

16.2.1
Invoking altsteps

The invocation of an altstep is always related to an alt statement. The invocation may be done either implicitly by the default mechanism (see clause 21) or explicitly by a direct call within an alt statement (see clause 20.2).

Syntactical Structure

AltstepRef "(" [{ ActualPar [","] }] ")"

Semantic Description

The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by using the actual snapshot of the alt statement from which the altstep was called.

NOTE 1:
A new snapshot within an altstep will of course be taken, if within a selected top alternative a new alt statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by means of an activate statement before the place of the invocation is reached.

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative. When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of the altstep. The alternatives of the altstep are checked and executed the same way as alternatives of an alt statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call is the last alternative of the alt statement). A successful termination may cause either the termination of the test component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement, i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the execution of the selected top alternative of the altstep ends with a break statement (see clause Fehler: Referenz nicht gefunden) or without explicit repeat or stop.

NOTE 2:
Due to the possibility of defining dynamic test configurations, an alternative in an explicitly invoked altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, an explicitly invoked altstep may execute receiving operations that empty the queues of unmapped and disconnected ports without causing a test case error.
An altstep can also be called as a stand-alone statement in a TTCN‑3 behaviour description. In this case, the call of the altstep can be interpreted as shorthand for an alt statement with only one alternative describing the explicit call of the altstep.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) When invoking an altstep, the compatibility of the test component type of the invoking test component and of the altstep runs on clause (as described in clause Fehler: Referenz nicht gefunden) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause Fehler: Referenz nicht gefunden.

Examples

EXAMPLE 1:
Implicit invocation of an altstep via a default activation

 :

var default MyDefVarTwo := activate(MySecondAltStep()); // Activation of an altstep as default

 :

EXAMPLE 2:
Explicit invocation of an altstep within an alt statement

 :

alt {

[] PCO3.receive {

 …

}

[] AnotherAltStep();
// explicit call of altstep AnotherAltStep as an alternative

// of an alt statement

[] MyTimer.timeout {}

}

EXAMPLE 3:
Explicit, stand-alone invocation of an altstep

// The statement

AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

//is a shorthand for

alt {

[] AnotherAltStep();

}

20.2
The Alt statement

An alt statement expresses sets of possible alternatives that form a tree of possible execution paths.

Syntactical Structure

alt "{"

{

 "[" [BooleanExpression] "]"

 ((TimeoutStatement |

 ReceiveStatement |

 TriggerStatement |

 GetCallStatement |

 CatchStatement |

 CheckStatement |

 GetReplyStatement |

 DoneStatement |

 KilledStatement) StatementBlock)

 |

 (AltstepInstance [StatementBlock])

}

["[" else "]" StatementBlock]

"}"

Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or timer events and/or the termination of parallel test components, i.e. it is related to the use of the TTCN‑3 operations receive, trigger, getcall, getreply, catch, check, timeout, done and killed. The alt statement denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alternative behaviour:

When entering an alt statement, a snapshot is taken.

The alternative branches in the alt statement and the top alternatives of invoked altsteps and altsteps that are activated as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their activation determines the evaluation order of the top alternatives in the defaults. The alternative branches in active defaults are reached by the default mechanism described in clause .

The individual alternative branches are either branches that may be guarded by a Boolean expression or else-branches, i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with a done operation (done-branch), a killed operation (killed-branch), timeout operation (timeout-branch) or a receiving operation (receiving-branch), i.e. receive, trigger, getcall, getreply, catch or a check operation. The evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no Boolean guard is defined, or if the Boolean guard evaluates to true. The branches are processed and executed in the following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation of the referenced altstep, i.e. the altstep is invoked and the evaluation of the snapshot continues within the altstep. Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of stopped components of the snapshot. The selection causes the execution of the statement block following the done operation. The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component is in the list of killed components of the snapshot. The selection causes the execution of the statement block following the killed operation. The killed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event is in the timeout-list of the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event from the timeout-list, and the execution of the statement block following the timeout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an assignment of the received information to a variable and the execution of the statement block following the receiving operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is fulfilled but the matching criteria is not. In this case the statement block of the given alternative is not executed.

NOTE 1:
The TTCN‑3 semantics describe the evaluation of a snapshot as a series of indivisible actions of a test component. The semantics do not assume that the evaluation of a snapshot has no duration. During the evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies or exceptions may enter the port queues of the component However, these events do not change the actual snapshot and thus, are not considered for the snapshot evaluation.

NOTE 2:
Due to the possibility of defining dynamic test configurations, a receiving branch may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, the execution of receiving operations may empty the queues of unmapped and disconnected ports without causing a test case error.
If none of the alternative branches in the alt statement and top alternatives in the invoked altsteps and active defaults can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an alternative branch is selected and executed, or the test case is stopped by another component or by the test system (e.g. because the MTC is stopped) or with a dynamic error.

The test case shall stop and indicate a dynamic error if a test component is completely blocked. This means none of the alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports contain at least one message, call, reply or exception that do not match.

NOTE 2:
The repetitive procedure of taking a complete snapshot and re-evaluate all alternatives is only a conceptual means for describing the semantics of the alt statement. The concrete algorithm that implements this semantics is outside the scope of the present document.

Selecting/deselecting an alternative:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the ("[…]") brackets of the alternative.

Else branch in alternatives:

Any branch in an alt statement can be defined as an else branch by including the else keyword between the opening and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause) is always invoked at the end of all alternatives. If an else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 3:
It is also possible to use else in altsteps.

NOTE 4:
It is allowed to use a repeat statement within an else branch.

NOTE 5:
It is allowed to define more than one else branch in an alt statement or in an altstep, however always only the first else branch is executed.

Re-evaluation of alt statements:

The re-evaluation of an alt statement can be specified by using a repeat statement (see clause Fehler: Referenz nicht gefunden).

Invocation of altsteps as alternatives:

TTCN‑3 allows the invocation of altsteps as alternatives in alt statements (see clause 16.2.1). When an altstep is explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or invoked defaults is selected and completely executed, or a branch of an altstep used in an altsteps-branch is selected and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if a break statement is reached in the statement block of the selected branch of an alt statement, of an altstep used in an altstep-branch, or of an altstep invoked as default.

The alt statement can also be left by using a goto statement in the selected branch of the alt (i.e. no branches of altsteps and defaults can be considered in this case), and execution continues with the statement following the label, goto is pointing to.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) The open and close square brackets ("[…]") shall be present at the start of each alternative, even if they are empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from another.

b) The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid side effects that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions as the restrictions for the initialization of local definitions within altsteps shall apply (clause Fehler: Referenz nicht gefunden).

c) The else branch shall not contain any of the actions allowed in branches guarded by a boolean expression (i.e. an altstep call or a done, a killed, a timeout or a receiving operation).

d) An alt statement used within the module control part shall only contain the timeout statements.

Examples

EXAMPLE 1:
Nested alternatives

alt {

[] MyPort.receive (MyMessage) {

setverdict (pass);

MyTimer.start;

alt {

[] MyPort.receive (MySecondMessage) {

MyTimer.stop;

setverdict (pass);

}

[] MyTimer.timeout {

MyPort.send (MyRepeat);

MyTimer.start;

alt {

[] MyPort.receive (MySecondMessage) {

MyTimer.stop;

setverdict (pass)

}

[] MyTimer.timeout { setverdict (inconc) }

[] MyPort.receive { setverdict (fail) }

}

}

[] MyPort.receive { setverdict (fail) }

}

}

[] MyTimer.timeout { setverdict (inconc) }

[] MyPort.receive { setverdict (fail) }

}

EXAMPLE 2:
Alt statement with guards

alt {

 [x>1] L2.receive {

// Boolean guard/expression

setverdict(pass);

 }

 [x<=1] L2.receive {

// Boolean guard/expression

setverdict(inconc);

 }

}

EXAMPLE 3:
Alt statement with else branch

// Use of alternative with Boolean expressions (or guard) and else branch

alt {

 :

 [else] {

// else branch

MyErrorHandling();

setverdict(fail);

stop;

 }

}

EXAMPLE 4:
Re-evaluation with repeat

alt {

 [] PCO3.receive {

count := count + 1;

repeat

// usage of repeat

 }

 [] T1.timeout { }

 [] any port.receive {

setverdict(fail);

stop;

 }

}

EXAMPLE 5:
Alt statement with explicitly invoked altstep

alt {

 [] PCO3.receive { }

 [] AnotherAltStep() {
// Explicit call of altstep AnotherAltStep as alternative.

setverdict(inconc)
// Statement block executed if an alternative within

// altstep AnotherAltStep has been selected and executed.

 }

 [] MyTimer.timeout { }

}

20.5.1
The default mechanism

The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot none of the specified alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last activated default, and waits for the result of its termination. The termination can be successful or unsuccessful. Unsuccessful means that none of the top alternatives of the altstep (see clause Fehler: Referenz nicht gefunden) defining the default behaviour could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1:
An interleave statement is semantically equivalent to a nested set of alt statements and the default mechanism also applies to each of these alt statements. This means, the default mechanism also applies to interleave statements.

NOTE 2:
Due to the possibility of defining dynamic test configurations, an alternative in an altstep activated as default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving component and matching is related to the top elements in the port queues. Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This means, an altstep invoked as default may execute receiving operations that empty the queues of unmapped and disconnected ports without causing a test case error.
In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default in the list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful default execution will also be indicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked (see clause Fehler: Referenz nicht gefunden).

In the case of a successful termination, the default may either stop the test component by means of a stop statement, or the main control flow of the test component will continue immediately after the alt statement from which the default mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has to be specified by means of a repeat statement (see clause Fehler: Referenz nicht gefunden). If the execution of the selected top alternative of the default ends with a break statement or without a repeat statement the control flow of the test component will continue immediately after the alt statement.

NOTE 3:
TTCN‑3 does not restrict the implementation of the default mechanism. It may for example be implemented in form of a process that is implicitly called at the end of each alt statement or in form of a separate thread that is only responsible for the default handling. The only requirement is that defaults are called in the reverse order of their activation when the default mechanism has been invoked.

22.2.1
The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send "(" TemplateInstance ")"

[to Address]

NOTE:
Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast communication is used, if the to clause includes a list of communication partners. Broadcast is defined by using the to clause with all component keyword.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a)
The TemplateInstance (and all parts of it) shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

b)
When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the message being sent.

c)
The send operation shall only be used on message-based ports and the type of the template to be sent shall be in the list of outgoing types of the port type definition.

d)
A to clause shall be present in case of one-to-many connections.

e)
AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the send operation.

f)
Applying a send operation to an unmapped or disconnected port shall cause a test case error.
Examples

EXAMPLE 1:
Simple send (receiver is determined from the test configuration)

MyPort.send(MyTemplate(5,MyVar));
// Sends the template MyTemplate with the actual

// parameters 5 and MyVar via MyPort.

MyPort.send(5);

// Sends the integer value 5 (which is an in-line template)

EXAMPLE 2:
Sending with explicit to clause

MyPort.send(charstring:"My string") to MyPartner;

// Sends the string "My string" to a component with a

// component reference stored in variable MyPartner

MyPCO.send(MyVariable + YourVariable - 2) to MyPartner;

// Sends the result of the arithmetic expression to MyPartner.

MyPCO2.send(MyTemplate) to (MyPeerOne, MyPeerTwo);

// Specifies a multicast communication, where the value of

// MyTemplate is sent to the two component references stored

// in the variables MyPeerOne and MyPeerTwo.

MyPCO3.send(MyTemplate) to all component;

// Broadcast communication: the value of Mytemplate is send to

// all components which can be addressed via this port. If

// MyPCO3 is a mapped port, the components may reside inside

// the SUT.

22.3.1
The Call operation

The call operation specifies the call of a remote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" TemplateInstance ["," CallTimerValue] ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The call operation is used to specify that a test component calls a procedure in the SUT or in another test component.

The information to be transmitted in the send part of the call operation is a signature that may either be defined in the form of a signature template or be defined in-line.

Handling responses and exceptions to a call

In case of non-blocking procedure-based communication the handling of exceptions to call operations is done by using catch (see clause Fehler: Referenz nicht gefunden) operations as alternatives in alt statements.

If the nowait option is used, the handling of responses or exceptions to call operations is done by using getreply (see clause Fehler: Referenz nicht gefunden) and catch (see clause Fehler: Referenz nicht gefunden) operations as alternatives in alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptions to a call is done in the response and exception handling part of the call operation by means of getreply (see clause Fehler: Referenz nicht gefunden) and catch (see clause Fehler: Referenz nicht gefunden) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of a boolean expression placed between the "[]" brackets of the alternative.

The response and exception handling part of a call operation is executed like an alt statement without any active default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean guards, may include the top element (if any) of the port over which the procedure has been called and may include a timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptions to a call

The call operation may optionally include a timeout. This is defined as an explicit value or constant of float type and defines the length of time after the call operation has started that a timeout exception shall be generated by the test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowait instead of a timeout exception value in a call operation allows calling a procedure to continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If the nowait keyword is used, a possible response or exception of the called procedure has to be removed from the port queue by using a getreply or a catch operation in a subsequent alt statement.

Calling blocking procedures without return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call operation for such a procedure shall also have a response and exception handling part to handle the blocking in a uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated in the corresponding signature definition by means of a noblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch operations in subsequent alt or interleave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN‑3 also supports unicast, multicast and broadcast calls of procedures. This can be done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of a call operation is for unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls a list of addresses of a set of receivers and for broadcast calls the all component keyword. In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in this clause under "Handling timeout exceptions to a call". A multicast or broadcast call operation may cause several responses and exceptions from different communication partners.

In case of a multicast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised from the different communication partners can be handled in subsequent catch, alt or interleave statements.

In case of a multicast or broadcast call operation of a blocking procedure, two options exist. Either, only one response or exception is handled in the response and exception handling part of the call operation. Then, further responses and exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling part of the call operation: the execution of a repeat statement causes the re-evaluation of the call body.

NOTE 2:
In the second case, the user needs to handle the number of repetitions.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a)
The call operation shall only be used on procedure-based ports. The type definition of the port at which the call operation takes place shall include the procedure name in its out or inout list i.e. it must be allowed to call this procedure at this port.

b)
All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

c)
Only out parameters may be omitted or specified with a matching attribute.

d)
The signature arguments of the call operation are not used to retrieve variable names for out and inout parameters. The actual assignment of the procedure return value and out and inout parameter values to variables shall explicitly be made in the response and exception handling part of the call operation by means of getreply and catch operations. This allows the use of signature templates in call operations in the same manner as templates can be used for types.

e)
A to clause shall be present in case of one-to-many connections.

f)
AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the call operation.

g)
CallTimerValue must be of type float.

h)
The selection of the alternatives to a call shall only be based on getreply and catch operations for the called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions raised by the called procedure. The use of else branches and the invocation of altsteps is not allowed.

i)
The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards in alt statements shall be applied (see clause 20.2).

j)
The call operation for a blocking procedures without return value, out parameters, inout parameters and exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k)
In case of a multicast or broadcast call operation of a blocking procedure, where the nowait keyword is used, all responses and exceptions have to be handled in subsequent alt or interleave statements.

l)
The call operation for a non-blocking procedure shall have no response and exception handling part, shall raise no timeout exception and shall not use the nowait keyword.

m)
Applying a call operation to an unmapped or disconnected port shall cause a test case error.
Examples

EXAMPLE 1:
Blocking call with getreply

// Given …

signature MyProc (out integer MyPar1, inout boolean MyPar2);

 :

// a call of MyProc

MyPort.call(MyProc:{ -, MyVar2}) {

// in-line signature template for the call of MyProc

[] MyPort.getreply(MyProc:{?, ?}) { }

}

// … and another call of MyProc

MyPort.call(MyProcTemplate) {

// using signature template for the call of MyProc

[] MyPort.getreply(MyProc:{?, ?}) { }

}

MyPort.call(MyProcTemplate) to MyPeer {

// calling MyProc at MyPeer

[] MyPort.getreply(MyProc:{?, ?}) { }

}

EXAMPLE 2:
Blocking call with getreply and catch

// Given

signature MyProc3 (out integer MyPar1, inout boolean MyPar2) return MyResultType

exception (ExceptionTypeOne, ExceptionTypeTwo);

 :

// Call of MyProc3

MyPort.call(MyProc3:{ -, true }) to MyPartner {

 [] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult param (MyPar1Var,MyPar2Var) { }

 [] MyPort.catch(MyProc3, MyExceptionOne) {

setverdict(fail);

stop;

 }

 [] MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {

setverdict(inconc);

 }

 [MyCondition] MyPort.catch(MyProc3, MyExceptionThree) { }

}

EXAMPLE 3:
Blocking call with timeout exception

MyPort.call(MyProc:{5,MyVar}, 20E-3) {

 [] MyPort.getreply(MyProc:{?, ?}) { }

 [] MyPort.catch(timeout) {

// timeout exception after 20ms

setverdict(fail);

stop;

 }

}

EXAMPLE 4:
Nowait call

MyPort.call(MyProc:{5, MyVar}, nowait);

// The calling test component will continue

// its execution without waiting for the

// termination of MyProc

EXAMPLE 5:
Blocking call without return value, out parameters, inout parameters and exceptions

// Given …

signature MyBlockingProc (in integer MyPar1, in boolean MyPar2);

 :

// a call of MyBlockingProc

MyPort.call(MyBlockingProc:{ 7, false }) {

 [] MyPort.getreply(MyBlockingProc:{ -, - }) { }

}

EXAMPLE 6:
Broadcast call

var boolean first:= true;

MyPort.call(MyProc:{5,MyVar}, 20E-3) to all component {
// Broadcast call of MyProc

// Handles the response from MyPeerOne

[first] MyPort.getreply(MyProc:{?, ?}) from MyPeerOne {

if (first) { first := false; repeat; }

:

}

// Handles the response from MyPeerTwo

[first] MyPort.getreply(MyProc:{?, ?}) from MyPeerTwo {

if (first) { first := false; repeat; }

:

}

[] MyPort.catch(timeout) {

// timeout exception after 20ms

setverdict(fail);

stop;

}

}

alt {

 [] MyPort.getreply(MyProc:{?, ?}) {

// Handles all other responses to the broadcast call

repeat

 }

}

EXAMPLE 7:
Multicast call

MyPort.call(MyProc:{5,MyVar}, nowait) to (MyPeer1, MyPeer2);
// Multicast call of MyProc

interleave {

 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer1 { }
// Handles the response of MyPeer1

 [] MyPort.getreply(MyProc:{?, ?}) from MyPeer2 { }
// Handles the response of MyPeer2

}

22.3.3
The Reply operation

The reply operation is used to reply to a call.

Syntactical Structure

Port "." reply "(" TemplateInstance [value Expression] ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2:
The relation between an accepted call and a reply operation cannot always be checked statically. For testing it is allowed to specify a reply operation without an associated getcall operation.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and (optional) return value. The signature may either be defined in the form of a signature template or it may be defined in‑line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause of a reply operation is for unicast responses the address of one receiving entity, for multicast responses a list of addresses of a set of receivers and for broadcast responses the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

A return value shall be explicitly stated with the value keyword.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) A reply operation shall only be used at a procedure-based port. The type definition of the port shall include the name of the procedure to which the reply operation belongs.

b) All out and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the reply operation.

e) If a value is to be returned to the calling party, this shall be explicitly stated using the value keyword.

f) Applying a reply operation to an unmapped or disconnected port shall cause a test case error.
Examples

MyPort.reply(MyProc2:{ - ,5});

// Replies to an accepted call of MyProc2.

MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer

MyPort.reply(MyProc2:{ - ,5}) to (MyPeer1, MyPeer2); // Multicast reply to MyPeer1 and MyPeer2

MyPort.reply(MyProc2:{ - ,5}) to all component;
// Broadcast reply to all entities connected

// to MyPort

MyPort.reply(MyProc3:{5,MyVar} value 20);
// Replies to an accepted call of MyProc3.

22.3.5
The Raise operation

Exceptions are raised with the raise operation.

Syntactical Structure

Port "." raise "(" Signature "," TemplateInstance ")"

[to Address]

NOTE 1:
Address may be an AddressRef, a list of AddressRef-s or "all component".

Semantic Description

The raise operation is used to raise an exception.

NOTE 2:
The relation between an accepted call and a raise operation cannot always be checked statically. For testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from a template or be the value resulting from an expression (which of course can be an explicit value). The optional type field in the value specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause of a raise operation is for unicast exceptions the address of one receiving entity, for multicast exceptions a list of addresses of a set of receivers and for broadcast exceptions the all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

Restrictions

In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:

a) An exception shall only be raised at a procedure-based port. An exception is a reaction to an accepted procedure call the result of which leads to an exceptional event.

b) The type of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include in its list of accepted procedure calls the name of the procedure to which the exception belongs.

c) A to clause shall be present in case of one-to-many connections.

d) AddressRef shall be of type address, component or of the type provided in the address declaration of the port type of the port instance referenced in the raise operation.

e) Applying a raise operation to an unmapped or disconnected port shall cause a test case error.
Examples

MyPort.raise(MySignature, MyVariable + YourVariable - 2);

// Raises an exception with a value which is the result of the arithmetic expression

// at MyPort

MyPort.raise(MyProc, integer:5});
// Raises an exception with the integer value 5 for MyProc

MyPort.raise(MySignature, "My string") to MyPartner;

// Raises an exception with the value "My string" at MyPort for MySignature and

// send it to MyPartner

MyPort.raise(MySignature, "My string") to (MyPartnerOne, MyPartnerTwo);

// Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and

// MyPartnerTwo (i.e. multicast communication)

MyPort.raise(MySignature, "My string") to all component;

// Raises an exception with the value "My string" at MyPort for MySignature and sends it

// to all entites connected to MyPort (i.e. broadcast communication)

ETSI

