(MyVar1, MyVar2) sender MySenderVar;

	MyPort.getcall(MyProc:{5, ?}) -> param(MyVar1, MyVar2);

	MyPort.getcall(MyProc:{?, MyVar}) -> param(- , MyVar2);
	// The value of the first inout parameter is not important or not used

	// The following examples shall explain the possibilities to assign in and inout parameter
	// values to variables. The following signature is assumed for the procedure to be called:

	signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

	MyPort.getcall(MyProc2:{?, ?, 3, - , ?}) -> param (MyVarA, MyVarB, - , -, MyVarE);
	// The parameters A, B, and E are assigned to the variables MyVarA, MyVarB, and
	// MyVarE. The out parameter D needs not to be considered.

	MyPort.getcall(MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE:= E);
	// Alternative notation for the value assignment of in and inout parameter to variables. Note,
	// the names in the assignment list refer to the names used in the signature of MyProc2

	MyPort.getcall(MyProc2:{1, 2, 3, -, *}) -> param (MyVarE:= E);
	// Only the inout parameter value is needed for the further test case execution

	// The following example demonstrates the use of encoded parameters:
	signature MyProc3(in integer paramType, octetstring encodedParam);
	template integer m_int := ?;
	…
	var integer v_myVarX;
	MyPort.getcall(MyProc3:{1, decmatch m_int}) -> param (v_myVarX := @decoded encodedParam);
	// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:	Accepting any call
	MyPort.getcall;				// Removes the top call from MyPort.

	MyPort.getcall from MyPartner;	// Removes a call from MyPartner from port MyPort

	MyPort.getcall -> sender MySenderVar;	// Removes a call from MyPort and retrieves
											// the address of the calling entity

EXAMPLE 4:	Getcall on any port
	any port.getcall(MyProc:?)

EXAMPLE 5:	Getcall on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer i[2];
 any from p.getcall(MyProc:?) -> @index value i;
 // checking for an incoming call of the type MyProc on any port of the port array p and storing
 // the index of the port on which the matching was successful first

[bookmark: clause_CommOps_ReplyOp][bookmark: _Toc420661365]22.3.3	The Reply operation
The reply operation is used to reply to a call.
Syntactical Structure
Port "." reply "(" TemplateInstance [value Expression] ")"
[to Address]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The reply operation is used to reply to a previously accepted call according to the procedure signature.
NOTE 2:	The relation between an accepted call and a reply operation cannot always be checked statically. For testing it is allowed to specify a reply operation without an associated getcall operation.
The value part of the reply operation consists of a signature reference with an associated actual parameter list and (optional) return value. The signature may either be defined in the form of a signature template or it may be defined in‑line.
Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause of a reply operation is for unicast responses the address of one receiving entity, for multicast responses a list of addresses of a set of receivers and for broadcast responses the all component keywords.
In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.
A return value shall be explicitly stated with the value keyword.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	A reply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the reply operation belongs.
b)	All out and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.
c)	A to clause shall be present in case of one-to-many connections.
d)	AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the reply operation. No AddressRef shall contain the special value null at the time of the operation.
e)	If a value is to be returned to the calling party, this shall be explicitly stated using the value keyword.
f)	Applying a reply operation to an unmapped or disconnected port shall cause a test case error.
Examples
	MyPort.reply(MyProc2:{ - ,5});			// Replies to an accepted call of MyProc2.

	MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer

	MyPort.reply(MyProc2:{ - ,5}) to (MyPeer1, MyPeer2); // Multicast reply to MyPeer1 and MyPeer2

	MyPort.reply(MyProc2:{ - ,5}) to all component;	// Broadcast reply to all entities connected
													// to MyPort

	MyPort.reply(MyProc3:{5,MyVar} value 20);	// Replies to an accepted call of MyProc3.

[bookmark: clause_CommOps_GetreplyOp][bookmark: _Toc420661366]22.3.4	The Getreply operation
The getreply operation is used to handle replies from a previously called procedure.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." getreply
["(" TemplateInstance [value TemplateInstance]")"]
[from Address]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]
 											 FieldOrTypeReference][","] } ")")
)]
 [param "(" { (VariableRef ":=" [@decoded ["(" Expression ")"]]
												ParameterIdentifier) "," } |
 { (VariableRef | "-") "," }
 ")"]
 [sender VariableRef]
 [@index value VariableRef]]

NOTE:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The getreply operation is used to handle replies from a previously called procedure.
The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the procedure to be processed and the communication partner. The matching criteria for the signature may either be specified in-line or be derived from a signature template.
Matching against a received return value can be specified by using the value keyword.
A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword.
The assignment of out and inout parameter values to variables shall be made in the assignment part of the getreply operation. This allows the use of signature templates in getreply operations in the same manner as templates are used for types.
The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter values to variables and the retrieval of the address of the sender of the reply. The keyword value is used to retrieve return values and the keyword param is used to retrieve the parameter values of a reply. The keyword sender is used when it is required to retrieve the address of the sender.
When assigning individual parameters of a reply, encoded parameters can be decoded prior to assignment using the @decoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal char string, the optional parameter shall not be present.
Get any reply
A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the top of the incoming port queue (if any) if all other matching criteria are fulfilled.
If GetAnyReply is used in the response and exception handling part of a call operation, it shall only treat replies from the procedure invoked by the call operation.
Get a reply on any port
To get a reply on any port, use the any port keywords.
Get a reply on any port from a port array
To get a reply on any port from a specific port array, use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	A getreply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the getreply operation belongs.
b)	The signature argument of the getreply operation shall not be used to pass in variable names for out and inout parameters.
c)	Parameters or return values of responses accepted by get any reply shall not be assigned to a variable, i.e. the param and value clause shall not be present.
d)	AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the getreply operation. No AddressRef shall contain the special value null at the time of the operation.
e)	The PortArrayRef shall be a reference to a completely initialized port array .
f)	The index redirection shall only be used when the operation is used on an any from port array construct.
g)	If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
h)	If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
i)	If a variable referenced in the value, param, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the getreply operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the getreply operation.
j)	If the getreply operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
k)	When assigning implicitly decoded parameters (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:	Basic getreply
	MyPort.getreply(MyProc:{5, ?} value 20);	// Accepts a reply of MyProc with two out or
												// inout parameters and a return value of 20

	MyPort.getreply(MyProc2:{ - , 5}) from MyPeer;	// Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2:	Getreply with storing inout/out parameters and return values in variables
	MyPort.getreply(MyProc1:{?, ?} value ?) -> value MyRetValue param(MyPar1,MyPar2);
	// The returned value is assigned to variable MyRetValue and the value
	// of the two out or inout parameters are assigned to the variables MyPar1 and MyPar2.

	MyPort.getreply(MyProc1:{?, ?} value ?) -> value MyRetValue param(- , MyPar2) sender MySender;
	// The value of the first parameter is not considered for the further test execution and
	// the address of the sender component is retrieved and stored in the variable MySender.

	// The following examples describe some possibilities to assign out and inout parameter values
	// to variables. The following signature is assumed for the procedure which has been called

	signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);

	MyPort.getreply(ATemplate) -> param(- , - , - , MyVarOut1, MyVarInout1);

	MyPort.getreply(ATemplate) -> param(MyVarOut1:=D, MyVarOut2:=E);

	MyPort.getreply(MyProc2:{ - , - , - , 3, ?}) -> param(MyVarInout1:=E);

	// The following example demonstrates the use of encoded parameters:
	signature MyProc3(out integer paramType, out octetstring encodedParam);
	template integer m_int := ?;
	…
	var integer v_myVarX;
	MyPort.getreply(MyProc3:{1, decmatch m_int}) -> param (v_myVarX := @decoded encodedParam);
	// The parameters encodedParam is decoded into an integer and assigned to v_myVarX.

EXAMPLE 3:	Get any reply
	MyPort.getreply;				// Removes the top reply from MyPort.

	MyPort.getreply from MyPeer;	// Removes the top reply received from MyPeer from MyPort.

	MyPort.getreply -> sender MySenderVar;	// Removes the top reply from MyPort and retrieves the
											// address of the sender entity

EXAMPLE 4:	Get a reply on any port
	any port.getreply(Myproc:?)

EXAMPLE 5:	Get a reply on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer i[2];
 any from p.getreply(MyProc:?) -> @index value i;
 // Getting a reply of the type MyProc on any port of the port array p and
 // storing the index of the port on which the matching was successful first

[bookmark: clause_CommOps_RaiseOp][bookmark: _Toc420661367]22.3.5	The Raise operation
Exceptions are raised with the raise operation.
Syntactical Structure
Port "." raise "(" Signature "," TemplateInstance ")"
[to Address]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "all component".
Semantic Description
The raise operation is used to raise an exception.
NOTE 2:	The relation between an accepted call and a raise operation cannot always be checked statically. For testing it is allowed to specify a raise operation without an associated getcall operation.
The value part of the raise operation consists of the signature reference followed by the exception value.
Exceptions are specified as types. Therefore the exception value may either be derived from a template or be the value resulting from an expression (which of course can be an explicit value). The optional type field in the value specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of the value being sent.
Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause of a raise operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of addresses of a set of receivers and for broadcast exceptions the all component keywords.
In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted procedure call the result of which leads to an exceptional event.
b)	The type of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include in its list of accepted procedure calls the name of the procedure to which the exception belongs.
c)	A to clause shall be present in case of one-to-many connections.
d)	AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the raise operation. No AddressRef shall contain the special value null at the time of the operation.
e)	Applying a raise operation to an unmapped or disconnected port shall cause a test case error.
Examples
	MyPort.raise(MySignature, MyVariable + YourVariable - 2);
	// Raises an exception with a value which is the result of the arithmetic expression
	// at MyPort

	MyPort.raise(MyProc, integer:5});	// Raises an exception with the integer value 5 for MyProc

	MyPort.raise(MySignature, "My string") to MyPartner;
	// Raises an exception with the value "My string" at MyPort for MySignature and
	// send it to MyPartner

	MyPort.raise(MySignature, "My string") to (MyPartnerOne, MyPartnerTwo);
	// Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
	// MyPartnerTwo (i.e. multicast communication)

	MyPort.raise(MySignature, "My string") to all component;
	// Raises an exception with the value "My string" at MyPort for MySignature and sends it
	// to all entites connected to MyPort (i.e. broadcast communication)

[bookmark: clause_CommOps_CatchOp][bookmark: _Toc420661368]22.3.6	The Catch operation
The catch operation is used to catch exceptions.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." catch
["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"]
[from Address]
["->" [value (VariableRef |
 ("(" { VariableRef [":=" [@decoded ["(" Expression ")"]]												FieldOrTypeReference][","] } ")")
)]
 [sender VariableRef]
 [@index value VariableRef]]

NOTE:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish between different values of the same exception type.
The catch operation removes the top exception from the associated incoming port queue if, and only if, that top exception satisfies all the matching criteria associated with the catch operation.
A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This restriction shall be denoted by using the from keyword.
The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the value of an exception and/or the parts of it and the keyword sender is used when it is required to retrieve the address of the sender.
When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the @decoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the bitstring, hexstring, octetstring, charstring or universal charstring types. It shall be decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding shall cause a test case error. In case the referenced field is of the universal charstring type, the @decoded clause can contain an optional parameter defining the encoding format. The parameter shall be of the charstring type and it shall contain one of the strings allowed for the decvalue_unichar function (specified in clause C.5.4). Any other value shall cause an error. In case the referenced field is not a universal charstring, the optional parameter shall not be present.
The catch operation may be part of the response and exception handling part of a call operation or be used to determine an alternative in an alt statement. If the catch operation is used in the accepting part of a call operation, the information about port name and signature reference to indicate the procedure that raised the exception is redundant, because this information follows from the call operation. However, for readability reasons (e.g. in case of complex call statements) this information shall be repeated.
The Timeout exception
There is one special timeout exception that can be caught by the catch operation. The timeout exception is an emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time (see clause 22.3.1).
Catch any exception
A catch operation with no argument list allows any valid exception to be caught. The most general case is without using the from keyword. CatchAnyException will also catch the timeout exception.
Catch on any port
To catch an exception on any port use the any keyword.
Catch on any port from a port array
To catch an exception on any port from a specific port array, indices use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single-dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
The catch on any port from a port array operation can not be used to catch a call timeout.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be specified in the signature of the procedure that raised the exception.
No binding of the incoming values to the terms of the expression or to the template shall occur. The assignment of the exception values to variables shall be made in the assignment part of the catch operation.
Catching timeout exceptions shall be restricted to the exception handling part of a call. No further matching criteria (including a from part) and no assignment part is allowed for a catch operation that handles a timeout exception.
Exception values accepted by catch any exception shall not be assigned to a variable, i.e. the value clause shall not be present.
If CatchAnyException is used in the response and exception handling part of a call operation, it shall only treat exceptions raised by the procedure invoked by the call operation.
AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the catch operation. No AddressRef shall contain the special value null at the time of the operation.
The PortArrayRef shall be a reference to a completely initialized port array.
The index redirection shall only be used when the operation is used on an any from port array construct.
If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
If a variable referenced in the value, sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the catch operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the catch operation.
If the catch operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.

When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the variable the decoded field is stored into.
Examples
EXAMPLE 1:	Basic catch
	MyPort.catch(MyProc, integer: MyVar);	// Catches an integer exception of value
											// MyVar raised by MyProc at port MyPort.

	MyPort.catch(MyProc, MyVar);			// Is an alternative to the previous example.

	MyPort.catch(MyProc, A<B);				// Catches a boolean exception

	MyPort.catch(MyProc, MyType:{5, MyVar}); // In-line template definition of an exception value.

	MyPort.catch(MyProc, charstring:"Hello")from MyPeer;	// Catches "Hello" exception from MyPeer

EXAMPLE 2:	Catch with storing value and/or sender in variables
	MyPort.catch(MyProc, MyType:?) from MyPartner -> value MyVar;
	// Catches an exception from MyPartner and assigns its value to MyVar.

	MyPort.catch(MyProc, MyTemplate(5)) -> value MyVarTwo sender MyPeer;
	// Catches an exception, assigns its value to MyVarTwo and retrieves the
	// address of the sender.

	MyPort.catch(MyProc, MyTemplate(5)) -> value (MyVarThree:= f1)
										 sender MyPeer;
	// Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
	// address of the sender.

	// Handling encoded exception payload:

	type MyException record {
	 ...
	}
	type CommonException record {
	 integer		exceptionId,
	 octetstring	payload
	}

	signature S() exception (CommonException);
	...

	var MyException v_myVar;

	MyPort.catch (S, CommonException:{exceptionId := 25, payload := decmatch MyException:? }) 										-> value (v_myVar := @decoded payload);
	// The encoded payload field of the caught exception is decoded and matched with m_excTemplate;
 // if the matching is successful the decoded payload is stored in v_myVar.

EXAMPLE 3:	The Timeout exception
	MyPort.call(MyProc:{5,MyVar}, 20E-3) {
	 [] MyPort.getreply(MyProc:{?, ?}) { }
	 [] MyPort.catch(timeout) {				// timeout exception after 20ms
			setverdict(fail);
			stop;
	 }
	}

EXAMPLE 4:	Catch any exception
	MyPort.catch;

	MyPort.catch from MyPartner;

	MyPort.catch -> sender MySenderVar;

EXAMPLE 5:	Catch on any port
	any port.catch;

EXAMPLE 6:	Catch on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer i[2];
 any from p.catch(MyProc, MyType:?) -> @index value i;
 // Catching an incoming exception of type MyType on any port in the port array p and
 // storing the index of the port on which the matching was successful first

[bookmark: clause_CommOps_CheckOp][bookmark: _Toc420661369]22.4	The Check operation
The check operation allows reading the top element of a message‑based or procedure‑based incoming port queue.
Syntactical Structure
(Port | any port | any from PortArrayRef) "." check
["("
		(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |
		([from Address]
 ["->" [sender VariableRef]
 [@index value VariableRef]])
 ")"]

NOTE 1:	Address may be an AddressRef, a list of AddressRef-s or "any component".
Semantic Description
The check operation is a generic operation that allows read access to the top element of message‑based and procedure‑based incoming port queues without removing the top element from the queue. The check operation has to handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be caught and replies from previous calls at procedure-based ports.
The receiving operations receive, getcall, getreply and catch together with their matching and value, sender or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the information to be optionally extracted.
It is the top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the queue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the receiving operation specified in the check operation is performed on the copy. The check operation fails if the receiving operation fails i.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are stored in the associated variables.
If check is used as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check operation as the only alternative.
Check any operation
A check operation with no argument list allows checking whether something waits for processing in an incoming port queue. The check any operation allows to distinguish between different senders (in case of one-to-many connections) by using a from clause and to retrieve the sender by using a shorthand assignment part with a sender clause.
Check on any port
To check on any port, use the any port keywords.
Check on any port from a port array
To check on any port from a specific port array, indicesindices use the any from PortArrayRef syntax where PortArrayRef shall be a reference to a port array identifier. It is also possible to store the index of a port in a single‑dimensional port array at which the operation was successful to a variable of type integer or, in case of multi‑dimensional port arrays the index of the successful port to an integer array or record of integer variable. When checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to highest index for each dimension, e.g. [0][0], [0][1], [1][0], [1][1]. The first port which matches all the criteria will cause the operation to be successful even if other ports in the array would also meet the criteria.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
1. Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall cause a test case error.
1. AddressRef for retrieving the sending entity shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the check operation. No AddressRef shall contain the special value null at the time of the operation.
1. The PortArrayRef shall be a reference to a completely initialized port array.
1. The index redirection shall only be used when the operation is used on an any from port array construct.
1. If the index redirection is used for single-dimensional arrays, the type of the integer variable shall allow storing the highest index of the respective port array.
If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing the highest index (from all dimensions) of the port array.
1. If a variable referenced in the sender or @index clause is a lazy or fuzzy variable, the expression assigned to this variable is equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the check operation.
1. If the check operation contains both from and sender clause, the variable or parameter referenced in the sender clause shall be type compatible with the template in the from clause.
NOTE 2:	In most cases the correct usage of the check operation can be checked statically, i.e. before/during compilation.
Examples
EXAMPLE 1:	Basic check
	MyPort1.check(receive(5));	// Checks for an integer message of value 5.

	MyPort1.check(receive(charstring:?) -> value MyCharVar);
	// Checks for a charstring message and stores the message if the message type is charstring

	MyPort2.check(getcall(MyProc:{5, MyVar}) from MyPartner);
	// Checks for a call of MyProc at port MyPort2 from MyPartner

	MyPort2.check(getreply(MyProc:{5, MyVar} value 20));
	// Checks for a reply from procedure MyProc at MyPort2 where the returned value is 20 and
	// the values of the two out or inout parameters are 5 and the value of MyVar.

	MyPort2.check(catch(MyProc, MyTemplate(5, MyVar)));

	MyPort2.check(getreply(MyProc1:{?, MyVar} value *) -> value MyReturnValue param(MyPar1,-));

	MyPort.check(getcall(MyProc:{5, MyVar}) from MyPartner -> param (MyPar1Var, MyPar2Var));

	MyPort.check(getcall(MyProc:{5, MyVar}) -> sender MySenderVar);

EXAMPLE 2:	Check any operation
	MyPort.check;

	MyPort.check(from MyPartner);

	MyPort.check(-> sender MySenderVar);

EXAMPLE 3:	Check on any port
	any port.check;

EXAMPLE 4:	Check on any port from port array
 type port MyPort procedure { inout MyProc }
 type component MyComponent {
 port MyPort p[10][10];
 }
 var integer i[2];
 any from p.check(catch(MyProc, MyType:?)) -> @index value i;
 // Checking for an incoming exception of the type MyType on any port of the port array p and
 // storing the index of the port on which the matching was successful first

[bookmark: clause_CommOps_ControllingPorts][bookmark: _Toc420661370]22.5	Controlling communication ports
TTCN‑3 operations for controlling message-based and procedure-based ports are presented in table 24.
[bookmark: tab_Port_Oper]Table 24: Overview of TTCN‑3 port operations
	Port operations

	Statement
	Associated keyword or symbol

	Clear port
	clear

	Start port
	start

	Stop port
	stop

	Halt port
	halt

	Check the state of a port
	checkstate

[bookmark: _Toc420661371]22.5.1	The Clear port operation
The clear port operation empties incoming port queues.
Syntactical Structure
(Port | (all port)) "." clear

Semantic Description
The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test component performing the clear operation.
If a port queue is already empty then this operation shall have no action on that port.
Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15.
Examples
	MyPort.clear;	// clears port MyPort

[bookmark: _Toc420661372]22.5.2	The Start port operation
The start operation enables sending and receiving operations on the port(s).
Syntactical Structure
(Port | (all port)) "." start

Semantic Description
If a port is defined as allowing receiving operations such as receive, getcall, etc., the start operation clears the incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending operations then the operations such as send, call, raise, etc., are also allowed to be performed at that port.
By default, all ports of a component shall be started implicitly when a component is created. The start port operation will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.
Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15.
Examples
	MyPort.start;	// starts MyPort

[bookmark: _Toc420661373]22.5.3	The Stop port operation
The stop operation disables sending and disallow receiving operations to match at the port(s).
Syntactical Structure
(Port | (all port)) "." stop

Semantic Description
If a port is defined as allowing receiving operations such as receive and getcall, the stop operation causes listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the operations such as send, call, raise, etc., to be performed.
To cease listening at the port means that all receiving operations defined before the stop operation shall be completely performed before the working of the port is suspended.
Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15.
Examples
	MyPort.receive (MyTemplate1) -> value RecPDU;
										// the received value is decoded, matched against
									 // MyTemplate1 and the matching value is stored
										// in the variable RecPDU
	MyPort.stop;						// No receiving operation defined following the stop
										// operation is executed (unless the port is restarted
										// by a subsequent start operation)
	MyPort.receive (MyTemplate2);		// This operation does not match and will block (assuming
										// that no default is activated)

[bookmark: _Toc420661374]22.5.4	The Halt port operation
The halt operation is comparable to the stop operation, but allows entries being already in the queue to be processed with receiving operations.
Syntactical Structure
(Port | (all port)) "." halt

Semantic Description
If a port allows receiving operations such as receive, trigger and getcall, the halt operation disallows receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the halt operation at that port. Messages and procedure call elements that were already in the queue before the halt operation can still be processed with receiving operations. If the port allows sending operations then halt port immediately disallows sending operations such as send, call, raise, etc. to be performed. Subsequent halt operations have no effect on the state of the port or its queue.
NOTE 1:	The port halt operation virtually puts a marker after the last entry in the queue received when the operation is performed. Entries ahead of the marker can be processed normally. After all entries in the queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.
NOTE 2:	If a port stop operation is performed on a halted port before all entries in the queue ahead of the marker have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually moved to the top of the queue).
NOTE 3:	A port start operation on a halted port clears all entries in the queue irrespectively if they arrived before or after performing the port halt operation. It also removes the marker.
NOTE 4:	A port clear operation on a halted port clears all entries in the queue irrespectively if they arrived before or after performing the port halt operation. It also virtually puts the marker at the top of the queue.
Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15.
Examples
	MyPort.halt;						// No sending allowed on Myport from this moment on;
										// processing of messages in the queue still possible.
	MyPort.receive (MyTemplate1);		// If a message was already in the queue before the halt
										// operation and it matches MyTemplate1, it is processed;
										// otherwise the receive operation blocks.

[bookmark: clause_CommOps_ControllingPorts_CheckSta][bookmark: _Toc420661375]22.5.5	The Checkstate port operation
The checkstate port operation allows to check the state of a port.
Syntactical Structure
(Port | (all port) | (any port)) "." checkstate "(" SingleExpression ")"

Semantic Description
The checkstate port operation allows to examine the state of a port. If a port is in the state specified by the parameter, the checkstate operation returns the Boolean value true. If the port is not in the specified state, the checkstate operation returns the Boolean value false. Calling the checkstate operation with an invalid argument leads to an error.
The checkstate operation allows to check for different dimensions of a port state. It allows to check if a port is Started, Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).
NOTE 1:	The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The states Connected, Mapped and Linked are related to the application of the connection operations connect, disconnect, map and unmap as defined in clause 21.1.
The checkstate port operation can be used with all port and any port. Using the checkstate operation with any port allows to test if at least one port of a test component is in the specified state. Using the checkstate operation with all port allows to check if all ports of a component are in the specified state.
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	The parameter of the checkstate operation shall be of type charstring and shall have one of the following values:
a)	"Started"
b)	"Halted"
c)	"Stopped"
d)	"Connected"
e)	"Mapped"
f)	"Linked"
NOTE 2:	Clause E.2.2.4 includes the type definition objState and the constant definitions STARTED, HALTED, STOPPED, CONNECTED, MAPPED, and LINKED. It is recommended to use the checkstate operation in combination with this type and these constants to ease the checking of correct usage and to improve the readability of test specs.
b)	Calling the checkstate operation with a charstring parameter not listed in a) shall lead to an error.
Examples
	type component MyMTCType // Component type definition for an MTC
	{
	 port MyPortType PCO1, PCO2
	}

	type component MyTestSystemInterface // Component type definition for a test system interface
	{
		port MyPortType		PCO3, PCO4, PCO5;
	}

	// Test case definition
	testcase MyTestcase1 () runs on MyMTCType system MyTestSystemInterface {

		var boolean myPortState;

		myPortState := all port.checkstate("Started");	// checkstate returns true, because all
														// ports of a component are started after
														// component creation and start

		myPortState := any port.checkstate("Linked");	// checkstate returns false, no port is
														// either connected nor mapped

		map(mtc:PCO1, system:PCO3);

		myPortState := PCO1.checkstate("Linked");		// checkstate returns true, PCO1 is mapped
		myPortState := PCO1.checkstate("Mapped");		// checkstate returns true, PCO1 is mapped

		myPortState := PCO1.checkstate("Connected");	// checkstate returns false, PCO1 is mapped
														// and not connected

		myPortState := any port.checkstate("Mapped");	// checkstate returns true, PCO1 is mapped

		all port.stop;

		myPortState := all port.checkstate("Started");	// checkstate returns false, all ports
														// are stopped

		myPortState := PCO1.checkstate("Stopped");		// checkstate returns true, PCO1 is stopped

		// further testcase behaviour
		// …
	}
	

[bookmark: _Toc420661376]22.6	Use of any and all with ports
The keywords any and all may be used with configuration and communication operations as indicated in table 25.
[bookmark: tab_AnyAltPorts]Table 25: Any and All with ports
	Operation
	Allowed
	Example

	
	any
	all
	

	receive, trigger, getcall, getreply, catch, check)
	yes
	
	any port.receive

	connect / map
	
	
	

	disconnect / unmap
	
	yes
	unmap(self : all port)

	start, stop, clear, halt
	
	yes
	all port.start

	checkstate
	yes
	yes
	any port.checkstate("Started")
all port.checkstate("Connected")

NOTE:	Ports are owned by test components and instantiated when a component is created. The keywords any port and all port address all ports owned by a test component and not only the ports known in the scope of the function or altstep that is executed on the component.

ETSI
image1.emf

RECEIVER

send

SENDER

receive or trigger

oleObject1.bin

SENDER

RECEIVER

send

receive or trigger

image2.emf

CALLER CALLEE

call getcall

getreply or catch exception

reply or raise exception

oleObject2.bin

CALLER

CALLEE

call

getcall

reply or�raise exception

getreply or�catch exception

image3.emf

CALLER CALLEE

call getcall

raise exception

catch exception

oleObject3.bin

CALLER

CALLEE

call

getcall

raise exception

catch exception

