Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
2
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

6.2.9
Communication port types

Ports facilitate communication between test components and between test components and the test system interface.

TTCN‑3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out direction) and inout (for both directions). Directions shall be seen from the point of view of the test component owning the port with the exception of the test system interface, where in identifies the direction of message sending or procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view of the test component connected to the test system interface port.
Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure signatures together with the allowed communication direction.

Whenever a signature (see also clause Fehler! Verweisquelle konnte nicht gefunden werden.) is defined in the out direction of a procedure-based port, the types of all its inout and out parameters, its return type and its exception types are automatically part of the in direction of this port. Whenever a signature is defined in the in direction for a procedure-based port, the types of all its inout and out parameters, its return type and its exception types are automatically part of the out direction of this port.
Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition, several address schemes may be supported by one SUT at different ports. To support such complicated addressing schemes, TTCN-3 allows to bind an address type to a port. Values of this type may be used for addressing purposes in communication operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means of the dot notation is explained in clause 6.2.12.
Syntactical Structure
Message-based port:

type port PortTypeIdentifier message "{"

[type Type address ";"]

{ (in | out | inout) { MessageType [","] }+ ";" }
"}"

Procedure-based port:

type port PortTypeIdentifier procedure "{"

[type Type address ";"]

{ (in | out | inout) { Signature [","] }+ ";" }
"}"

Restrictions
No specific restrictions in addition to the general static rules of TTCN‑3 given in clause 5.

Examples
EXAMPLE 1:
Message-based port.

// Message-based port which allows types MsgType1 and MsgType2 to be received at, MsgType3 to be

// sent via and any integer value to be send and received over the port

type port MyMessagePortTypeOne message

{

in

MsgType1, MsgType2;

out

MsgType3;

inout
integer

}

EXAMPLE 2:
Procedure-based port.

// Procedure-based port which allows the remote call of the procedures Proc1, Proc2 and Proc3.

// Note that Proc1, Proc2 and Proc3 are defined as signatures

type port MyProcedurePortType procedure

{

out

Proc1, Proc2, Proc3

}

EXAMPLE 3:
Message-based port with address type definition.

type port MyMessagePortTypeTwo message

{

type
integer address;
// Values of type integer can be used to address SUT entities.

inout
MsgType1, MsgType2;

}

NOTE:
The term message is used to mean both messages as defined by templates and actual values resulting from expressions. Thus, the list restricting what may be used on a message-based port is simply a list of type names.
6.2.12
Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually by use of the address data type. This is the type to use with port operations in order to address SUT entities.
Syntactical Structure
TemplateInstance

Semantic Description
The actual data representation of address is resolved either by an explicit global address type definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the address type is left as an open type within the TTCN‑3 specification). This allows abstract test cases to be specified independently of any real address mechanism specific to the SUT.
If an address type is bound to a port type definition, addressing of SUT instances (i.e., to- and from-directives in communication operations) via instances of that port type shall be restricted to values of the bound address type.

If several address types exist within a test suite, ambiguities shall be resolved by means of the dot notation. For example, a type reference within a variable defintion used to store an SUT address may be prefixed by a port type identifier or a module identifier. If both a global address type definition and port definitions with an address type definition exist in a module, the global address type shall only affect ports without an explicit address type definition. The consistent use of explicit address type definitions within port definitions is recommended over the use of global address type definitions.
Explicit SUT addresses shall only be generated inside a TTCN‑3 module if the type is defined inside the module (globally or within port type definitions). If the type is not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in message fields or as parameters of remote procedure calls.

In addition, the special value null is available to indicate an undefined address, e.g. for the initialization of variables of the address type.

Restrictions
a) TemplateInstance shall be of address type and can be an address type value, an address type variable, etc.

b) The address data type shall only be used in the to, from and sender parts of receive and send operations of ports mapped to the test system interface.

Examples
EXAMPLE 1:

// Associates the type integer to the open type address

type integer address;

 :

// new address variable initialized with null

var address MySUTentity := null;

 :

// receiving an address value and assigning it to variable MySUTentity

PCO.receive(address:*) -> value MySUTentity;

 :

// usage of the received address for sending template MyResult

PCO.send(MyResult) to MySUTentity;

 :

// usage of the received address for receiving a confirmation template

PCO.receive(MyConfirmation) from MySUTentity;
EXAMPLE 2:

type AddressType1 address;

// Address type definition on module level

type port MyPortType1 message {

inout
MsgType1;

}

// Address types bound to port types

type port MyPortType2 message {

type
AddressType2 address;

// Values of type AddressType2 can be

// used to address SUT entities.

inout
MsgType2;

}

type port MyMessagePort3 message {

type
AddressType3 address;

// Values of type AddressType3 can be

// used to address SUT entities.

inout
MsgType3;

}

// Component Type definition

type component MyComponentType

{

port MyPortType1
PCO1;

port MyPortType2
PCO2;

port MyPortType3
PCO3

}

// The following behaviour is considered to be executed on an instance of MyComponentType.

// Furthermore, it is considered that the ports PCO1, PCO2 and PCO3 are mapped ports, i.e.,

// used for the communication with the SUT.

 :

// new address variable initialized with null

var address

MySUTentity1 := null;
// Type of MySUTentity1 is AddressType1

var MyPortType2.address
MySUTentity2 := null;
// Type of MySUTentity2 is AddressType2

var MyPortType3.address
MySUTentity3 := null;
// Type of MySUTentity3 is AddressType3

 :

// receiving an address values and assigning them to variables

PCO1.receive(address:*) -> value MySUTentity1;
// Address type of module scope,

// no prefix needed.

PCO2.receive(MyPortType2.address:*) -> value MySUTentity2;
// Resolution of address type

// by means of a prefix.

PCO3.receive(MyPortType3.address:*) -> value MySUTentity3;

 :

// usage of the received address values for addressing purposes

 :

PCO1.send(MyResult) to MySUTentity1;

 :

PCO2.receive(MyConfirmation) from MySUTentity2;

 :

PCO3.send(MyRequest) to MySUTentity3;

 :
ETSI

