1

15.7.2
Special symbols that can be used instead of values

Syntactical structure paragraph shall be replaced by the following one:

Syntactical Structure
omit |

"(" { (TemplateInstance | all from TemplateInstance)[","] } ")" |

complement "(" { (TemplateInstance | all from TemplateInstance)[","] } ")" |

"?" |

"
*" |

"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |

superset "(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |

subset "(" { (TemplateInstance | all from TemplateInstance) [","] } ")" |

pattern Cstring

A.1.6
TTCN-3 syntax BNF productions

A.1.6.1.3
Template definitions

130. PermutationList ::= "(" PermutationListItem {"," PermutationListItem }
New rule: PermutationListItem ::= (TemplateBody | AllElementsFrom)
133. TemplateList ::= "(" TemplateListItem {"," TemplateListItem}+ ")"
New rule: TemplateListItem ::= (TemplateBody | AllElementsFrom)
New rule: AllElementsFrom ::= AllKeyword FromKeyword TemplateBody
/* STATIC SEMANTICS: TemplateBody shall resolve into a value or template of a record of or set of type */

B.1.2.1
Template list

Original text unchanged, only the example shall be renamed to EXAMPLE 1. New text to the end of the chapter:
Instead of specifying all individual values, it is possible to add all elements of an existing record of or set of template into template lists using an all from clause.
Restrictions
a)
The type of the template list and the member type of the record of or set of type associated with the template in the all from claused shall be compatible.

b)
The template in the all from clause as a whole shall not resolve into a metchaning mechanism (i.e. its fields may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
c)
The individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation.

EXAMPLE 2:

type record of integer RI;

template RI t_recI1 := {1, 2, (6..9)};

template RI t_recI2 := {1, *, 3};

template integer t_i1 := (all from t_recI1, 100); // will result into (1, 2, (6..9), 100)

template integer t_i2 := (0, all from t_recI2); // will produce an error, because t_recI2

// contains AnyElementsOrNone

template RI t_recI3 := (all from t_recI1); // will produce an error, because member type of

// t_recI1 (integer) is not compatible with the list template type (RI)

template RI t_recI4 := ?;

template RI t_recI5 := (all from t_recI4); // will produce an error, because t_recI4 resolves

// into a matching mechanism
B.1.2.2
Complemented template list
Original text unchanged, only the example shall be renamed to EXAMPLE 1. New text to the end of the chapter:
Instead of specifying all individual values, it is possible to add all elements of an existing record of or set of template into complement template lists using an all from clause.

Restrictions
a)
The type of the complemented template list and the member type of the record of or set of type associated with the template in the all from claused shall be compatible.

b)
The template in the all from clause as a whole shall not resolve into a metchaning mechanism (i.e. its fields may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
c)
The individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation.

EXAMPLE 2:

type record of integer RI;

template RI t_recI1 := {1, 2, (6..9)};

template RI t_recI2 := {1, *, 3};

template integer t_i1 := complement(all from t_recI1, 100);

// will result into (1, 2, (6..9), 100)

template integer t_i2 := complement(0, all from t_recI2);

// will produce an error, because t_recI2 contains AnyElementsOrNone

template RI t_recI3 := complement(all from t_recI1);

// will produce an error, because member type of t_recI1 (integer) is not compatible

// with the complemented list template type (RI)

template RI t_recI4 := ?;

template RI t_recI5 := complement (all from t_recI4);

// will produce an error, because t_recI4 resolves into a matching mechanism
B.1.2.6
SuperSet

Original text unchanged, only the example shall be renamed to EXAMPLE 1. New text to the end of the chapter:
Instead of specifying all individual values, it is possible to add all elements of an existing record of or set of template into supersets using an all from clause.

Restrictions
a)
The member type of the set of type associated with the superset template and the member type of the record of or set of type associated with the template in the all from claused shall be compatible.

b)
The template in the all from clause as a whole shall not resolve into a metchaning mechanism (i.e. its fields may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
c)
The individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation, subset, superset; and shall not contain any matching attributes.

EXAMPLE 2:

type record of integer RI;

type set of integer MySetOfType (0 .. 10);

template RI t_recI1 := {1, 2, ?};

template integer t_i1 := superset all from t_recI1;

// will result into superset(1, 2, ?)
B.1.2.7
SubSet

Original text unchanged, only the example shall be renamed to EXAMPLE 1. New text to the end of the chapter:
Instead of specifying all individual values, it is possible to add all elements of an existing record of or set of template into subsets using an all from clause.

Restrictions
a)
The member type of the set of type associated with the subset template and the member type of the record of or set of type associated with the template in the all from claused shall be compatible.

b)
The template in the all from clause as a whole shall not resolve into a metchaning mechanism (i.e. its fields may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
c)
The individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation, subset, superset; and shall not contain any matching attributes.

EXAMPLE 2:

type record of integer RI;

type set of integer MySetOfType (0 .. 10);

template RI t_recI1 := {1, 2, ?};

template integer t_i1 := subset all from t_recI1;

// will result into subset(1, 2, ?)
ETSI

