9.1
Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming messages or procedure calls until they are processed by the component owning that port (see figure 1).

NOTE:
While TTCN‑3 ports are infinite in principle in a real test system they may overflow. This is to be treated as a test case error (see clause Error: Reference source not found).

[image: image1.wmf]

MTC

PTC

Figure 1: The TTCN‑3 communication port model

TTCN‑3 connections are port-to-port and port-to-test system interface connections (see figure Error: Reference source not found). There are no restrictions on the number of connections a component may maintain. One-to-many connections are also allowed (e.g. figure Error: Reference source not found(g) or figure Error: Reference source not found(h)). If ports of more than one component are mapped to the same test system port, the behaviour of how the system adapter shall distribute messages received over this system port to these components can be specified via use of the system attribute (see section 27.8).
Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) The following connections are not allowed (see figure Error: Reference source not found):

· A port owned by a component A shall not be connected with two or more ports owned by the same component (figures Error: Reference source not found (a) and Error: Reference source not found(e)).

· A port owned by a component A shall not be connected with two or more ports owned by a component B (see figure Error: Reference source not found(c)).

· A port owned by a component A can only have a one-to-one connection with the test system interface. This means, connections as shown in figures Error: Reference source not found(b) and Error: Reference source not found(d) are not allowed.

· Connections within the test system interface are not allowed (see figure Error: Reference source not found(f)).

· A port that is connected shall not be mapped and a port that is mapped shall not be connected (see figure Error: Reference source not found(g)).

b) Since TTCN‑3 allows dynamic configurations and addresses, the restrictions on connections cannot always be checked at compile-time. The checks shall be made at run-time and shall lead to a test case error when failing.

27.2
The With statement

The with statement is used to associate attributes to TTCN‑3 language elements (and sets thereof).

Syntactical Structure

with "{"

 { (encode | variant | display | extension | optional | system)

 [override]

 ["(" DefinitionRef | FieldReference | AllRef ")"]

 FreeText [";"] }

"}"

Semantic Description

There are five kinds of attributes that can be associated to language elements:

a) display: allows the specification of display attributes related to specific presentation formats;

b) encode: allows references to specific encoding rules;

c) variant: allows references to specific encoding variants;

d) extension: allows the specification of user-defined attributes;

e) optional: allows the implicit setting of optional fields in records and sets to omit.

f) system: allows specifications for the system adapter.
The syntax for the argument of the with statement (i.e. the actual attributes) is defined as a free text string.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) DefinitionRef and FieldReference must refer to a definition or field respectively which is within the module, group or definition to which the with statement is associated.

Examples

type record MyService {

integer i,

float f

}

with { display "ServiceCall" }

// MyRecord will be displayed as a ServiceCall

27.3
Display attributes

Display attributes allow the specification of display attributes related to specific presentation formats.

Syntactical Structure

display

Semantic Description

All TTCN‑3 language elements can have display attributes to specify how particular language elements shall be displayed in, for example, a tabular format.

Special attribute strings related to the display attributes for the tabular (conformance) presentation format can be found in ES 201 873-2 [Error: Reference source not found].

Special attribute strings related to the display attributes for the graphical presentation format can be found in ES 201 873-3 [Error: Reference source not found].

Other display attributes may be defined by the user.

NOTE:
Because user-defined attributes are not standardized, the interpretation of these attributes may differ between tools or even may not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

type record MyService {

integer i,

float f

}

with { display "ServiceCall" }

// MyRecord will be displayed as a ServiceCall

27.4
Encoding attributes

In TTCN‑3, general or particular encoding rules can be specified by using encode and variant attributes. Encoding attributes allow references to specific encoding rules.

Syntactical Structure

encode

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication port and how received signals shall be decoded. TTCN‑3 does not have a default encoding mechanism. This means that encoding rules or encoding directives are defined in some external manner to TTCN‑3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a TTCN‑3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next level is a group and the lowest is an individual type or definition:

a) module: encoding applies to all types defined in the module, including TTCN‑3 types (built-in types);

b) group: encoding applies to a group of user-defined type definitions;

c) type or definition: encoding applies to a single user-defined type or definition;

d) field:encoding applies to a field in a record or set type or template.

Restrictions

No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

module MyFirstmodule

{
:

import from MySecondModule {

type MyRecord

}

with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

:

type charstring MyType;
// Normally encoded according to the 'Global encoding rule

:

group MyRecords

{
:

type record MyPDU1

{

integer

field1,

// field1 will be encoded according to "Rule 3"

boolean

field2,

// field2 will be encoded according to "Rule 3"

Mytype

field3

// field3 will be encoded according to "Rule 2"

}

with { encode (field1, field2) "Rule 3" }

:

}

with { encode "Rule 2" }

}

with { encode "Global encoding rule" }

27.5
Variant attributes

In TTCN‑3, general or particular encoding rules can be specified by using encode and variant attributes. Variant attributes allow references to specific encoding variants.

Syntactical Structure

variant

Semantic Description

To specify a refinement of the currently specified encoding scheme instead of its replacement, the variant attribute shall be used. The variant attributes are different from other attributes, because they are closely related to encode attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause Error: Reference source not found).

Special variant strings:

The following strings are the predefined (standardized) variant attributes for simple basic types (see clause D.2.1):

a) "8 bit" and "unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits (single byte) within the system.

b) "16 bit" and "unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits (two bytes) within the system.

c) "32 bit" and "unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits (four bytes) within the system.

d) "64 bit" and "unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits (eight bytes) within the system.

e) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and "IEEE754 extended double" mean, when applied to a float type, that the value shall be encoded and decoded according to the standard IEEE 754 [Error: Reference source not found] (see annex Error: Reference source not found).

The following strings are the predefined (standardized) variant attributes for charstring and universal charstring (see clause D.2.2):

a) "UTF-8" means, when applied to the universal charstring type, that each character of the value shall be individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [Error: Reference source not found].

b) "UCS-2" means, when applied to the universal charstring type, that each character of the value shall be individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of ISO/IEC 10646 [Error: Reference source not found]).

c) "UTF-16" means, when applied to the universal charstring type, that each character of the value shall be individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [Error: Reference source not found].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value shall be individually encoded and decoded according to the coded representation as specified in ISO/IEC 10646 [Error: Reference source not found] (an 8-bit coding).

The following strings are the predefined (standardized) variant attributes for structured types (see clause D.2.3):

a) "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to a record type, that the value shall be handled as an IDL fixed point decimal value (see annex Error: Reference source not found).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level. For example a universal charstring specified with the variant attribute "UTF-8" within a module which itself has a global encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [Error: Reference source not found]) will cause each character of the values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded following the more global BER rules.

Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in a referenceable source external to the module in the same way that valid encoding rules are referenced.

Restrictions

No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

EXAMPLE:

module MyTTCNmodule1

{
:

type charstring MyType;
// Normally encoded according to the "Global encoding rule"

:

group MyRecords

{
:

type record MyPDU1

{

integer

field1,

// field1 will be encoded according to "Rule 2"

// using encoding variant "length form 3"

Mytype

field3

// field3 will be encoded according to "Rule 2"

// using any possible length encoding format

}

with { variant (field1) "length form 3" }

:

}

with { encode "Rule 2" }

}

with { encode "Global encoding rule" }

27.6
Extension attributes

Extension attributes can be used for proprietary extensions to TTCN‑3.

Syntactical Structure

extension

Semantic Description

All TTCN‑3 language elements can have extension attributes specified by the user.

NOTE:
Because user-defined attributes are not standardized the interpretation of these attributes between tools supplied by different vendors may differ or even not be supported.

Restrictions

No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples

testcase MyTestcase() runs on MTCType {

:

}

with { extension "Test Purpose: This test case is used to check …" }

27.7
Optional attributes

The optional attribute can be used to indicate that optional fields of constants, module parameters or templates of record and set types are implicitly set to omit.

Syntactical Structure

optional

Semantic Description

TTCN‑3 constants, module parameters, and templates can have an optional attribute. Also, TTCN-3 language elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type definitions can have an optional attribute. When an optional attribute is associated to a function, altstep, test case, control or component type definitions, it shall have effect on all the constants, module parameters, and templates declared within these definitions and not on the enframing definition itself.

Special optional strings:

The following strings are the predefined (standardized) optional attributes.

a) "implicit omit" means that all optional fields, which have not been defined in the definition the attribute is associated with, are set to omit. This applies recursively to the optional fields of the entity and to subfields of the mandatory fields.

b) "explicit omit" means that all optional fields, which have not been defined in the definition the attribute is associated with, are left undefined. This applies recursively to the optional fields of the entity and to subfields of the mandatory fields.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) Data type, port type, procedure signature and variable definitions and import statements shall not have an optional attribute associated to them directly. When an optional attribute is associated to module, group, function, altstep, test case, control or component type containing such definitions, it shall not have any effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecord1 {
 integer a,
 boolean b optional
}
type record MyRecord2 {
 MyRecord1 m
}

// reference templates with explicitly set fields
template MyRecord1 MyTemplate1 := { a := ?, b := omit }
template MyRecord2 MyTemplate2 := { m := { a := ?, b := omit }}

// reference templates
template MyRecord1 MyTemplate1a := { a := ? } // b is undefined
template MyRecord1 MyTemplate1b := { a := ? } with {optional "explicit omit"} // b is undefined

template MyRecord2 MyTemplate2a := {} // m and its subfields are undefined

template MyRecord2 MyTemplate2b := { m := { a := ?}}; // m.b is undefined

// templates with attribute

template MyRecord1 MyTemplate11 := { a := ? } with {optional "implicit omit"}
 // same as MyTemplate1, b is set to omit

template MyRecord2 MyTemplate21 := { m := { a := ?}} with {optional "implicit omit"}
 // same as MyTemplate2, by recursive application of the attribute

template MyRecord2 MyTemplate22 := { m := MyTemplate1a } with {optional "implicit omit"}
 // same as MyTemplate2, by recursive application of the attribute

template MyRecord2 MyTemplate23 := {} with {optional "implicit omit"}
 // same as MyTemplate2a, m remains undefined

template MyRecord2 MyTemplate24 := { m := MyTemplate1b } with {optional "implicit omit"}
 // same as MyTemplate2b, the attribute on the lower scope is not overwritten

template MyRecord2 MyTemplate25 := { m := MyTemplate1b }
 with {optional override "implicit omit"}
 // same as MyTemplate2, the attribute on the lower scope is overwritten

27.8
System attributes

The system attribute can be used to indicate that the adaptation to the system shall behave in a specific way.

Syntactical Structure

system

Semantic Description

The system attribute can be associated with inout or out message and procedure types of TTCN-3 port type definitions either directly (i.e. assigning it to the port type definition and qualifying it with the type's name) or indirectly (i.e. assigning it to the port type without qualifier or to TTCN-3 language elements that contain such definitions, i.e. module or group definitions).

Special system strings:

The following strings are the predefined (standardized) system attributes.

a) "receive:unicast" means that the system adapter needs to be able to disambiguate the recipient port for the received message of the type/procedure this attribute is associated with and relay that message only to that port.

b) "receive:broadcast" means that the system adapter needs to relay the message of the type/procedure this attribute is associated with to all ports mapped to this system port.
Restrictions

The following restrictions apply:

c) The system attribute shall have effect only when the port type is used in a component type which is used as the system component interface. Otherwise, it shall be ignored.

Examples

signature P1();

signature P2();

type port MyPort procedure {
 inout P1, P2;
}

with {

 system (P1) "receive:unicast"; // if P1 is received, relay only to unambiguous recipient

 system (P2) "receive:broadcast"; // if P2 is received, relay to all ports mapped to this port

}

type component SystemComp {
 port MyPort p; // the system attribute will have effect in this use of MyPort only
}

type component PtcComp {

 port MyPort p; // the system attribute has no effect in this use of MyPort
}

type component MtcComp {}

testcase T() runs on MtcComp system SystemComp {

 var PtcComp ptc1 := PtcComp.create, ptc2 := PtcComp.create;

 map(ptc1:p, system:p);

 map(ptc2:p, system:p);

 ptc1.start(singleReceive());

 ptc2.start(singleReceive());

 ptc1.done;

 ptc2.done;

 ptc1.start(multiReceive(ptc1));

 ptc2.start(multiReceive(ptc1));

 ptc1.done;

 ptc2.done;

}

function singleReceive() runs on PtcComp {

 p.call(P1:{}) {

 [] p.getreply(P1:{}) {} // should only match for the correct reply to ptc1 because of

 // system attribute for P1

 }

}

function multiReceive(PtcComp caller) {

 if (self == caller) {

 p.call(P2:{}, nowait);

 }

 p.getreply(P2:{}); // should also match if call P2 is false because of

 // system attribute for P2

}

A.1.6.8.1
With statement

1WithStatement ::= WithKeyword WithAttribList

2WithKeyword ::= "with"

3WithAttribList ::= "{" MultiWithAttrib "}"

4MultiWithAttrib ::= {SingleWithAttrib [SemiColon]}

5SingleWithAttrib ::= AttribKeyword [OverrideKeyword] [AttribQualifier]

 FreeText

6AttribKeyword ::= EncodeKeyword |

 VariantKeyword |

 DisplayKeyword |

 ExtensionKeyword |

 OptionalKeyword |

 SystemKeyword
7EncodeKeyword ::= "encode"

8VariantKeyword ::= "variant"

9DisplayKeyword ::= "display"

10ExtensionKeyword ::= "extension"

11OverrideKeyword ::= "override"

12AttribQualifier ::= "(" DefOrFieldRefList ")"

13DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}

14DefOrFieldRef ::= DefinitionRef |

 (FieldReference [ExtendedFieldReference]) |

 ("[" Minus | SingleExpression "]") |

 AllRef

15DefinitionRef ::= Identifier FullGroupIdentifier

16AllRef ::= (GroupKeyword AllKeyword [ExceptKeyword "{" FullGroupIdentifierList

 "}"]) | ((TypeDefKeyword |

 TemplateKeyword |

 ConstKeyword |

 AltstepKeyword |

 TestcaseKeyword |

 FunctionKeyword |

 SignatureKeyword |

 ModuleParKeyword

) AllKeyword [ExceptKeyword

 "{" IdentifierList

 "}"])

_-800144968.doc

PTC

MTC

