[bookmark: clause_ConfigOps_ConnectMap][bookmark: _Toc382311409][bookmark: _Toc382375281]21.1.1	The Connect and Map operations
The connect operation and the map operation are used to setup connections to the SUT or between test components.
Syntactical Structure
connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")"

map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" 
		[ param "(" [ { ActualPar [","] }+ ] ")" ]

Semantic Description
With both the connect operation and the map operation, the ports to be connected are identified by the component references of the components to be connected and the names of the ports to be connected.
The operation mtc identifies the MTC, the operation system identifies the test system interface and the operation self identifies the test component in which self has been called (see clause 6.2.11). All these operations can be used for identifying and connecting ports.
Both the connect and map operations can be called from any behaviour definition except for the control part of a module. However before either operation is called, the components to be connected shall have been created and their component references shall be known together with the names of the relevant ports.
Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to connect to a mapped port or to map to a connected port. 
Applying a map or connect operation to ports which are already mapped or connected has no effect on the test behaviour or test configuration, i.e. test execution continues as if the operation has not been invoked.
NOTE:	Please note that also triMap or tciConnect respectively will not be invoked in such a case.
The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param clause of the port type declaration of the system port used. 
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21, the following restrictions apply:
a)	For both the connect and map operations, only consistent connections are allowed.
	Assuming the following:
1)	ports PORT1 and PORT2 are the ports to be connected;
2)	inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3)	outlist-PORT1defines the messages or procedures of the out-direction of PORT1;
4)	inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5)	outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b)	The connect operation is allowed if and only if:
outlist-PORT1  inlist-PORT2 and outlist-PORT2  inlist-PORT1.
c)	The map operation (assuming PORT2 is the test system interface port) is allowed if and only if:
outlist-PORT1  outlist-PORT2 and inlist-PORT2  inlist-PORT1.
d)	In all other cases, the operations shall not be allowed.
e)	Since TTCN‑3 allows dynamic configurations and addresses, not all of these consistency checks can be made statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and shall lead to a test case error when failing.
f)	In addition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.
g)	In map operations, param clauses are optional. If in a map operation a param clause is present, exactly one of the components referenced by the operation shall be the system component reference, the type of the system component shall be known in the context of the  operation either via a system clause or via a runs on clause in a testcase without system clause, the type of the system port to which the operation is applied shall include a map param declaration, and the actual parameters shall conform to the map param clause of the port type declaration of the system port used.
h)	If the type of the component referenced in a connection operation is known (either when the component reference is a variable or value returned from a function or the type is defined in the runs on, mtc or system clause of the calling function), the referenced port declaration shall be present in this component type.
Examples
EXAMPLE 1:	Simple map and connect
	// It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
	// in the corresponding port type and component type definitions 
	 :
	var MyComponentType  MyNewPTC;
	MyNewPTC := MyComponentType.create;
	 :
	connect(MyNewPTC:Port1, mtc:Port3);
	map(MyNewPTC:Port2, system:PCO1);
	 :
	// In this example a new component of type MyComponentType is created and its reference stored
	// in variable MyNewPTC. Afterwards in the connect operation, Port1 of this new component
	// is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
	// is then connected to port PCO1 of the test system interface 
	

EXAMPLE 2:	Parameterized map
	 :
	var MyConfigType MyConfig := { option := 1, lock := false};
	 :
	map(mtc:Port4, system:PCO2) param (MyConfig);
	 :
	// In this example by means of the map operation, Port4 of the MTC is connected to the port PCO2
	// of the test system interface, and additionally a parameter containing configuration options
	// for the connection is passed.

EXAMPLE 3:	Port visibility
[bookmark: _GoBack]type port P message { inout integer; }
type component C1 { port P p1; }
type component C2 { port P p1, p2; }

testcase TC runs on C1 system C1
{
  var C1 v_ptc := C2.create; // valid assignment, instance of C2 is compatible with C1 typev_ptc:p2 is not visible according to strong
  // typing rules, but the real instance contains the port p2. Static check
  // made in compilation time should print an error, but runtime check would
  // succeed
  connect (self:p1, v_ptc:p2p1); // valid, p1 is present in C1 type definition
 disconnect (self:p1, v_ptc:p1);
 connect (self:p1, v_ptc:p2); // invalid, although the real instance in v_ptc is of the
  // C2 type, the variable itself is of the C1 type making the p2 port invisible to the
  // connection operation
}


[bookmark: _Toc382311410][bookmark: _Toc382375282]21.1.2	The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map.
Syntactical Structure
disconnect [ ( "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" ) | 
             ( "(" PortRef ")" ) |
             ( "(" ComponentRef ":" all port ")" ) |
             ( "(" all component ":" all port ")" ) ]

unmap [ ( "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" 
                          [ param "(" [ { ActualPar [","] }+ ] ")" ] )  | 
        ( "(" PortRef ")" [ param "(" [ { ActualPar [","] }+ ] ")" ] ) |
        ( "(" ComponentRef ":" all port ")" ) |
        ( "(" all component ":" all port ")" ) ] 

Semantic Description
The disconnect and unmap operations perform the disconnection (of previously connected) ports of test components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.
Both, the disconnect and unmap operations can be called from any component if the relevant component references together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the connection or mapping to be removed has been created beforehand.
To ease disconnect and unmap operations related to all connections and mappings of a component or a port, it is allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of the connections to be disconnected or unmapped. The all port keyword can be used to denote all ports of a component.
The usage of a disconnect or unmap operation without any parameters is a shorthand form for using the operation with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.
The all component keyword shall only be used in combination with the all port keyword, i.e. all component:all port, and shall only be used by the MTC. Furthermore, the all component:all port argument shall be used as the one and only argument of a disconnect or unmap operation and it allows to release all connections and mappings of the test configuration.
Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system port used. It allows to pass values needed for dynamic runtime configuration.
Restrictions
In addition to the general static rules of TTCN‑3 given in clauses 5 and 21, the following restrictions apply:
a)	In an unmap operation, a param clause shall only be present if the system port to which the param clause belongs to is explicitly referenced.
b)	In unmap operations, param clauses are optional. If in an unmap operation a param clause is present, exactly one of the components referenced by the operation shall be the system component reference, the type of the system component shall be known in the context of the  operation either via a system clause or via a runs on clause in a testcase without system clause, the type of the system port to which the operation is applied shall include an unmap param declaration and the actual parameters shall conform to the unmap param clause of the port type declaration of the system port used.
c)	If the type of the component referenced in a connection operation is known (either when the component reference is a variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling function), the referenced port declaration shall be present in this component type.
Examples
EXAMPLE 1:	Disconnect/unmap for specific connections
	connect(MyNewComponent:Port1, mtc:Port3);
	map(MyNewComponent:Port2, system:PCO1);
	 :
	disconnect(MyNewComponent:Port1, mtc:Port3);	// disconnect previously made connection
	unmap(MyNewComponent:Port2, system:PCO1);		// unmap previously made mapping 

EXAMPLE 2:	Disconnect/unmap for a component
	disconnect(MyNewComponent:Port1);				// disconnects all connections of Port1, which
													// is owned by component MyNewComponent.
	unmap(MyNewComponent:all port);					// unmaps all ports of component MyNewComponent

EXAMPLE 3:	Disconnect/unmap for "self"
	disconnect;										// is a shorthand form for …
	disconnect(self:all port);						// which disconnects all ports of the component
													// that called the operation
	 :
	unmap;											// is a shorthand form for …
	unmap(self:all port);							// which unmaps all ports of the component
													// that called the operation

EXAMPLE 4:	Disconnect/unmap for "all component"
	disconnect(all component:all port);				// the MTC disconnects all ports of all
													// components in the test configuration.
	 :
	unmap(all component:all port);					// the MTC unmaps all ports of all
													// components in the test configuration.

